
RNA Biology 11:5, 522–536; May 2014; © 2014 Landes Bioscience

 Review

522 RNA Biology volume 11 issue 5

Review

Introduction

RNA is a polymer composed mainly of only four basic build-
ing blocks. This complexity appears relatively low compared with 
proteins that are composed of far more diverse functional groups 
on the side chains five times the diversity of residues. Nevertheless, 
RNA is capable of performing a wide range of biological functions 

that resemble those of proteins, and some unique functions 
because of the RNA’s coding potential. RNA molecules have been 
long known to carry genetic information and to synthesize pro-
teins. They may detect the presence of ions or small molecules in 
the environment, regulate gene expression on various levels (from 
DNA, to RNA, to proteins), and catalyze chemical reactions 
(reviewed comprehensively in ref. 1). While the role of protein-
coding RNA in transmission of genetic information encoded in 
triplets of residues depends essentially just on the ribonucleotide 
sequence, most of the other roles depend also (or mostly) on the 
spatial structure of the ribonucleotide chain. There exist non-cod-
ing RNA molecules such as tRNAs or certain ribozymes that form 
very stable tertiary structures that define their function in a very 
similar manner to how the function of a protein enzyme is defined 
by the stable structures that are formed. Many functions depend 
not on one structure, but on the RNA ability to form alternative 
structures or to undergo transformations between the structured 
and unstructured state or even both. For example, riboswitches, 
regulatory elements located within mRNA that switch protein 
production on and off, function owing to the ability to undergo 
conformational changes depending on binding of specific ligands 
or on sensing other environmental changes (review ref. 2). Thus, 
the understanding of manifold mechanisms of RNA function 
beyond protein coding requires detailed knowledge of the RNA 
tertiary structure in the same way as complete understanding of 
protein function is heavily dependent on the knowledge of protein 
structure (reviewed comprehensively in ref. 3).

Unfortunately, the experimental determination of RNA struc-
tures at atomic level of precision is very difficult and rather expen-
sive. Currently, it is significantly more difficult than protein 
structure determination.4 As of February 2014, only 632 unique 
RNA crystal structures determined at high or medium resolution 
(up to 3 Å) have been deposited in the Protein Data Bank, which 
is dwarfed by the number of representative protein structures of 
equivalent quality determined thus far (about 28 000 structures 
with resolution up to 3 Å and up to 90% identity). On the other 
hand, experimental determination of sequence and structural 
features of the transcriptome (e.g., by using second generation 
sequencing methods that rely on reverse transcription of RNA 
into DNA followed by DNA sequencing) is much cheaper and 
faster. Given the rapid growth of RNA sequence information and 
very slow growth of information about RNA structures, it seems 
unlikely that structures will be determined experimentally for all 
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in addition to mRNAs whose primary function is transmis-
sion of genetic information from DNA to proteins, numerous 
other classes of RNA molecules exist, which are involved in a 
variety of functions, such as catalyzing biochemical reactions 
or performing regulatory roles. in analogy to proteins, the 
function of RNAs depends on their structure and dynamics, 
which are largely determined by the ribonucleotide sequence. 
experimental determination of high-resolution RNA structures 
is both laborious and difficult, and therefore, the majority of 
known RNAs remain structurally uncharacterized. To address 
this problem, computational structure prediction methods 
were developed that simulate either the physical process 
of RNA structure formation (“Greek science” approach) or 
utilize information derived from known structures of other 
RNA molecules (“Babylonian science” approach). All compu-
tational methods suffer from various limitations that make 
them generally unreliable for structure prediction of long RNA 
sequences. However, in many cases, the limitations of com-
putational and experimental methods can be overcome by 
combining these two complementary approaches with each 
other. in this work, we review computational approaches for 
RNA structure prediction, with emphasis on implementations 
(particular programs) that can utilize restraints derived from 
experimental analyses. we also list experimental approaches, 
whose results can be relatively easily used by computational 
methods. Finally, we describe case studies where computa-
tional and experimental analyses were successfully combined 
to determine RNA structures that would remain out of reach 
for each of these approaches applied separately.
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RNA molecules in the foreseeable future. This situation parallels 
a similar problem concerning protein sequences and structures, 
and both these problems have been approached by the develop-
ment of computational methods for prediction of three-dimen-
sional structures from the sequence information. Although we 
are still far from solving these problems completely, thus far, a 
few successful approaches have been proposed, which allow for 
reasonably accurate and practically useful prediction of RNA 
and protein tertiary structures. It is worth emphasizing that 
many methods for RNA structure prediction have been strongly 
inspired by computational methods developed earlier for protein 
structure prediction.5

In opposition to high-resolution experimental structure deter-
mination, low-resolution studies on RNA structure that focus on 
the level of residues rather than atoms have been methodologi-
cally more advanced than the corresponding low-resolution stud-
ies on protein structure. This is to large extent because direct 
sequencing of RNA molecules is easier than protein sequencing 
and because nucleic acid molecules can be easily amplified (by 
the polymerase chain reaction; PCR), while protein molecules 
essentially cannot. As a consequence, studies on RNA structure 
have frequently involved computational predictions aided by 
the use of additional information derived from low-resolution 

experiments. This synergy has been further reinforced by the 
recent development of novel computational approaches methods 
for RNA modeling as well as by the popularization of experimen-
tal methods used for low-resolution protein shape determination 
to analyze complex RNA structures.

In this article, we first describe contemporary methods for 
computational modeling of RNA structure; we indicate concep-
tual differences between the dominant approaches, with emphasis 
on those that can most easily use data resulting from experiments 
(examples are listed in Table 1). Second, we briefly introduce 
experimental techniques that provide the types of structural 
information that can be relatively easily utilized by RNA model-
ing methods (examples are listed in Table 2). Finally, we dis-
cuss the utility of various methods for RNA structure prediction 
depending on the source of data, and provide a few examples of 
RNA structure modeling with the use of experimental restraints.

