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A B S T R A C T   

Background and purpose: Radiomics models trained with limited single institution data are often not reproducible 
and generalisable. We developed radiomics models that predict loco-regional recurrence within two years of 
radiotherapy with private and public datasets and their combinations, to simulate small and multi-institutional 
studies and study the responsiveness of the models to feature selection, machine learning algorithms, centre- 
effect harmonization and increased dataset sizes. 
Materials and methods: 562 patients histologically confirmed and treated for locally advanced head-and-neck 
cancer (LA-HNC) from two public and two private datasets; one private dataset exclusively reserved for vali
dation. Clinical contours of primary tumours were not recontoured and were used for Pyradiomics based feature 
extraction. ComBat harmonization was applied, and LASSO-Logistic Regression (LR) and Support Vector Machine 
(SVM) models were built. 95% confidence interval (CI) of 1000 bootstrapped area-under-the-Receiver-operating- 
curves (AUC) provided predictive performance. Responsiveness of the models’ performance to the choice of 
feature selection methods, ComBat harmonization, machine learning classifier, single and pooled data was 
evaluated. 
Results: LASSO and SelectKBest selected 14 and 16 features, respectively; three were overlapping. Without 
ComBat, the LR and SVM models for three institutional data showed AUCs (CI) of 0.513 (0.481–0.559) and 0.632 
(0.586–0.665), respectively. Performances following ComBat revealed AUCs of 0.559 (0.536–0.590) and 0.662 
(0.606–0.690), respectively. Compared to single cohort AUCs (0.562–0.629), SVM models from pooled data 
performed significantly better at AUC = 0.680. 
Conclusions: Multi-institutional retrospective data accentuates the existing variabilities that affect radiomics. 
Carefully designed prospective, multi-institutional studies and data sharing are necessary for clinically relevant 
head-and-neck cancer prognostication models.   

1. Introduction 

Locoregional recurrence (LRR) is a highly prevalent pattern of 
relapse seen in about 20 to 50 % of patients with head-and-neck cancers 

(HNC) within two years after radiation treatment [1–3]. Therefore, the 
development of prognostic models to accurately identify patients who 
are at risk for LRR prior to radiotherapy would help the clinicians make 
better decisions to personalize treatment. 

* Corresponding author at: Radiation Oncology, Unit 2, Ida B Scudder Cancer Centre, Christian Medical College, Vellore, Tamil Nadu 632004, India. 
E-mail address: hannah.thomas@cmcvellore.ac.in (H.M.T. Thomas).  

Contents lists available at ScienceDirect 

Physics and Imaging in Radiation Oncology 

journal homepage: www.sciencedirect.com/journal/physics-and-imaging-in-radiation-oncology 

https://doi.org/10.1016/j.phro.2023.100450 
Received 28 October 2022; Received in revised form 1 May 2023; Accepted 2 May 2023   

mailto:hannah.thomas@cmcvellore.ac.in
www.sciencedirect.com/science/journal/24056316
https://www.sciencedirect.com/journal/physics-and-imaging-in-radiation-oncology
https://doi.org/10.1016/j.phro.2023.100450
https://doi.org/10.1016/j.phro.2023.100450
https://doi.org/10.1016/j.phro.2023.100450
http://crossmark.crossref.org/dialog/?doi=10.1016/j.phro.2023.100450&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Physics and Imaging in Radiation Oncology 26 (2023) 100450

2

Radiomics, which is a machine learning driven quantitative analysis 
of medical images, has shown promising results in predicting risk of 
treatment outcomes in various cancers, including head-and-neck cancer 
[4–6]. However, radiomics extracts many features from the volume of 
interest leading to high dimensionality of the feature space [7] and 
attendant risk of over-fitting. Thus, feature selection is recommended to 
remove redundant and irrelevant features that do not contribute to the 
prognostic model. Therefore, selecting highly reproducible and stable 
features for building the model is important. In HNC, the optimal feature 
selection methods and classifiers remain to be studied for multicentre 
radiomics-based prognostic models [8–10]. 

Like all machine learning applications, radiomics based prognostic 
models benefit when trained and validated on as large image datasets as 
feasibly achievable. However, the burden for disease sites such as head- 
and-neck cancer are highly variable across the world. For example, in 
India and Netherlands, HNC accounts for about 20% and 3%, respec
tively of all cancer diagnoses [11,12]. So, it is quite difficult for single 
institutional data to account for the variabilities that negatively impacts 
the generalizability of models to real-life data such as the variations seen 
across populations, image quality and size of the dataset. 

