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Abstract: Mycobacterium tuberculosis and cancer are two diseases with proclivity for the development
of resistance to the host immune system. Mechanisms behind resistance can be host derived or disease
mediated, but they usually depend on the balance of pro-inflammatory to anti-inflammatory immune
signals. Immunotherapies have been the focus of efforts to shift that balance and drive the response
required for diseases eradication. The immune response to tuberculosis has widely been thought to
be T cell dependent, with the majority of research focused on T cell responses. However, the past
decade has seen greater recognition of the importance of the innate immune response, highlighting
factors such as trained innate immunity and macrophage polarization to mycobacterial clearance.
At the same time, there has been a renaissance of immunotherapy treatments for cancer since the first
checkpoint inhibitor passed clinical trials, in addition to work highlighting the importance of innate
immune responses to cancer. However, there is still much to learn about host-derived responses
and the development of resistance to new cancer therapies. This review examines the similarities
between the immune responses to cancer and tuberculosis with the hope that their commonalities
will facilitate research collaboration and discovery.
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1. Introduction

Both Mycobacterium tuberculosis (Mtb) and cancer involve processes that reflect a highly evolved
and coordinated program of immune evasion strategies that interfere with innate and adaptive
immunity. Central to tuberculosis granulomas and the tumor microenvironment (TME) is a common
theme of a hijacked macrophage polarization program and an exhausted T cell phenotype that
contribute to resistance mechanisms of these diseases. In both tuberculosis and cancer, initial detection
by macrophages is a crucial step that primes the immune response. When M. tuberculosis is inhaled
into the lung, it is endocytosed and sequestered in the phagosome of an alveolar macrophage [1].
Strong stimulation is required by T cells for macrophage activation and subsequent mycobacterial
killing [2] (Figure 1a). M. tuberculosis has evolved special mechanisms for surviving these processes
in detoxifying the toxic chemicals before harm is done [3–6], or in repairing the damage before it
becomes lethal [7–9]. In addition, M. tuberculosis is known to escape the phagosome and persist in
the cytoplasm of the macrophage (Figure 1a). This is what leads to the hallmark of tuberculosis (TB)
disease, the granuloma [10,11] (Table 1). Granuloma formation is a complex process involving immune
evasion of the mycobacterium through the aforementioned mechanisms and continued interaction
between infected macrophages and T cells. During this time, mycobacterial growth slows to where the
population of bacteria is thought to be sustained by non-replicating bacteria inside macrophages [12,13].
This latency in growth permits persistent inflammation during which the surrounding tissue becomes
more vascularized, allowing for increased macrophage and T cell recruitment [14]. At the infection
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site, macrophage cells differentiate into a variety of subclasses. Macrophages are critical for granuloma
formation because of their response mechanisms in inflammation and tissue repair [15,16]. Layers of
the granuloma become more defined as a fibrous cuff forms outside the stratum of macrophages.
Finally, lymphocytes form follicle-like centers surrounding the fibrous cuff, which walls off infected
macrophages and the necrotic center where the mycobacteria are trapped [17]. This period of infection
is known as latency, and the infection progresses no further. The immunological processes behind
latency are dependent on T cell–macrophage interaction, as a lack of macrophage activation would lead
to uncontrolled mycobacterial growth [18], yet the immune suppression required is also macrophage
mediated. Classically activated macrophages, or M1 macrophages, drive inflammation, whereas
alternatively activated macrophages, or M2 macrophages, are anti-inflammatory and contribute to
wound healing [19].
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Figure 1. (a) The killing of mycobacterium within a phagosome of a macrophage is mediated by IFN-
γ production from CD4 T cells. Mycobacterium tuberculosis prevents the fusion of the phagosome and 
lysosome and can persist inside a macrophage for extended periods. The release of muramyl 
dipeptide (MDP) by M. tuberculosis is critical for activation of the NOD2 receptor and instigating 
trained innate immunity; (b) CD8 T cells, which are key for the development of a proper anti-tumor 
response, are heavily reliant on cytokine input from macrophages. Innate immune training takes place 
in the tumor microenvironment (TME) via macrophage stimulation by β-glucans, and lactate. 
Macrophages are also heavily regulated by TNF stimulation. Additionally, checkpoint inhibition 
through the programmed cell death protein 1/programmed death ligand 1 (PD-1/PD-L1) pathway is 
a currently used technique by which the interaction between CD8 T cells and macrophages can be 
modified by immunotherapy. 