Classification of RNA 3D  
Structure Modeling Methods

There exist a wide variety of methods for macromolecu-
lar 3D structure prediction that are applicable to nucleic acids, 

Table 1. examples of computational methods for RNA 3D structure modeling that are capable of using experimental restraints

Type Method name Description Representation
Probing of 

conformations

Folding simulation AMBeR
Physics-based method for dynamics simulations, applicable 
for relatively short simulations of small molecular systems

Full-atom
Molecular 
dynamics

Folding simulation
DMD (Discrete Molecular 

Dynamics)

Coarse-grained simulation method that uses discrete 
molecular dynamics and a mostly physics-based energy 

function

Coarse-grained
(3 centers / 

residue)

Discrete 
molecular 
dynamics

Folding simulation SimRNA
Coarse-grained simulation method that uses Monte Carlo 

sampling method and a knowledge-based energy function

Coarse-grained
(5 centers / 

residue)
Monte Carlo

Folding simulation
NAST (The Nucleic Acid 

Simulation Tool)

very coarse-grained simulation method that uses molecular 
dynamics and relies almost completely on restraints supplied 

by a user

Coarse-grained
(1 center/ 
residue)

Molecular 
dynamics

Comparative 
modeling

MMB 
(MacroMoleculeBuilder)

A method based mostly on restraints, inferred from 
template structures and/or provided by a user, optimizes the 

structures with the function that is partially physics-based
Full-atom

Molecular 
dynamics

interactive 
manipulation

S2S/Assemble
The method allows users to easily display, manipulate the 

base-base interactions, insert motifs, and eventually build a 
complete RNA 3D model

Full-atom Manual

Fragment assembly
FARNA (Fragment 

Assembly of RNA) / 
FARFAR

Adaptation of the ROSeTTA method for RNA structure 
prediction, assembles the structure from short single-

stranded fragments using a Monte Carlo procedure and a 
hybrid physics/statistics-based scoring function, followed by 

full-atom refinement with a physics-based function

Full-atom Monte Carlo

Fragment assembly MC-Fold|MC-Sym

A method that assembles RNA structures from nucleotide 
cyclic motifs (NCN) with the sampling defined as a 

constraint satisfaction problem and evaluates the resulting 
conformations with a hybrid physics/statistics-based scoring 

function

Full-atom
Constraint 
satisfaction 

problem

Fragment assembly RNA Composer
A method that can assemble large RNA structures from 

fragments taken from RNA FRABASe, using user-defined 
restraints, based on the machine translation principle

Full-atom
Machine 

translation 
workflow
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proteins, and their complexes. They can be classified in various 
ways. One classification divides structure modeling methods into 
those based on the fundamental laws of physics that govern the 
process of folding (i.e., the “Greek science” approach, in refer-
ence to their work on first principles that do not make assump-
tions such as empirical model and fitting parameters), and all 
others, which typically extensively use information about other 
structures, available in various databases (i.e., the “Babylonian 
science” approach, in reference to the original contribution of 
their massive libraries). Another classification divides methods 
based on whether they use some of the available structures as 
templates. One more way to divide methods is into those that are 
fully automated and those that require the manipulation of spa-
tial coordinates by human experts. Finally, a number of methods 
may perform model building with the use of restraints derived 
from biochemical or biophysical experiments (i.e., to bias the 
modeling process to fit the experimental data), while others have 
been designed to perform unrestrained simulations and only the 
resulting models can be compared with the experimental results.

Modeling Based on Fundamental Laws of Physics  
is Accurate (for Small Molecules) but Very Slow

The “Greek science” approach that employs the fundamen-
tal laws of physics without information from databases is often 
referred to as “ab initio.” It is based on the thermodynamic 
hypothesis formulated by Anfinsen, according to which the 
native structure of a macromolecule corresponds to the global 
minimum of the free energy of the system under consideration, 
which includes the solvent.6 Accordingly, physics-based methods 
model the process of folding by simulating the conformational 
changes of a macromolecule, while it searches for the state of min-
imal free energy (review ref. 7). Each conformation is “scored” by 
calculating the physical energy based on the interactions within 
the macromolecule and between the macromolecule and the sol-
vent.8 The function with which to calculate the energy should be 
ideally based on quantum-mechanical (QM) description of the 
system; however, such calculations are extremely complex and 
slow, therefore they are applicable only to very small molecules. 

Table 2. Low-resolution experimental methods that generate particularly useful data for computational prediction of RNA 3D structure

Type of restraints Method Description

Secondary structure

SHAPe (Selective 
2’-Hydroxyl Acylation 

analyzed by Primer 
extension)

Method for quantitative detection of local nucleotide flexibility. 2’-OH in flexible, unpaired 
nucleotides reacts preferentially with a probing reagent, forming adducts that can be identified 

as stops to primer extension by reverse transcriptase.

Secondary structure
DMS (dimethylsulfate 

footprinting)
DMS reacts with adenine at N1 and cytosine at N3. Reactive cytosines and adenines can be 

detected by reverse transcription and are considered as unpaired.

Secondary structure

CMCT (1-cyclohexyl-
(2-morpholinoethyl)

carbodiimide metho-p-
toluene sulfonate)

CMCT reacts with N3 of uridine and, to a lesser extent, N1 of guanine. Reactive residues can be 
detected by reverse transcription and are considered as unpaired.

Secondary structure Kethoxal
Kethoxal specifically attacks accessible N1 and N2 of guanine, and it is used for detection of 

unpaired guanines. The modified sites can be detected by reverse transcription.

Secondary structure + 
tertiary contacts

Mutate-and-map
SHAPe/DMS/CMCT chemical probing for a large number (preferably all) of point mutants of the 
RNA sequence. Analysis of changes in secondary structures of the set of point mutants can be 

used to infer tertiary contacts.

Solvent accessibility
HRP (hydroxyl radical 

probing)
Reports approximate backbone solvent accessibility. Solvent exposed nucleotides have high 

HRP reactivity.

Tertiary contacts
MOHCA (multiplexed 

hydroxyl radical 
cleavage analysis)

enables the detection of pairs of contacting residues via random incorporation of radical 
cleavage agents. Contacting residues are detected from a cleavage pattern analyzed in two-

dimensional gel electrophoresis.

Tertiary contacts Cross-linking
Based on the formation of covalent bonds between spatially close regions of RNA that may 

be distant in sequence. Can be achieved using physical factors such as Uv light or by chemical 
reagents.

Distances between 
labeled residues

FReT (Förster Resonance 
energy Transfer)

Distances between fluorescent dyes linked to RNA molecule are inferred from the intensity of 
energy transfer.

Distances between 
labeled residues

eSR/ePR (electron 
Spin/Paramagnetic 

Resonance) 
spectroscopy

Distances are derived from the measured spin–spin splittings for unpaired electrons localized on 
paramagnetic labels linked to RNA molecule

Global shape
SAXS/SANS (Small 

Angle X-ray/Neutron 
Scattering)

Provides information about the pair distance distribution within the molecule under study, 
which can be used to infer the particle envelope/shape.

Global shape
Cryo-eM (Cryogenic 

electron Microscopy)
A 3D model is reconstructed through analysis of a very large number of 2D eM images
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Therefore, various simplifications are used and typically the sys-
tem is described in terms of Newtonian dynamics.