Often models trained on small sample sizes result in model over
fitting and lack generalizability [11,13–15] which makes pooling data 
from different institutions quite attractive. However, multi-institutional 
retrospective data will unavoidably introduce heterogeneity due to but 
not limited to differences in clinical subjects, variations in scanners, 
model versions, acquisition and reconstruction protocols and target 
definitions. Radiomic features are particularly sensitive to such varia
tions, often referred to as the centre or site effect [16,17]. Centre effect 
harmonization is not trivial as different methods have shown satisfac
tory results in some studies [17,18] but has had no favourable effect in 

others [19]. The best batch effect removal approaches for radiomics 
have been reported [20]; however, batch assignment within these ap
proaches can also contribute to further variability [21]. 

This study investigates the combination of publicly available data
sets with single-institutional retrospective data to construct radiomic 
models for loco-regional recurrence within two years of treatment in 
head-and-neck cancer. We evaluated the generalizability of the radiomic 
models when applied to a new real-world dataset. This study was 
intended to show feasibility for a prospective radiomic study that is 
currently enrolling patients, and to identify the potential issues arising 
in multi-institutional modelling studies of this kind. Specifically, we 
have investigated the role of feature selection method, choice of ma
chine learning architecture, sampling effects and batch harmonization 
effects with regards to external validation results. 

2. Materials and methods 

2.1. Data 

Study included 562 patients treated for locally advanced head-and- 
neck cancer, had pre-treatment CT images and had follow-up for at 
least two years following radiation treatment. The images and the loco- 
regional recurrence data were from two public datasets and two private 
datasets. Description about the data is available Supplementary S.1. 

The datasets HN-CMC, HN1-MAASTRO, and HN-MONTREAL were 
used for feature extraction and model training and HN3-MAASTRO 
dataset was reserved as the validation dataset for all experiments. The 
endpoint modelled is the loco-regional recurrence of HNC at two years 
and is measured from the start of radiotherapy treatment to date of 
recurrence. The number of events in each cohort is shown in 

Fig. 1. Features selected by LASSO for the single and multi-institutional pooled datasets.  
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Supplementary Fig. S1. Ethical approval for the use of the private 
datasets was granted by the respective institutional Review Boards with 
consent waiver (CMC Vellore: IRB No.11640 and MAASTRO Ref. No. 
0415). 

2.2. Feature extraction 

The radiomic features were extracted using PyRadiomics (Version 
v3.0.1), which is mostly compliant with the Image Biomarker Stan
dardization Initiative (IBSI) [22], the deviations including Fixed bin 
Discretization is mentioned in their documentation [23]. A single 
parameter file was used for feature extraction (Supplementary Script S1) 
with further details about the extracted features in Supplementary S.3. 
The radiomics features for HN3-MAASTRO were extracted at MAASTRO 
and only the anonymized features were shared with CMC Vellore. 

2.3. Experiment 1 (Feature selection) 

Feature selection methods included Least absolute shrinkage and 
selection operator (LASSO) and SelectKBest (scikit-learn V1.0.2) and 
implementation details are in Supplementary S.4). For both methods, 
the features were selected within each dataset or across the pooled 
datasets included in the training cohort, depending on how the dataset 
was used in the different experiments. The validation cohort was un
exposed to feature selection to avoid any data leakage. 

2.4. Experiment 2 (Centre effect harmonization) 

Out of 103 features, only the selected features from the four pooled 
datasets were compared to test the effect of ComBat harmonization. 

Publicly available PyComBat was used in this study [24] and default 
values included parametric estimation of batch effects with individual 
batch adjustments and without covariates, reference batch selection or 
precision computing. Before and after ComBat harmonization, the 
feature distribution and mean values from each of the pooled datasets 
and the AUC of the prognostic models were evaluated. 

2.5. Prognostic modelling 

HN-CMC, HN1-MAASTRO, and HN-MONTREAL were used for 
training and HN3-MAASTRO was the validation dataset. The synthetic 
minority over-sampling technique (SMOTE) algorithm was used to 
oversample the minority class to account for the unbalanced data in the 
‘LRR-positive’ and ‘LRR-negative’ and produce class-balanced training 
datasets before training the models. 

