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This paper describes a record of air and soil temperature collected from 2001 to 2016 in temperate forests
at the Bear Brook Watershed in Maine (BBWM). BBWM is a long-term research site established to study the
response of forest ecosystem function to various environmental disturbances, including chronic acidic
deposition. Replicate HOBO data loggers were deployed in BBWM’s two forest types (coniferous and
deciduous), to record temperatures at four positions: (1) air temperature, 100 cm above the forest floor; (2)
surface organic soil, 2 cm below the forest floor surface; (3) mineral soil, 10 cm below the organic–mineral
horizon interface; and (4) mineral soil, 25 cm below the organic–mineral horizon interface. Data were
recorded every three hours, and these raw data were used to compute daily maximum, daily minimum,
daily average, and monthly average values. This fifteen–year record represents one of the few
readily–available soil temperature datasets in the region, and provides information on long-term changes in
climatology, and seasonal and episodic weather patterns.

Design Type(s)
averaging objective • source-based data analysis objective • parallel group
design • time series design

Measurement Type(s) temperature of air • temperature of soil

Technology Type(s) descriptive statistical calculation data transformation

Factor Type(s) shedability • Device Location During Observation • Date Range

Sample Characteristic(s) Town of Beddington • area of deciduous forest • area of evergreen forest
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Background & Summary
Soil temperature is an important driver of terrestrial biogeochemical processes. Soil temperature
influences microbial and plant activity1–4, and therefore plays a critical role in the cycling of nutrients like
carbon and nitrogen5–11. Phenological changes occurring during seasonal transitions are often strongly
influenced by changing soil temperatures12–14. Despite the importance of soil temperature for ecosystem
function, long-term datasets of soil temperature are not commonly available, even fewer are available at
multiple soil depths, and models often use air temperature as a proxy or basis for simulations of soil
temperature15–19. While air and soil temperatures are often well correlated, soil temperature is also
influenced by environmental variables such as forest composition and canopy cover20,21, snow cover22–24,
and soil moisture15,25, which may not be adequately parameterized into the models to provide suitable
pedotransfer functions. Additionally, disturbances can alter soil temperatures on short temporal
scales20,23 due to changes in canopy structure and understory vegetation, organic debris on the forest
floor, or snowpack loss in winter, and these may not be reflected in the soil temperature simulations.
Access to long-term datasets of empirical soil temperature measurements is therefore valuable when
studying ecosystem processes over short and long time intervals, made even more important in a time of
accelerating changes in the climate including warming temperatures, the intensification of the hydrologic
cycle, and increased inter- and intra-annual variability in weather26–28.

The objective of this paper is to provide a 15-year dataset of soil temperature from the Bear Brook
Watershed in Maine (BBWM). BBWM is a long-term whole-watershed acidification experiment in
eastern Maine, USA (44°52'N, 68°06'W), established to study the effects of elevated nitrogen and sulfur
deposition on ecosystem processes (Fig. 1). BBWM is comprised of paired watersheds, the reference East
Bear Brook (EB, 11.0 ha) and the manipulated West Bear Brook (WB, 10.3 ha) that received bimonthly
ammonium sulfate additions from 1989 to 2016 (ref. 29). Vegetation is similar in both watersheds, with
lower elevations dominated by deciduous species including Fagus grandifolia (American beech), Acer
saccharum (sugar maple), and Acer rubrum (red maple), and higher elevations dominated by coniferous
species including Picea rubens (red spruce) and Abies balsamea (balsam fir). Thus, each watershed is split
into two compartments, with a total of four compartments at the site (East Bear–deciduous, East
Bear–coniferous, West Bear–deciduous, and West Bear–coniferous). Soils are coarse-loamy, mixed, frigid
Typic and Aquic Haplorthods (Lyman, Tunbridge, Rawsonville, Dixfield, Colonel series)30,31. Since 2001,
air and soil temperatures have been recorded at the site to gain a better understanding of the

Figure 1. Location and layout of the Bear Brook Watershed in Maine (BBWM), with paired watersheds

East Bear Brook (light gray) and West Bear Brook (dark gray). The markers represent locations of the

HOBO temperature data loggers described in this paper, with circles representing data loggers in deciduous

stands, and triangles representing data loggers in the coniferous stands. Contour lines represent 20-foot

intervals.
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biogeochemical processes occurring in the watersheds. Temperature has been measured in the organic
and underlying mineral soil horizons to characterize temporal variability in soil temperature with
depth32. Soil temperatures have also been measured in both forest types to account for differences in
canopy cover. In this paper, we describe the instrumentation, data collection, and data handling for this
temperature dataset.