Molecular dynamics (MD) is an example of such simplifica-
tions, where the moves of particles are determined by numerically 
solving Newton’s equations of motion. The functional form and 
parameter sets used to describe the forces between the particles 
and the potential energy of a system is called a force field. There 
exist a number of software packages for simulation of macromo-
lecular folding by MD that employ force fields such as AMBER,9 
CHARMM,10 or GROMOS11 to calculate the energy. Even with 
various simplifications used in these methods, both conforma-
tional sampling and energy calculations are very costly in terms 
of computational power required. Typically, the free energy land-
scape is extremely rugged (i.e., it possesses multiple local min-
ima), so for RNA molecules comprising hundreds or thousands 
of atoms, it is essentially impossible to perform an exhaustive 
evaluation of all these minima to identify the one with the glob-
ally lowest value. Further, some of the components of the free 
energy function (e.g., the entropy) are very difficult to calculate, 
and may not be inferred accurately for large molecules. For these 
reasons, ab initio methods can only be used to model very small 
molecules or systems, where the search is limited to only a small 
part of the conformational space (e.g., optimization of models 
generated by other methods). An alternative approach is to limit 
the conformational space by user-defined restraints. For instance, 
molecular dynamics simulations initiated with experimentally 
determined structures and heavily restrained by experimental 
data have been used to model the conformational transitions of 
RNA-containing macromolecular complexes as large as entire 
ribosome (review ref. 12).

Simplifications Make the Modeling Faster, but 
There is a Cost Associated with Reduced Accuracy

Full-atomic resolution models represented in Cartesian coor-
dinates utilize three degrees of freedom (x, y, z) for each atom; 
therefore, even for small molecules the conformational space 
becomes enormous and equals 3 * number of atoms - 6 (we typi-
cally ignore six degrees of freedom required to describe transla-
tion and rotation of the entire molecule). Such a huge space to 
search for correct conformations is very impractical in terms of 
computational requirements to perform a simulation. One way to 

reduce the number of degrees of freedom is to restrict bond 
lengths and/or angles to idealized values to reduce approximately 
10-fold the number of adjustable parameters that characterize a 
model. For instance, in torsion angle dynamics, torsion angles are 
used instead of Cartesian coordinates as degrees of freedom, and 
the only degrees of freedom are rotations about single bonds. The 
molecule may be also transformed into an internal coordinate 
system. RNA can be thus represented as a tree structure consist-
ing of n+1 atoms connected by n rotatable bonds of fixed length. 
This approach has been implemented e.g., in program DYANA,13 
used for RNA structure determination based on nucleic magnetic 
resonance (NMR) data.

Further simplification can be achieved by coarse-graining. 
The coarse-grained representation replaces an atomistic descrip-
tion of a molecular system with a low-level model. Groups of 
atoms may be treated as single interaction centers or “pseudoat-
oms,” so that a smaller number of elements and interactions need 
to be considered (review ref. 14). The simplification can range 
by defining interaction centers at different levels of detail—from 
several interaction centers per nucleotide to a single pseudoatom 
per helix; such approach has been used e.g., for the refinement of 
low-resolution structures of rRNAs with restraints from experi-
mental data.15 Examples of modern methods for RNA 3D struc-
ture prediction that utilize coarse-graining include NAST16 that 
represents RNA by just one pseudoatom per nucleotide residue, 
Vfold17 and DMD18 that represent RNA by three pseudoatoms 
per residue, and SimRNA that uses five interactions centers per 
residue.19

Force fields derived for coarse-grained systems typically yield 
a much smoother energy surface than those used for all-atom sys-
tems. As a result, many local minima are removed, thus reducing 
the probability that a molecule is trapped in a suboptimal energy 
state during the simulation. However, it must be emphasized that 
simplifications of the model representation and the energy func-
tion enhances the modeling speed usually at the cost of accuracy 
of the structures obtained. Thus, it is not practical to expect that 
a folding simulation with a coarse-grained representation would 
confidently predict a native-like RNA structure with a precisely 
estimated energy. On the other hand, the use of such simplified 
methods may be the only practical way to computationally fold 
a structure that is too complex for methods utilizing a full-atom 
representation and a physical potential that is more expensive to 
calculate.

Figure 1. Crystal structure of Escherichia coli 5S rRNA (PDB iD: 3OAS) (A) and computational models predicted with the fragment assembly approach 
based on structural probing78 (B) and manual modeling based on cryo-eM data of the 50S subunit79 (C).
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Knowledge-Based Modeling Can Utilize the 
Principles of Statistical Thermodynamics

The increasing pace of macromolecular structure determina-
tion by X-ray crystallography and NMR has led to the accumula-
tion of sizeable data sets describing protein, and more recently, 
also RNA structures. The availability of these data has in turn 
enabled the development of methods for macromolecular struc-
ture prediction that are not based on first principles, but exten-
sively use the knowledge of “what the structures should look 
like.” The “Babylonian science” approach that exploits databases 
to derive force fields for structure prediction has a long tradition. 
The derivation of statistical potentials was reported for proteins 
as early as in the 1970s,20 and more recently, also for nucleic acids. 
The so-called mean force potentials are compiled by using the 
Boltzmann’s principle to approximate the distribution of differ-
ent energy states by extracting relative frequencies of these states 
from a database. The definition of a database-derived mean force 
potentials introduced by Sippl21 is E(r) = -kT ln[p(r)], where 
r is a particular parameter describing a feature of a molecular 
system (such as the distance between two atoms of type A and B, 
a value of a dihedral angle etc.), E(r) is the energy at r, p(r) is 
the probability at r, k is Boltzmann’s constant, and T is the abso-
lute temperature. Mean force potentials can take into account all 
forces acting between atoms of the molecule under study as well 
as the influence of the environment, without the need of defining 
each type of interactions separately.

Knowledge-Based Modeling Can Also Rely  
on Principles of Molecular Evolution

A completely different approach to molecular modeling, devel-
oped initially for protein structure prediction, attempts to model 
not the physical process of macromolecular structure formation, 
but a different one: how do the structures of macromolecules 
change in the course of the evolution, in response to mutations 
accumulated in the sequence of genes. This type of structure pre-
diction relies on empirical observation, made initially for pro-
teins, that evolutionarily related (homologous) molecules usually 
retain the same three-dimensional structure despite the accumu-
lation of divergent mutations.22 It was also found that structural 
divergence is much slower than sequence divergence, although 
these two features are strongly correlated. Comparative analyzes 
of evolutionarily related structured RNAs (e.g., ref. 23), revealed 
patterns of conservation that are analogous to those observed in 
proteins.

Thus, methods have been developed to build models for mol-
ecules with unknown structure based on experimentally deter-
mined structures of molecules that are expected to be related 
by homology. For this, the sequence of a “target” molecule to 
be modeled must be aligned to the sequence of a “template” 
molecule with known structure (to define the correspondence 
between homologous residues), and then the sequence of the 
template is replaced with the sequence of the target in the context 
of the target structure, while attempting to reduce any physical 

conflicts caused by replacement, removal, and addition of atoms 
and residues (review ref. 5). This approach is often referred to 
as “comparative modeling,” “homology modeling,” or “template-
based modeling.”