2.5.1. Experiment 3 (machine learning classifier) 
Two frequently used supervised machine-learning based algorithms, 

namely Logistic Regression which is a linear method and Support Vector 
Machine with a non-linear kernel, were used to build models for pre
dicting LRR. The primary measure of the models’ performance was 
evaluated based on the AUC of the hold-out validation dataset (HN3- 
MAASTRO). 

2.6. Experiment 4 (single vs pooled datasets) 

Given the multi-centric nature of studied datasets, we chose to study 
the effect of more data on the performance of the models. The LR and 
SVM models were trained with a single institutional data and perfor
mance was compared with models trained with pooled data and 

Fig. 2. Features selected by SelectKBest for the single and multi-institutional pooled datasets.  
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validated on HN3-MAASTRO. 

2.7. Statistical analysis 

Descriptive statistics were used to summarize the salient features 
selected. Following feature selection using either LASSO or SelectKBest, 
Spearman Rank Correlation was performed to eliminate any mutually 
correlated features; rank correlation for feature being taken forward to 
model building was set at rho < |0.7|. A two-sample Kolmogorov- 
Smirnov test was performed to compare the distributions and Welch’s t- 
test was performed to compare the means of selected features between 
the individual datasets in the pooled dataset before and after ComBat. 
The models’ performance was evaluated using Area under the Receiver- 
operating-curve (AUC) and median AUC over 1000 bootstrapping 
models was reported with 95% confidence intervals (CI). All statistical 
analyses were done using Python (Python Version 3.7.11 and Scikit- 
learn Version 1.0.2). 

3. Results 

The demographics of the patients in the training datasets were 
comparable (Supplementary Table S1). 

3.1. Experiment 1 

Figs. 1 and 2 show that different prognostic features were selected by 
LASSO and SelectKBest, respectively for each dataset independently in 
the training data. When the datasets were pooled, some features from 
the independent datasets were selected but in varying order of 

importance and frequency of occurrence, along with features that were 
unique to the pooled dataset and not present in the independent 
datasets. 

3.2. Experiment 2 

The distributions of the selected features were evaluated before and 
after ComBat harmonization. Kolmogorov-Smirnov 2 Sample test 
showed that Combat harmonisation made the distributions significant 
less different. In most of the selected features, distribution was no longer 
detected following harmonization (e.g., GLCM Maximum Probability p- 
val changed from 0.022 to 0.197), while few features either became 
significantly different or remained unchanged (See Supplementary 
Table S5). 

In Fig. 3, the distribution and the variations of one representative 
feature namely, GLCMMaximumProbability is shown using a Kernel 
Density estimate plot (A&C) and Box Whisker plots (B&D). This change 
in distribution was not noted as drastic in other features (e.g., 
NGTDMContrast and GLSZMGrayLevelVariance) (Supplementary 
Table S5). 

In Fig. 4 and Supplementary Table S3 the model performance based 
on AUC with 95% CI before and after ComBat harmonization shows 
variability and did not necessarily improve the performance of the 
models. 

3.3. Experiment 3 

Fig. 4 and Supplementary Table S3 show the variability in the 
models’ performance between the ML algorithms with SVM always 

Fig. 3. The Kernel Density Estimate (KDE) (A and C) and Box (B and D) plots for one representative feature (GLCM Maximum Probability) before (A and B) and after 
(C and D) ComBat harmonization. 
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outperforming the LR models, when pooled datasets were used. The two 
best performing models were SVM models trained on HN_MAASTRO and 
HN-CMC + HN-MAASTRO (AUC = 0.63) and HN-CMC + HN1-MAAS
TRO + HN-MONTREAL (AUC = 0.66) datasets, respectively. 

3.4. Experiment 4 

Fig. 5 and Supplementary Table S4 show the effect of size of a dataset 
on the performance of the models for a representative single dataset 
(HN-CMC) against pooled data. Fig. 5A shows that Logistic Regression 
models do not show significant differences in model performance be
tween single (red curve AUC = 0.60) and all the pooled data (orange 
curve AUC = 0.56). Fig. 5B shows that SVM models trained better with 
the added data and the performance improved significantly from AUC =
0.56 (red curve) to AUC = 0.66 (orange curve). This trend was seen for 
all datasets independently or pooled in some combination (Supple
mentary Table S4). For all the combinations of pooled data studied, SVM 
model performance plateaus at AUC~= 0.66, regardless of more data 
being added. 