Methods
Instrumentation
Temperature was recorded using Onset HOBO data loggers H8 and U12, with TMC1-HD and TMC6-
HD temperature sensors (Onset Computer Corporation, Bourne, MA, USA). In July 2001, four data
loggers were deployed in each forest type at the site (two data loggers in each compartment). From June
2003 to August 2007, four additional data loggers were deployed in each forest type to examine spatial
heterogeneity in temperature measurements (total n= 8 per forest type). Due to limited availability of
resources, after August 2007, replication was reduced to four data loggers in each forest type. We tested
for the effect of replication size using linear mixed effect models, and replication size did not significantly
alter the final means. Further details are included in the Technical Validation section, and results are
reported in Table 1.

Each data logger was equipped with four sensors to measure temperature at four positions: (1) air
temperature, 100 cm above the forest floor surface; (2) surface organic (O) horizon, where the sensor was
placed 2-3 cm below the forest floor surface; (3) 10 cm below the interface of organic and mineral
horizons, which corresponded to placement in the B horizon; and (4) 25 cm below the interface
of organic and mineral horizons, which corresponded to the lower B or BC horizon. Data loggers
were mounted on wooden stakes and enclosed in PVC towers for protection from damage by wildlife.
Air and soil temperatures were recorded year-round, every three hours, beginning at 12:00 AM. The
data loggers were inspected at the site every four to six months, and batteries and desiccant were replaced
as needed. Additional information on data logger setup and experimental design can be found in
Fernandez et al.33

Replication Least square mean temperature (°C)

Air Organic soil Mineral soil, 10 cm Mineral soil, 25 cm

4 5.79± 0.19 6.67± 0.11 6.49± 0.10 6.41± 0.08

5 5.77± 0.19 6.65± 0.11 6.49± 0.10 6.40± 0.08

6 5.75± 0.19 6.64± 0.11 6.54± 0.10 6.43± 0.08

7 5.51± 0.19 6.90± 0.11 6.21± 0.11 6.33± 0.08

8 5.81± 0.19 6.67± 0.11 6.50± 0.10 6.40± 0.11

φ (autocorrelation) 0.9863 0.9971 0.9983 0.9983

F-value from LME 0.0415 0.3717 0.0986 0.4893

p-value from LME 0.9967 0.8290 0.9829 0.7437

Table 1. Least square mean temperatures and results from linear mixed-effects models testing the
effect of replication size.

File ID suffix Time scale Forest type Air or soil Temperature statistic

air_dec Daily Deciduous Air Maximum, minimum, average

soil_org_dec Daily Deciduous Soil (organic) Maximum, minimum, average

soil_10_dec Daily Deciduous Soil (mineral, 10 cm) Maximum, minimum, average

soil_25_dec Daily Deciduous Soil (mineral, 25 cm) Maximum, minimum, average

air_con Daily Coniferous Air Maximum, minimum, average

soil_org_con Daily Coniferous Soil (organic) Maximum, minimum, average

soil_10_con Daily Coniferous Soil (mineral, 10 cm) Maximum, minimum, average

soil_25_con Daily Coniferous Soil (mineral, 25 cm) Maximum, minimum, average

air_soil_mean_dec Monthly Deciduous Air, soil (all depths) Average

air_soil_mean_con Monthly Coniferous Air, soil (all depths) Average

Table 2. Summary of data files available.
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Data analysis and processing
Removal of outliers. We used methods described in the literature to test for variance in our data, and
to detect outliers34,35. We established an acceptable temperature range of −50 to+50 °C, since historical
air temperature data from National Oceanic and Atmospheric Administration (NOAA) weather stations
at multiple locations in Maine (Acadia National Park, GHCND:USC00170100; Bangor, GHCND:
USW00014606; Caribou GHCND:USW00014607)36,37 were always within this range. The data flagged by
this process were an order of magnitude greater than our acceptable limits (+/- 500 to 900 °C), and we
excluded these data points as spurious.