Two major approaches have been developed for template-
based modeling, initially for proteins and then for RNA (review 
ref. 5). One is to model the structure by copying the coordinates 
of the template, followed by introduction of insertions/dele-
tions using structural fragments from a database, and finally by 
“mutating” the residues that differ between the template and the 
target. This approach has been implemented in a comparative 
modeling method ModeRNA24 developed in the authors’ group. 
A highlight of ModeRNA is that it can model not only RNAs 
composed of the four canonical residues, but can also handle 
post-transcriptional modifications. Another approach utilizes 
distance and torsion angles and interatomic distances from the 
aligned regions of the template structure as restraints for the 
modeling of the target sequence. This strategy has been imple-
mented in a program initially named RNABuilder and renamed 
as MacroMoleculeBuilder (MMB) as it also enables modeling of 
proteins.25 A highlight of this approach is that it can more easily 
incorporate additional restraints defined by a user.

Modeling by Fragment Assembly

Another “Babylonian science” approach that is intermediate 
between template-based and coarse-grained modeling involves 
the assembly of macromolecular structures from fragments. The 
building blocks may comprise short sequence stretches, local 
structural motifs, isolated elements of secondary structure (e.g., 
helices, loops, junctions), or even entire domains, and may be 
taken from experimentally determined structures or modeled 
with any other approach. The fragment selection and assem-
bly can be either fully automated or left to the user. The scor-
ing functions used can utilize physical or statistical potentials or 
the combinations of both. For RNA, the paucity of RNA struc-
tures hampered the development of statistics-based approaches. 

Figure 2. A model of vAi∆TS RNA structure obtained with SimRNA and 
built into the SAXS reconstruction using PyRy3D.85
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Consequently, the RNA modeling field has been initially driven 
by manual (user-guided) modeling methods that could utilize 
fragments from the few structures available, as well as custom-
made idealized structural elements, with the assembly assisted by 
the use of simplified physics-based energy functions. Examples of 
methods that allow the expert user to rearrange and recombine 
multiple RNA structures include S2S/Assemble,26 ERNA-3D,27 
and RNA2D3D.28

Only recently, the increased size of the RNA structure database 
prompted the development of fully automated fragment-assembly 

methods that have the power to explore much larger space of 
conformations than possible for any expert structural biologist 
working with a graphical user interface. These include FARNA/
FARFAR,29,30 which is essentially an adaptation of the ROSETTA 
method, initially developed for protein folding, so it could be 
used also for RNA. The FARNA procedure assembles an RNA 
3D structure from short linear fragments, using a knowledge-
based energy function derived from experimentally determined 
RNA structures. FARFAR uses a full-atom refinement with a 
hybrid physics- and statistics-based scoring function to optimize 

Figure 3. A flowchart describing relations between different types of data, computer programs, and RNA 3D structure modeling strategies.
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the models generated by FARNA. MC-Fold|MC-Sym31 is 
another method, developed specifically for RNA, which assem-
bles RNA structures from a library of “nucleotide cyclic motifs,” 
i.e., fragments in which all nucleotides are circularly connected 
by covalent, pairing, or stacking interactions. MC-Fold|MC-
Sym implements a hybrid scoring function that includes physical 
terms as well as statistics derived from experimentally determined 
structures. RNA Composer32 is a recently developed method that 
assembles structures from tertiary motifs taken from the RNA 
FRABASE database; it has a hybrid scoring function that can be 
supplemented by user-defined restraints.

Template-based and fragment-based methods share a major 
limitation in that they can generate conformations only within 
the space defined by a database of templates/motifs. Hence, 
they are not appropriate for the modeling of novel 3D motifs. 
Moreover, they cannot be used in a straightforward manner for 
the simulation and analysis of RNA folding, only for the deter-
mination of final, defined structures.

Modeling by Base Pairing Prediction

One of the most coarse-grained approaches is to predict the 
pattern of base-paired nucleotide residues of an RNA molecule. 
This was first attempted in the early 1960s.33,34 There are a vari-
ety of computational techniques that have been introduced over 
the last five decades to predict the base-pairing pattern compu-
tationally. One general approach relies on ranking the base pair-
ing using thermodynamic weights or some form of stochastic 
context-free grammar (SCFG).35 The earliest approaches use the 
laws of thermodynamics and aim to compute a structure of mini-
mum free-energy;36 examples of well-known and commonly used 
programs are MFold,37 Vienna RNA,38 and RNAstructure.39 
More recent attempts have explored SCFG methods such as 
Sfold40 and base pairing probability strategies like Centroidfold.41 
Another general approach relies on molecular evolutionary analy-
sis wherein the method looks for correlated substitutions in sets 
of aligned homologous sequences and weights these with the 
above thermodynamic method or a SCFG method. Examples of 
thermodynamic weighting can be found in DYNALIGN42 and 
PETfold.43 Examples of SCFG methods include pfold.44 Examples 
of base pairing probability methods include CentroidAlifold45 
and MXScarna.46 It is worth emphasizing that base-pairing may 
define not only secondary structure in the simplest sense, but 
also tertiary interactions such as pseudoknots and kissing loops. 
While many of the above-mentioned programs ignore such inter-
actions for the sake of computational speed, there are algorithms 
that specialize in predictions for potentially pseudoknotted struc-
tures, such as IPknot.47

Our group has recently published a large-scale test of base-
pairing prediction methods that compares their accuracy for 
different types of RNAs, when used with sequence information 
alone, i.e., without experimental data.48 According to our bench-
marks, the combination of sequence alignment with structure 
prediction is the most reliable approach, while methods based 
on unguided thermodynamic search only work well for short 

sequences. A weakness in all these strategies is that they only 
predict the base pairing of the sequence and provide little infor-
mation about the 3D structural arrangement. They are however 
comparatively very fast in generating the base pairing informa-
tion, and such information can be employed to aid 3D structure 
prediction programs.49

Restraints Used for RNA Secondary and Tertiary 
Structure Prediction

Computational methods for RNA 3D structure modeling can 
yield accurate and reliable models for small RNA molecules that 
are topologically simple, and for RNAs that have closely related 
homologs of known structure. However, it is still not feasible 
to predict theoretically structures of large RNAs with complex 
topologies (e.g., with long-range tertiary interactions and pseu-
doknots) that do not have related structures in the database. 
Modeling of conformational changes and interactions of RNA 
with other molecules (e.g., with proteins) is also extremely dif-
ficult. The major bottlenecks are the vast conformational space, 
which grows exponentially with the RNA size, and inaccuracies 
of the force fields. These problems can be partially overcome 
by incorporation of experimental restraints, which can be used 
either explicitly in the modeling process or for scoring and rank-
ing of alternative models generated by the program used. In the 
simplest form, modeling assisted by the use of experimental data 
involves selection of a model that agrees with additional informa-
tion that is not used in the very modeling process. In the more 
advanced form, information derived from experimental studies 
can be included as additional terms of the scoring function and/
or by modifications of the conformational sampling scheme. 
The conditions concerning the satisfaction of restraints can be 
expressed in a binary (e.g., Boolean) or probabilistic manner.