4. Discussion 

In this study we simulated a multi-institutional study to build prog
nostic models of loco-regional recurrence (LRR) in locally advanced 
head-and-neck cancer (LA-HNC) patients. We designed experiments to 
study the responsiveness of the models to the choice of feature extrac
tion, machine learning classifiers, batch effect normalization and data 
size. 

This study is important as radiomics has shown potential to 
personalize patient treatment using routinely acquired clinical images. 
This is particularly important in clinical management of HNC, since 
biological heterogeneity inside a tumour that characterizes the inter
patient differences is just as important as heterogeneity or variability 

seen in terms of determining the clinical outcome [1,9]. CT imaging was 
opted as it is an indispensable imaging in management of HNC and all 
patients treated with radiation will have it. 

Most radiomics studies including this study rely on retrospective 
imaging which lends to an unavoidable bias in patient selection and data 
heterogeneity from scanners, imaging and reconstruction parameters, 
inter-observer variations in delineations, biological variability across 
populations etc. In real-life data, these variations manifest more prom
inently than prospective data. In a multi-centric setting, ensuring the 
quality of the data can be additionally challenging. For example, we 
often rely on what is defined as ROI. However, there could be differences 
in GTV definitions between centres where some include just the primary 
tumour and others both primary and nodes. In being too conservative, 
we risk losing a lot of data, and the contrary introduces noise leading to a 
trade-off between size of the dataset and noise. Also, from the images or 
their metadata it is often difficult to determine if the head-and-neck CT 
was imaged with or without contrast. With prospective imaging we 
might be able to limit some of these variations, but it would be at cost of 
much smaller samples in exchange for better control over the quality of 
the data. 

Currently, there are many feature selection methods available. 
However, there is no optimal feature selection method for radiomics yet. 
In this study, we have chosen 1) LASSO and 2) SelectKBest based on 
their popularity, and ease of implementation. It was observed that fea
tures from a single dataset have quite different distributions (Figs. 1 and 
2), may not be applicable in multi-institutional dataset [25] and are 
dependent on the choice of the selection method [26]. We also observed 
only three features were common among the two methods (Supple
mentary Table S2). 

Radiomic models often run the risk of overfitting (failure to predict 
in unseen data) and one way to mitigate is to increase the size of the 
training sample, which is achieved in this study by pooling data from 
different institutions/sources which also introduces more heterogeneity. 

Fig. 4. Performance of the LR and SVM models trained on pooled datasets prior to and post ComBat harmonization. Model performance is reported on validation 
data HN3-MAASTRO. 
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We chose ComBat as it is the most popular method reported for Radio
mics studies with an easy Python implementation tool available [24]. 
We saw that ComBat standardized the distributions and the feature 
mean (Supplementary Table S5), but it leaves us no clearer as to what 
the cause(s) of the batch effects might be. The danger is that we wipe out 
real clinical demographic heterogeneities in addition to scanner/ 
acquisition/delineation types of heterogeneities which may lead to 
potentially dangerous misjudgment. Our study shows that applying 
ComBat has either similar or better performance in the validation set 
compared to results without the batch correction suggesting that Com
Bat has more utility in some combination of multi-centre datasets but 
less in others. We do not at present have access to enough data to 
extricate the reasons for this, and we mention this as an important 
question for follow up studies. 

We have not exhaustively searched over all possible classifiers for the 
best classifier. For the feature selection and classifier methods used, we 
considered the responsiveness on the hyper-parameters, but this was not 
the primary purpose of our study. We cannot exclusively say that the 
hyper-parameters have been optimized, but our results represent what 
could be seen in future multi-centre studies. We selected Logistic 

Regression and Radial SVM as being two of the most used classifiers 
[11,14,15] and their selection motivated differently; LR has linear de
cision boundary and models are simpler to explain compared to SVM 
which operates on non-linear boundaries. With the multi-institutional 
data, we found LR model performed poorly on the validation data, 
despite harmonization with ComBat, while SVM models outperformed 
the LR models, irrespective of the ComBat harmonization. Hence, while 
choosing a ML framework, that it should be considered not only for 
complexity e.g., linear or non-linear decision boundaries, but also on 
how well does the framework deals with the different sources of het
erogeneity. Although more data yielded significantly better perfor
mance for both LR and SVM models compared to single institutional 
data (Supplementary Table S4), we observed that once the SVM models 
had sufficiently learnt the heterogeneity, more data did not necessarily 
improve the performance. So, AUCs achieved with approximately 200 
patients and about 500 patients remained at 0.6. This may be an 
inherent limitation of AUC, where it typically limits it to under 0.8 in 
small samples as shown by Bahn and Alber [27]. In multi-institutional 
studies a trade-off in capturing the true biological heterogeneity and 
achieving a sample size that can statistically account for the true 