We calculated standard deviation (SD) on the long-term raw data to examine the variation of the
data and detect statistical outliers. Values that exceeded the range of mean± 3 SD were flagged as
potential outliers, and were then inspected manually. When these outliers were consistent across multiple
sensors, we interpreted them as “real values”, because they represented days that were unusually cold or
warm compared to the long-term average. If the outliers were restricted to only one sensor, they were
excluded.

Internal consistency check. We performed internal consistency checks on air temperature, to
test that maximum>mean>minimum. Maximum and minimum values were equal for some
sensors during winter months, indicating that those sensors were buried under snow. We excluded
those values, since they did not represent air temperatures. We did not perform a similar check for soil
temperatures, because soil temperatures often show little to no fluctuation (for instance, under
snowpack).

Data processing. We calculated daily maximum, minimum, and average values for each replicate
sensor. We performed correlation analysis on all replicates within each forest type to check for spatial
consistency. This was done for the period 2003–2007, since all replicate loggers were active during this
period. All replicates were well correlated (r= 1.0, po0.01). We averaged values across all replicates to
compute daily maximum, daily minimum, and daily mean temperature for each forest type. Daily average
values were used to compute monthly average values.

Missing values. The dataset contains some missing values, most notably for five months in 2012. This
was a result of equipment malfunctions coupled with logistical issues that prevented maintenance of the
data loggers during this period. Missing data are indicated by blank entries. We have left these gaps
unfilled, and have not used climate models to estimate the missing data, because our objective is to
provide a dataset of recorded temperatures.

Data Records
Daily and monthly data are available online (Data Citation 1), in ten tab-delimited text files. Each file
name begins with “Bear_Brook_Watershed_” and is followed by a suffix describing the nature of the data,
i.e. air or soil; organic soil, mineral soil at 10 cm depth or 25 cm depth; and deciduous or coniferous forest
(Table 2).

A summary of the 16-year record is presented in Table 3 and Fig. 2, and these highlight the effect of
vegetation and the vertical stratification of temperature. Deciduous stands had higher soil temperatures
than coniferous stands, most prominent during spring and summer. This is likely due to a shading effect
under the dense coniferous canopy. Air temperatures showed greatest variability and temperature ranges,
while deep mineral soils showed the least variability.

Mean SE Maximum Minimum Range

Deciduous forest

Air 6.30* 0.03 38.30 − 30.20 68.50

Organic soil 7.53* 0.02 22.50 − 11.70 34.20

Mineral soil, 10 cm 7.30* 0.01 18.70 − 2.44 21.14

Mineral soil, 25 cm 7.43* 0.01 19.40 − 1.51 20.90

Coniferous forest

Air 5.81 0.03 35.30 − 36.50 71.70

Organic soil 6.55 0.02 23.60 − 11.70 35.30

Mineral soil, 10 cm 6.18 0.01 17.50 − 3.37 20.90

Mineral soil, 25 cm 5.93 0.01 16.80 − 1.51 18.30

Table 3. Summary of the data record over 16 years of monitoring. Asterisks denote significant
differences between forest types at α= 0.05.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180153 | DOI: 10.1038/sdata.2018.153 4



Technical Validation
Quality assurance procedures on data loggers
The data loggers and sensors were calibrated by Onset Computer Corporation, and were accurate
to± 0.2 °C above 0 °C, and accuracy declined from± 0.2 °C to± 0.9 °C between 0 °C and -30 °C (Fig. 3).

a

b

c

d

Figure 2. Daily values of temperature averaged across 16 years (2001–2016) for air, organic soil, and

mineral soil at 10 and 25 cm depths.
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Additionally, we tested all data loggers and sensors for accuracy prior to deployment, by immersing the
sensors in an ice bath, as described at http://www.onsetcomp.com/support/tech-notes/quick-temp-
accuracy-check-ice-bath. This method operates on the principle that a mixture of ice and water maintains
its temperature at ~0.01 °C, the triple point of water. All sensors recorded the temperature of the ice bath
as 0.00± 0.01 °C, and were therefore determined to be acceptable for deployment in the field.

Quality control procedures on temperature data
We analyzed the processed data (daily maximum, minimum, average) using statistical methods described
in the literature34,35,38,39.

Figure 3. Plot of accuracy vs. measured temperature for TMCx Soil Temperature Sensors, as provided by

Onset Computer Corporation.