The restraints can describe various structural parameters of an 
RNA molecule (Table 2), such as pairing of nucleotide residues 
(secondary structure), solvent accessibility, interatomic distances 
(e.g., tertiary contacts), and a 3D shape of entire molecule. In 
each of these categories restraints can be obtained based on the 
results of various biophysical and biochemical experiments, and 
in many cases they can also be predicted from additional com-
putational analyzes, or both. For the single nucleotide resolution 
experiments, a terminology of techniques used is captured in an 
ontology framework.50 Here, we will discuss examples of data 
that have been successfully used to aid computational modeling 
of RNA structures.

Secondary Structure and Local Flexibility

Experimental techniques for RNA secondary structure deter-
mination typically utilize chemical or enzymatic probing, and 
can be used either in vitro or in vivo. A whole palette of chemi-
cals and enzymes with an established relationship between RNA 
structural feature and cleavage/modification activity exist and 
can be used to obtain a broad picture of structural features and 
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their precise localization in selected RNA molecules (review ref. 
51). The main principle is that chemical reagents and nucleases 
used for this type of analysis interact differentially with paired 
and unpaired nucleotide residues, e.g., nuclease V1 is reactive 
toward residues in double-stranded RNA, and RNase S1 is reac-
tive toward single-stranded regions. The use of base-selective 
chemical reagents (DMS, kethoxal, CMCT) provides structural 
information about the base stacking, hydrogen bonding, and 
electrostatic environment adjacent to the base. Local nucleo-
tide flexibility and dynamics can be inferred from experiments 
that interrogate all four RNA nucleotides. For instance, selective 
2′-hydroxyl acylation analyzed by primer extension (SHAPE) 
technique uses hydroxyl-selective electrophiles that react with 
the 2′-hydroxyl group at flexible or disordered nucleotides.52 The 
in-line probing method does not require the use of any chemicals 
but exploits the natural instability of RNA molecules. The RNA 
is incubated at slightly alkaline pH, and the spontaneous cleav-
age of the sugar backbone by adjacent 2′-hydroxyl groups, which 
reflects the local nucleotide flexibility, is monitored.53

Although there is a clear correlation between the local reac-
tivities of RNA molecules and base pairing probabilities, the 
problem of how to incorporate the probing data into computa-
tional modeling procedure is not straightforward. The difficulty 
originates from the fact that reactivities depend on the structural 
context and are influenced by tertiary contacts.54 Thus, compu-
tational methods have been adapted to allow transforming the 
reactivities to discrete states (paired or unpaired), or calibrating 
the interaction energy term proportionally to the reactivities.55,56

Solvent Accessibility

Hydroxyl radical probing (HRP) is yet another chemical prob-
ing method useful for RNA structure determination. Hydroxyl 
radicals attack the ribose ring of RNA, which results in breaking 
of the sugar-phosphate backbone. Nucleotides protected against 
breaking are considered solvent inaccessible and are buried within 
the core of a RNA molecule. After an RT-PCR experiment, the 
cleavage pattern observed in gel electrophoresis indicates exposed 
nucleotides, and moreover, the strength of protection can be also 
devised. Solvent exposed nucleotides have high HRP reactivity, 
and respectively, buried nucleotides show low HRP reactivity. 
Importantly, the method does not identify nucleotides that are 
base-paired, instead, it detects nucleotides that hydroxyl radi-
cals cannot access, and in fact, HRP reactivity is correlated with 
backbone solvent accessibility.57 Data derived from HRP experi-
ments can be used to evaluate or filter models;16 however, recently 
it has been shown that the method can be applied even to drive 
in a systematic and quantitative way, molecular dynamics simula-
tions within the DMD program.58

Non-Local Interactions

An interesting addition to the panel of methods for experi-
mental probing of RNA structure is a recently developed 

“mutate-and-map” strategy.59 It is based on the observation that 
when a paired nucleotide is mutated, its partner becomes more 
accessible to reagent, which can be readily detected by subsequent 
chemical probing (e.g., by SHAPE). Importantly, this strategy 
can reveal not only pairings in secondary structure, but also 
tertiary contacts between sequentially distant fragments of the 
molecule.

Multiplexed hydroxyl radical cleavage analysis (MOHCA) is 
another technique that provides information about long-range 
contacts. There, RNAs are created with randomly incorporated 
nucleotides tethered to a Fe(II)–EDTA moiety, which can be 
used to induce through-space cleavage of nearby residues in the 
RNA. Sites of that cleavage and the location of the probe nucleo-
tide can be identified by two-dimensional gel electrophoresis.60

Long-range restraints are important for the modeling pro-
cess, as even a small number of them are sufficient to reduce the 
conformational space sufficiently to allow accurate prediction of 
native RNA structures.61 Experimental methods that are used to 
probe long-range contacts include UV- or chemically induced 
cross-linking, site-directed cleavage, fluorescence resonance energy 
transfer (FRET), electron spin resonance (ESR/EPR), nuclear 
Overhauser effect spectroscopy (NOESY-NMR). Some of these 
methods (FRET, ESR, NMR) cannot only give information about 
residue–residue contacts, but also high-quality distance informa-
tion. NMR provides large number of distances between hydrogen 
atoms, together with large amount of other structural data, which 
for small RNA structures is enough to solve the 3D structure, and 
as such, NMR is beyond the scope of this review.

Through use of bifunctional cross-linking reagents or a group 
that is tethered to one part of an RNA molecule and able to 
react with a second region, it is possible to use chemical mapping 
methods to obtain very useful long-range restraints for RNA 3D 
structure modeling. The residues that are involved in chemical 
cross-links can be detected by mass spectrometry. This approach 
is known as MS3D, and involves the MS analysis of cross-linked 
oligonucleotides obtained from fragmentation (e.g., by RNases) 
of a chemically cross-linked RNA molecule. A major challenge of 
this approach is the identification of the cross-linked oligonucle-
otides in a composite mixture, as well as the identification of the 
residues involved in the cross-link. MS3D has been applied to 
elucidate e.g., the structure of HIV-1 Psi-RNA.62 There exist dif-
ferent classes of bifunctional chemical reagents that are reactive 
toward nucleic acid substrates.63

FRET is one of the most used and most versatile techniques 
of fluorescence spectroscopy.64 For RNA structure determination 
it allows for measurement of inter-residue distances in the range 
of 20–100Å. FRET is based on the observation that if two fluo-
rophores are in proximity the excitation can be non-radiatively 
transferred from the initially excited one (donor dye) to the one 
which initially was in its electronic ground state (acceptor dye). 
The radiation emitted from donor and acceptor fluorophores can 
be distinguished based on the wavelength if these dyes have non-
overlapping emission spectra. In contrast to most methods of 
RNA structural probing of RNA that return values averaged over 
ensembles of molecules, FRET can also be measured for single 
molecules. In order to be used for RNA structure determination, 
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FRET requires chemical modification of RNA molecules by the 
introduction of fluorescent residues.65 These residues can be con-
nected to the RNA molecules using flexible linkers, or can be 
themselves analogs of nucleotide bases.