Fig. 5. Performance of the models trained with data from single institution versus multi-institutional pooled data. Validation ROC of Logistic Regression (A) and SVM 
LRR models (B) for an example single dataset (HN-CMC) and its pooled dataset combinations. The ROCs correspond to the HN-CMC (red), HN-CMC + HN1- 
MAASTRO (blue), HN-CMC + HN-MONTREAL (green) and HN-CMC + HN1-MAASTRO + HN-MONTREAL datasets (orange), respectively. C) Test AUC across all 
single and pooled datasets in this experiment. Validation data was HN3-MAASTRO. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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differences is unavoidable. 
There are certain limitations in this study. First, is the retrospective 

nature of the data. Secondly, the time-to-LRR was dichotomised since 
one cohort (HN-CMC) did not have event dates for performing the time- 
to-event analysis (See logic in Supplementary Section S.3). For the 
prospective observational trial that the institution is accruing currently, 
care is taken to ensure the follow-up and time to clinical outcomes 
including loco-regional recurrence are recorded accurately. Thirdly, the 
heterogeneity of imaging data limits the generalizability of the prog
nostic model which includes the patients with good prognosis (HPV- 
positive oropharynx) and poor prognosis (e.g., Stage 4 hypopharynx). 
Next, there was some discrepancy noted in the GTV definition in the 
public datasets. However, we have included the patients solely based on 
the tumour definitions provided by individual centres. HN-MONTREAL 
dataset included patients treated for nasopharynx and unknown pri
mary. We did not actively try to remove cancer of the nasopharynx as 
this cancer is more prevalent in some parts of the world relatively more 
than others, which includes North-East India [28]. However, it could not 
be captured in the HN-CMC cohort. Similarly, on examining the un
known primary images, at least three were oropharynx, however they 
were included and reported based on the supporting document that 
mentioned the presence of a GTV primary. This might have some 
bearing on the performance of the models. However, no corrections 
were made and were retained in terms of simulating the real clinical 
scenario. Next, contrast enhanced CT are not always standard imaging 
available for head-and-neck cancers. Hence, the datasets included both 
intravenously injected contrast CTs and non-contrast enhanced CTs and 
no correction was applied since the effect of contrast on radiomics fea
tures in Head-and-neck tumours is not yet fully explored. Next, although 
PyRadiomics did not exactly comply completely with all IBSI re
quirements, this would not have affected the present study since all 
datasets were computed using the same PyRadiomics software and the 
same feature extraction parameter setting. However, IBSI compliance is 
needed to allow better reproduction and validation of the results 
externally. Lastly, both LR and SVM models trained on different com
binations of datasets showed decreased performance when validated in 
the HN3 dataset (Supplementary Table S3). Future studies will look at 
effect of combinations of datasets instead of just adding more data 
(Similar to Supplementary Table S4). 

Given our results and the growing number of studies on deep lear
ning based oncological prognostication [29,30] and the ability of these 
models to handle the heterogeneity in the data better compared to 
machine learning, it would be worth exploring their utility for multi- 
institutional studies. It would also be interesting to see if with feder
ated architecture [31], where we can leave some centres in training and 
keep others out for external validation, and easily try different combi
nations of data, it would be helpful in teasing out the clinical-related 
heterogeneities and correcting only for the scanner-related 
heterogeneities. 

In summary, the study highlights the variability that occurs when 
multi-institutional data is pooled for prognostic radiomics models for 
head-and-neck cancer. Based on our observations, we strongly recom
mend that future studies mention the scanner models, imaging param
eters, use of contrast agents and provide primary and nodal volumes 
separately along with the other clinical details relevant to the patients. 
Harmonization techniques may help reduce some variability; however, 
we are unclear if we are losing key heterogeneity that may be worth 
preserving. Carefully designed prospective, multi-institutional studies 
and data sharing will be needed to build clinically relevant radiomics 
models for prognostication. 

5. Patient consent 

The use of patient data from the private datasets was approved by the 
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