Mean Temperature, °C

Air Organic soil Mineral soil, 10 cm Mineral soil, 25 cm

Deciduous stands

all 8 sensors 6.12 7.18 7.15 7.14

exclude sensor D1 6.05 7.15 7.07 7.00

exclude sensor D2 6.06 7.13 7.05 7.10

exclude sensor D3 6.16 7.15 7.13 7.10

exclude sensor D4 6.09 7.14 7.12 7.10

exclude sensor D5 6.13 7.26 7.24 7.23

exclude sensor D6 6.14 7.18 7.13 7.17

exclude sensor D7 6.14 7.21 7.20 7.20

exclude sensor D8 6.15 7.21 7.22 7.20

F-value from ANOVA 0.0222 0.0681 0.2161 0.3635

p-value from ANOVA 1.0000 0.9998 0.9882 0.9400

Coniferous stands

all 8 sensors 5.88 6.17 5.85 5.69

exclude sensor C1 5.84 6.06 5.71 5.61

exclude sensor C2 5.90 6.16 5.85 5.68

exclude sensor C3 5.92 6.15 5.90 5.71

exclude sensor C4 5.81 6.19 5.83 5.66

exclude sensor C5 5.97 6.16 5.89 5.70

exclude sensor C6 5.83 6.12 5.81 5.64

exclude sensor C7 5.80 6.21 5.80 5.68

exclude sensor C8 5.94 6.32 5.98 5.80

F-value from ANOVA 0.0490 0.1967 0.3269 0.2296

p-value from ANOVA 0.9999 0.9914 0.9561 0.9856

Table 4. Results from tests to check if the mean was biased by a single sensor. We calculated mean
temperature using all eight sensors, and compared that with means calculated by excluding one sensor at a time.
We tested for significant differences using Analysis of Variance (ANOVA), and those results are reported here.
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Spatial consistency among sensors. We conducted paired correlations on processed data among data
loggers. All replicates within each forest type were strongly correlated (r= 1.00, po0.01) suggesting
consistency among replicates.

Testing for bias and the effect of replication. To determine if the degree of replication influenced
our values, we compared daily mean temperatures obtained using varying replication sizes. Eight replicate
sensors were active during the period 2001–2003, and we randomly subsampled from these sensors to get
replication sizes from four to eight. We analyzed these data using linear mixed effects models (fixed
effect= replication level; random effect= forest; correlation=AR1 to account for autocorrelation;
n= 3000). The null hypothesis (that there was no significant effect of replication size) was proven correct.
Statistical results as well as least-square means are provided in Table 1. To test if the mean was
significantly biased by any single sensor, we calculated the mean using all eight sensors, and compared it
with the mean of seven sensors, calculated iteratively by excluding one sensor at a time. All combinations
were statistically similar, and no single sensor was found to significantly influence the overall means.
These tests were run on data recorded during the period June 2003–August 2007. Detailed results can be
found in Table 4.

Consistency with NOAA station data. We compared daily maximum and minimum air temperatures
with records from the NOAA station at Wesley, ME (44.95 °N, 67.67 °W, GHCND:USC00179294)36,37,
which is 35.41 km from our research site. The data from the two sites were well correlated (r= 0.94,
po0.01), suggesting that the air temperature dataset for BBWM was consistent with the nearest
weather station temperature record in the region (Fig. 4). Our recorded air temperature was
statistically lower than Wesley values during the growing season and fall, which we attribute to canopy
shading.

Usage Notes
We expect that this dataset would be useful to researchers and professionals who need access to long-term
temperature datasets to examine intra- or inter-annual trends in the region. Additionally, our data could
be used to parameterize and/or validate climate models that predict soil temperature and soil function.

The goal of this work was to obtain a continuous air and soil temperature dataset over 16 years.
However, there are limited periods without data, and users should be careful to note those periods in their
work. Additionally, it should be noted that this dataset does not represent all possible site conditions for
the entire watershed. The measurement locations accurately represent the moderate to well-drained forest
soils that dominate the landscape of these watersheds, but sensors were not deployed in spatially minor but
divergent site conditions such as in the relatively narrow riparian zone along streams, shallow to bedrock
soils in the upper reaches of the watershed, or minor soils along the ridgeline of the watershed divide.
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