The structure reconstruction from the FRET data obtained 
using freely moving dyes tethered to the RNA is quite complex 
computationally, because of different influence of environment on 
the dynamics of the dye. This procedure can be simplified if the 
accessible volumes for the dyes are constrained by RNA structural 
motifs of known structure (e.g., RNA B-helices). In such case, the 
accessible volumes can be precomputed and FRET observables 
can be used during modeling as distance restraints. Such proce-
dure has been used to study the structure of e.g., RNA three-way 
junction.65 An alternative strategy in using FRET measurements 
for RNA structure determination is to use fluorescent dyes which 
are analogs of the nucleotide bases. Several such fluorophores are 
even commercially available in the form or nucleotide precursors 
for phosphoramidite oligonucleotide synthesis. Theoretically, for 
a sufficiently large number of RNA variants, labeled at various 
helical regions of the RNA structure, the mutual positions and 
orientations of helices can be determined based on FRET data 
alone.66 However, the disadvantage of the currently available fluo-
rescent nucleotide base analogs is their low quantum yield, which 
makes single molecule measurements relatively impractical.

ESR spectroscopy is another method based on different physi-
cal mechanism than FRET, which nonetheless provides similar 
data and suffers from similar difficulties. It is based on measure-
ment of direct spin–spin couplings between localized unpaired 
electrons within the molecule or molecular complex. The experi-
mental setup for ESR is similar to one used for NMR, with most 
differences resulting from magnetic moment of the electron being 
thousands times greater than nuclear magnetic moments. To be 
studied with this technique selected residues within RNA need to 
be chemically labeled using stable free-radicals (most commonly 
nitroxide radicals).67 The spin–spin coupling does depend on both 
the distance between unpaired electrons and on the angle between 
the position vector and the external magnetic field. This angle can 
be determined from the ESR experiment in a model independent 
way. In contrast to FRET measurements, the spins of the electrons 
are aligned to the magnetic field, unlike the transition moments 
of the dyes, which are freely rotating. Also, the paramagnetic spin-
labels used in ESR are typically much smaller than the fluorescent 
dyes used in FRET, which does reduce the error introduced by the 
finite size of these probes.68 For RNA modeling, ESR is able to pro-
vide reliably measured distances of 5–20 Å (5–20 Å with continu-
ous wave setup and 20–80 Å with pulsed ESR) with uncertainty 
of a few Ångströms.69 In contrast to most other methods of RNA 
structure determination, with ESR it is possible to elucidate the 
positions of metal-ions within RNA molecules (for paramagnetic 
ions like Mn2+).

RNA Molecule Shape

Another source of restraints for the RNA structure modeling is 
small angle scattering (SAS) that can utilize either X-ray (SAXS) 

or neutron (SANS) radiation. Classically, SAS has been used to 
determine the radius of gyration and maximum dimension of the 
scattering particles. Currently, there are many algorithms avail-
able that enable ab initio reconstruction of the scattering particle 
envelope at low-resolution, e.g., DAMMIN/F70). The envelope 
may be consequently used to aid building a full-atom model of 
the macromolecule by docking, e.g., as it was done for the deter-
mination of a structure of T box RNA complexed with tRNA.71 
It must be borne in mind, however, that SAS is a low informa-
tion content technique and special care must be taken to avoid 
over-parameterization.72

The global shape of large RNA molecules and RNA–protein 
complexes can also be directly observed using the electron micros-
copy (EM). The measurement is done in cryogenic conditions 
(cryo-EM) in order to reduce the radiation damage of macromol-
ecules under study.73 The three-dimensional structure reconstruc-
tion is done based on large number of collected two-dimensional 
projections. While cryo-EM data has rarely been used to restrain 
the modeling of RNA structures in isolation, it has been instru-
mental for the modeling of RNA structures in the context of 
many important RNA–protein complexes, e.g., the modeling of 
tmRNA structure bound to the ribosome with the use of MMB 
and ModeRNA methods mentioned earlier in this article.74

RNA 3D Structure Modeling  
with Restraints: Case Studies

Since 1969, when the first manually predicted tertiary struc-
ture of tRNA was published,75 the RNA structure modeling pro-
cedures have evolved considerably and a variety of programs that 
enable systematic and quantitative restraints-guided predictions 
became available. In this paragraph, we provide a subjective selec-
tion of a few examples from the history of RNA modeling.

Manual building of RNA models was an excellent and intui-
tive approach for putting together different types of restraints, 
and allowed for expressing the researcher’s “feel” about a given 
RNA fold. Levitt manually assembled from space-filling compo-
nents the first detailed model of tRNA in 1969.75 Similar to the 
contemporary models, this model had to satisfy many constraints: 
stereochemical (sufficiently large distances between atoms, real-
istic dihedral angles about single bonds), topological (proximity 
between the loops deduced from chemical reactions), energetic 
(energy minimization with a force field), regarding shape (radius 
of gyration), and local stability (base stacking). Compiled with 
the data on the base-paired nucleotides, and revealed by the 
analysis of correlated substitutions in homologous sequences, 
these constraints appeared to be sufficient to obtain the correct 
layout of the helices in tRNA molecule. Models resulting from 
subsequent studies, including topologically complex 16S rRNA,76 
established the concept of using the experimental restraints in the 
RNA modeling process.

The growing repository of X-ray structures triggered the 
development of methods based on fragment assembly. In the 
technique introduced by Westhof and co-workers, structural 
motifs are either taken from the database or created based on 
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established stereochemical rules, bases are substituted according 
to the desired sequence, fragments are joined together, and finally 
the obtained model is subjected to stereochemical and energetic 
refinement.77 This procedure was integrated with experimental 
data during the modeling of 5S rRNA from Escherichia coli78 
(Fig. 1). Moreover, the secondary structure of 5S rRNA was 
probed in solution using various chemical and enzymatic probes, 
which identified the presence of three branches. The model was 
predicted not to contain any long-range interactions between 
the different domains, and it displays a different fold from the 
one seen in the crystal structure of an E. coli ribosome (PDB 
ID: 3OAS). Another atomic model of 5S rRNA structure was 
modeled interactively with ERNA-3D, based on a low-resolu-
tion cryo-EM reconstruction of the 50S ribosomal subunit and 
cross-linking data.79 Despite the correct arrangement of the three 
domains, the model did not predict a correct fold of the second 
domain. However, much can be learned by comparing the results 
of these first efforts to model 5S rRNA with the crystal structure 
solved at atomic resolution.80

Even though the approaches described above had a consider-
able history of success, an introduction of physics- and statistics-
based potential functions enabled studying RNA folding in a 
systematic and physics-consistent way. As a “proof-of-concept” 
for molecular mechanics of RNA, correct tRNA architecture was 
predicted using a simplified potential function with consciously 
parametrized terms.81 The potential comprised only harmonic-
type functions, which are easy to minimize and have a unique 
minimum. In the experiment cross-linking and probing data were 
represented as distance restraints with force constants reflecting 
the precision of the data. The simple framework, designed spe-
cifically for large RNA molecules, opened up a new generation of 
programs based on potential functions.