Figure 1. (a) The killing of mycobacterium within a phagosome of a macrophage is mediated by
IFN-γ production from CD4 T cells. Mycobacterium tuberculosis prevents the fusion of the phagosome
and lysosome and can persist inside a macrophage for extended periods. The release of muramyl
dipeptide (MDP) by M. tuberculosis is critical for activation of the NOD2 receptor and instigating trained
innate immunity; (b) CD8 T cells, which are key for the development of a proper anti-tumor response,
are heavily reliant on cytokine input from macrophages. Innate immune training takes place in the tumor
microenvironment (TME) via macrophage stimulation by β-glucans, and lactate. Macrophages are also
heavily regulated by TNF stimulation. Additionally, checkpoint inhibition through the programmed cell
death protein 1/programmed death ligand 1 (PD-1/PD-L1) pathway is a currently used technique by
which the interaction between CD8 T cells and macrophages can be modified by immunotherapy.
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Table 1. T cells and macrophages are key players in both the anti-cancer immune response
and tuberculosis. Their roles, the cytokines involved, and potential immunotherapies are briefly
summarized here.

Summary Table

T Cells

Tuberculosis TME

Role

Activation of M. tuberculosis infected
macrophages to stimulate mycobacterial killing
Possess an effector role that has potential to be

modified through immunotherapy [2]

Elimination of Cancer Cells
Immunomodulation of the TME with an effector role
that has been modified through immunotherapy [20]

Cytokines IFNγ, TNF-α, IL-6, IL-12, IL-1β

Immunotherapies Anti-PD-1/PD-L1 Anti-PD-1/PD-L1, CAR T cells, TIGIT, OX40, 4-1BB,
LAG3, TIM-3, Monalizumab, CTLA-4

Macrophages

Tuberculosis TME

Role
The main reservoir for M. tuberculosis
Work in conjunction with T cells to kill

mycobacteria [2]

Immunomodulatory roles through cytokine production
Effector role that can be modified through

immunotherapy [21–23]

Cytokines iNOS, IFNγ, TNF-α, IL-6, IL-1β, IL-10, IL-4, IL-2

Immunotherapies CD40 agonists [23] Rifampicin [24] CD40 agonists [23]
β-Glucan [25] STAT3 [22]

Similarly, from an early stage, the TME is heavily influenced by T cell–macrophage interactions.
Myeloid cells comprise up to 50% of the leukocytes within a tumor, with the majority of these
being macrophages [26]. Similarly to tuberculosis, M2 macrophages play a role in preventing the
immune system from eliminating disease. Immunosuppressive macrophage populations are known as
tumor-associated macrophages (TAMs) and are responsible for much of the anti-inflammatory signals
in the TME [27]. TAMs can arise from either tissue-resident macrophages or circulating monocytes, but
these populations are maintained by a steady influx of circulating monocytes [26]. As a result of their
association with wound healing, macrophages are poised to assist in angiogenesis for tissue growth.
TAMs are also known to suppress T cell responses [28]. Here, we also see an important interaction
between macrophages and T cells that can influence the overall outcome of disease. This review
focuses on immune evasion in TB and cancer as it relates to macrophage and T cells to explore how it
might apply to future immunotherapy development. In particular, we focus on immunologically cold
tumors, as a lack of immune activation is the greatest obstacle. We would to acknowledge that the
literature is too vast to cover in complete detail, but we will attempt to summarize here some of the
more recent and salient observations in the field.