Despite the undeniable progress in experimental techniques 
for RNA 3D structure determination, they are still not well suited 
for fully automated determination of large RNA molecules that 
are often highly flexible and dynamically change the structure in 
physiological conditions. Recent modeling of the 3D structure of 
the 240 nt long HIV-1 5′UTR—packaging signal (Psi) region82—
provides a good example how these difficulties can be overcome 
by performing additional experiments, which explore secondary 
structure and long-distance contacts, and thus, yield geometric 
restraints for computer simulations. Previously, only a secondary 
structure model was available, composed of four hairpins con-
nected by short linkers.83 The model building was divided into 
five steps. In the first stage, secondary structure was predicted 
with the RNAstructure program supplied with SHAPE reactivi-
ties as pseudo-free-energy restraints. Then, a crude 3D represen-
tation of the secondary structure model was generated with the 
software RNA2D3D.28 However, the model was not assumed to 
be close to the optimum in terms of conformational space. To 
increase the searchable structure space, 10 different models were 
generated after applying randomized sets of pseudo-experimental 
FRET restraints. Each of the models was subsequently subjected 
to global energy minimization using a simulated annealing pro-
cedure in the CNS program.84 During the simulations, experi-
mentally determined FRET distances and SHAPE-derived base 

pairing data were expressed as distance restraints represented by 
harmonic-type function terms added to the total energy function. 
Because CNS was not specifically designed to deal with RNA 
structures, additional restraints had to be incorporated on angles 
and distances of the RNA backbone to maintain regular double 
helical conformations. Next, the resulting models were scored 
with the RMSD function with FRET distances (FRET-RMSD). 
Finally, room-temperature MD simulations were performed to 
relax the structures and the best model in terms of FRET-RMSD 
and total minimized energy was selected. Importantly, the model 
was validated by comparison to the previously solved structures 
of three individual hairpins of the Psi region, which were not 
used in the modeling process.

Recently, we used our software PyRy3D (http://genesilico.pl/
pyry3d/) in the study of the adenovirus virus-associated RNA 
lacking the terminal stem (VAIΔTS).85 A 3D structure model 
was built based on a set of ab initio SAXS reconstructions deter-
mined using DAMMIN and averaged using DAMAVER.86 The 
averaged ab initio reconstruction was converted into a pseudo 
EM-map with sfall and fft programs from the CCP4 suite.87 The 
initial atomic model of RNA was obtained using our coarse-
grained method SimRNA, with restraints on experimentally 
determined secondary structure, but without the use of SAXS 
data. Subsequently, the RNA model was divided into hairpin-
loop segments and a three-way junction, and fitted into the 
pseudo-EM map using PyRy3D, with restraints at the junction 
to maintain the continuity of the nucleotide chain. The final 
model was obtained following a refinement with phenix.refine,88 
with restrains on the pseudo-density map (Fig. 2). The radius of 
gyration (Rg) and maximum spatial dimension (Dmax) values 
obtained from the model of VAI∆TS are 3.2 nm and 11.2 nm, 
respectively. Both values are in agreement with those obtained 
directly from the SAXS analysis. Furthermore, the chi-square 
value calculated with CRYSOL89 was found to be 1.03, indicat-
ing that the model explains well the experimental data.

Benchmarking of RNA Modeling Programs  
Used with Experimental Restraints

Since the construction of the popular methods for automatic 
3D structure modeling is mainly a heuristic procedure, the best 
way to prove their usefulness is to test how the predicted models 
are similar to the native structures. However, there are no sys-
tematic studies comparing performance of all these methods used 
with various combinations of experimental restraints, although 
several of them have been used extensively in modeling of various 
targets.

In 2010, RNA Puzzles was launched as the first blind experi-
ment for RNA structure prediction assessment.90 In most of 
the puzzles, additional information was provided that could be 
encoded in various restraints. The level of automation in RNA 
modeling vs. human intervention varied from group to group, 
thus RNA Puzzles serves as a benchmark for comparison of 
entire workflows rather than individual computational pro-
grams. Results published thus far for three puzzles suggest that 
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predictions are improved owing to careful investigation of local 
structural motifs, inclusion of as much experimental restraints as 
possible, and global fold refinement, but they also inform us that 
it is important to avoid over-constraining the simulations.

Relative performance of several programs for 3D structure 
prediction in making use of secondary structure information 
was also assessed in two benchmarks.91,92 These studies were 
focused on a comparison of four programs for automatic RNA 
3D structure modeling used with restraints on the secondary 
structure. FARNA and MC-Fold|MC-Sym were selected as 
the most established fragment-based approaches, while NAST 
and DMD—as the most popular programs with knowledge-
based energy functions to sample coarse grained RNA struc-
tures. In the most comprehensive benchmarks published to 
date,91 the test set consisted of 43 different RNA structures of 
various lengths and motifs, including hairpins, junctions, and 
pseudoknots. The prediction performance was evaluated with 
different measures, taking into account global geometry (i.e., 
RMSD over backbone atoms) and correctly predicted base pair 
and base stacking interactions (i.e., as sensitivity and speci-
ficity). Although the accuracy of each program varied from 
structure to structure, certain trends were clearly visible. Most 
importantly, secondary structure information improved most 
of the predictions done with FARNA and MC-Fold|MC-Sym. 
Although MC-Fold|MC-Sym generated the most accurate 
structures in most cases, it did not generate any folded struc-
ture for some sequences, especially for larger molecules, and was 
rarely able to predict non-canonical base pairs. The best RMSD 
for hairpins and junctions were 9.5 Å and 18.5 Å, respectively. 
However, topologically complex structures were not correctly 
predicted by any program even with restraints on the secondary 
structure.

Selection of Computational Programs for RNA 
Structure Modeling with Experimental Data

Confronted with a plethora of computational approaches and 
a variety of experimental techniques as explained above, it is 
understandably confusing and difficult for a researcher to decide 
which techniques to use to address any specific biological prob-
lem. In Figure 3, we present a flowchart to help aid in deciding 
when (or where) to apply a given computational method and how 
to integrate the experimental data in such way as to make effec-
tive use of these tools.

RNA secondary structure is the most common type of restraints 
used in modeling of RNA 3D structures and can be utilized by 
all computational methods for the tertiary structure prediction 
described in this work. The simplest way to obtain these restraints 
is to use computational methods for secondary structure predic-
tion. However, for long RNAs these computational prediction 
strategies may yield rather low accuracy predictions. Therefore, 
we highly recommend the incorporation of experimental data 
into these methods to improve the reliability of the predictions. 
For example, secondary structure prediction can be restrained 
using SHAPE mapping data to improve the accuracy of structure 

prediction.56 Data from SHAPE experiments can be incorporated 
directly into the prediction using RNAstructure,93 GTFold,94 
RNAsc,95 and MC-Fold|MC-Sym. Chemical probing with RNase 
S1, Nuclease V1, DMS, etc. can often be incorporated into RNA 
secondary structure prediction programs and these results then 
incorporated into 3D structure prediction (Fig. 3).

Hydroxyl radical probing (HRP) is another technique that can 
provide valuable restraints to describe the approximate solvent 
accessibility for ribonucleotide residues. Thus far, only the DMD 
method has been adapted to utilize HRP data directly in RNA 
folding simulations.58 However, results of HRP experiments can 
be transformed into information about solvent accessibility and 
used to identify “good” structures among a set of models gen-
erated by essentially any modeling method. For discrimination 
of models that agree with experimental data we can recommend 
e.g., the FILTREST3D method developed in our group and 
available as a standalone program as well as a web server.96

The second most common group of restraints used for RNA 
3D modeling are ones encoded as pairwise distance ranges. 
These types of restraints can be obtained from experimental 
techniques for detecting long-range interactions between differ-
ent residues or structural segments, and can be divided into two 
groups. The first group includes experimental techniques, such 
as cross-linking, mutate-and-map, and MOHCA. They detect 
spatial proximity of ribonucleotide residues and depending on 
the method they may identify residues that are in direct contact 
or up to 20 Å from each other. Experimental techniques such 
as FRET and EPR belong to the second group. They provide 
important information about distance range between specific 
labeled residues. The distances can range between 20 and 100 
Å for FRET and between 5 and 80 Å for EPR. A list of various 
residues and pairwise distance ranges between them can be uti-
lized by most of computational methods for RNA 3D structure 
prediction listed in Table 1. It is important to mention that a dis-
tance range between just one pair of residues is a relatively weak 
restraint, and usually a large set of such restraints is required to 
guide the prediction, in the order of a number of ribonucleotide 
residues in the modeled RNA molecule divided by 5. Pairwise 
distance restraints can be also easily combined with secondary 
structure restraints.

The last type of restraints involves probing the actual shape 
of the RNA molecule. The physical shape of RNA molecules can 
be inferred based on results from small angle scattering (SAS) or 
cryo-EM experiments. SAS data can be used for ranking the model 
structures within large data sets to identify structures that best 
explain the observed data97 using for example the FOXS server.98 
However, the direct comparison of the SAS and model-derived 
scattering curves is computationally expensive. Alternatively, the 
models may be also ranked against SAS data with respect to the 
distributions of pairwise distances.16 Data from cryo-EM can be 
utilized to obtain a low-resolution shape envelope. SAS data can 
be also used with DAMMIN/F to obtain ab initio shape recon-
structions. Various modeling programs can be then used to per-
form fitting of pre-modeled RNA 3D structures into these shapes, 
and best-fitting structures may be selected as the most promising 
models.
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One of computational problems that plagues RNA 3D struc-
ture prediction is the large number of local minima of the scoring 
function, which need to be sampled. This problem is even more 
pronounced when restraints are used. Many of the new minima 
are formed in this case, and some of them are genuine topological 
traps. These conflicts cannot be resolved without the unfolding 
of large parts of the structure or allowing for unphysical tunnel-
ing of RNA chains through themselves. This problem can be 
addressed by using different weight of structural restraints during 
different stages of the modeling. Initially, low weights should be 
used, so that the RNA does not get trapped in any of any spu-
rious minima. Once enough models have been generated that 
approximately satisfy the imposed restraints, these models can 
be selected and used as starting structures for the next stage of 
the modeling procedure with increased weight on the restraints. 
An alternative approach, implemented in PyRy3D (http://gen-
esilico.pl/pyry3d/), is by gradually switching various restraints on 
during the simulation. A similar technique is used in the MMB 
(Macro Molecule Builder)25 program, which allows for alternat-
ing periods of simulation with restraints switched completely on 
or completely off, but this approach has not been used for de-novo 
modeling of large RNA structures. The danger of being trapped in  
local minima of incorrect topology can be avoided by using what-
ever available prior knowledge exists about the RNA structure in 
the construction of a suitable initial structure for the modeling.

Future Prospects

It this review, we described main advancements in com-
putational modeling of RNA, with the emphasis on methods 
that can take into account experimental data. Currently exist-
ing computational methods are successful in “purely theoreti-
cal” structure prediction only for relatively small molecules. 
For example, methods such as DMD, FARNA, SimRNA, and 
V-fold can be used with relatively high confidence to obtain 
models of RNA molecules shorter than ~40 nt, and with mod-
erate confidence for molecules up to ~80 nt. Folding of larger 
molecules is possible, but average reliability of such predictions 
drops down dramatically with increasing length. The upper 
limit of RNA sequence size foldable by computational methods 
is not only related to the increased simulation time, but also 
to accuracy of the scoring functions used. Prediction of com-
pact conformations of very large molecules requires detection of 
stable long-range contacts that knit together complete domains. 
These, however, may be difficult to recognize for standard scor-
ing functions that rely on the mutual positions of individual 
nucleotides; in particular, when sampling of the conformational 
space is very rough like in case of fragment assembly methods. 
Therefore, detection of the stabilizing tertiary interactions may 
require the mutual docking of super-secondary structure motifs 
or even complete domains. The studies on the tertiary interac-
tions in RNA on the level of complete structural motifs are still 
relatively scarce,99,100 and we believe that further exploration 
of this problem may lead to significant improvement in RNA 
structure prediction.

Given the current limitations of computational prediction 
of RNA 3D structure, the inclusion of experimental restraints 
in the structure modeling process greatly increases the maximal 
length of RNA that can be modeled with confidence as well as 
increases the precision of the models obtained. Data from struc-
turally informative experimental analyses can be used to reduce 
the conformational space that has to be sampled or to post-filter 
the obtained candidate models and select only those that agree 
with the data. Currently, the “Babylonian science” methods for 
RNA 3D structure determination outperform “Greek science” 
methods in most applications that are practically useful for 
molecular biologists. We are convinced that further accumula-
tion of experimental restraints will bring a database of “bricks” 
for the libraries of Babel and a deeper understanding will yield 
the mortar of wisdom that binds them. On the other hand, the 
advances in computer hardware and software will hopefully 
improve the speed and accuracy of calculations required for the 
“Greek science” methods, thereby increasing the size of RNA 
molecules and the accuracy of predictions that can be obtained 
from first principles alone.
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