2. Macrophages: Potent Modulators of Protection from the Innate Immune System through
Trained Innate Immunity

A large portion of TB literature focuses on vaccine development. Bacille Calmette Guerine
or BCG, a live attenuated strain of Mycobacterium bovis, is the only preventive vaccine against TB
used to vaccinate infants worldwide [29] and represents one of the oldest cancer immunotherapeutic
agents [29–31]. How BCG functions remains poorly understood, but its ability to activate an innate
immune system, particularly macrophages, explains its ability to act as a preventive and therapeutic
vaccine in TB and cancer, respectively. Unfortunately, BCG does not protect against pulmonary
tuberculosis infection in humans, and any protection established against disseminated tuberculosis
infection wanes into adolescence [32]. The reasons for this are unclear, but geographic location has been
identified as a factor where efficacy increases along with distance from the equator [33]. It is possible
that this is due to environmental exposure to mycobacteria, but more evidence is needed. However,
in rodents, BCG is able to induce protection against tuberculosis in addition to protection against
non-mycobacterial diseases [34]. Subcutaneous BCG vaccination also protects against M. tuberculosis
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infection within 7 days, in a process independent of T cells [35]. As a potent biological response
modifier, BCG is capable of modulating the innate immune system, particularly macrophages, to resist
infection [36].

Recent work has introduced the concept of trained innate immunity, which is a mechanism that
allows the innate immune system to possess a memory-like response and is typically an attribute
assigned to adaptive immunity [35,36]. Trained innate immunity is dependent on the NOD2 receptor,
a cytosolic pathogen recognition receptor (PRR) that recognizes muramyl dipeptide (MDP) from
bacterial peptidoglycan [37] (Figure 1a). Upon NOD2 binding of MDP, epigenetic reprogramming
allows that particular cell to “remember” the exposure to MDP. Further stimulation with MDP triggers
the NOD2 receptor to elicit a more rapid and robust response featuring increased pro-inflammatory
cytokine release including IL-1β, IL-6, and TNF-α. This has been proposed as an explanation for the
ability of BCG to induce non-specific protection not only to infection from M. tuberculosis, but other
non-mycobacterial infections [35,36,38] (Figure 1a). Although originally identified in monocytes, other
cells such as NK cells can also undergo innate immune training [39]. Mechanisms such as innate immune
training offer insight into how BCG functions in the induction of immunity. However, much remains
unknown. Although BCG does induce trained innate immunity, separate uncharacterized mechanisms
may be responsible for the protection observed in the mouse model of tuberculosis. An induction of
trained innate immunity is dependent on the NOD receptor [36]. However, other work shows that
BCG-mediated protection through innate immunity can still occur in the absence of the NOD receptors.
Such protection is thought to be mediated by hyperactivation of the innate immune system, including
the recruitment of activated macrophages into the lung after subcutaneous vaccination [35]. This ability
of a subcutaneous BCG vaccination to induce the recruitment of monocytes to the lung within seven
days adds to its immunotherapeutic potential.

As trained innate immunity influences macrophage polarization, it has potential benefits in
anti-tumor immunity. Within the TME, macrophage populations tend to favor alternative polarization,
or an M2 phenotype. Such polarization is characterized by high IL-10 production and low IL-12
production, keeping the TME in an anti-inflammatory state [19,40,41]. The preexisting hypoxic
conditions within solid tumors can contribute to the production of IL-1β, which can lead to the
production of VEGF, promoting angiogenesis and M2 polarization, and enhancing tumor growth [42].
Cancer fibrosis is also induced through the production of TGF-β1 by M2 macrophages, rendering
tumors more difficult to treat [43]. As macrophage polarization states show a high degree of plasticity
and can change with external stimuli, macrophage “training” can be therapeutically leveraged to exert
an anti-tumoral effect within the TME. Regulating the polarization of macrophages from M2 to M1
phenotype is an important step in limiting the pro-tumor effect of TAMs [44].

As trained innate immunity is independent of T cells, it is important to distinguish this
macrophage-mediated BCG response from the delayed hypersensitivity reaction similarly brought on
by BCG. While delayed hypersensitivity is initiated by mononuclear leukocytes, it culminates with a
strong T cell response 24–72 h later. In fact, BCG has been used in the past as an immunostimulant
adjuvant along with tumor antigen in a vaccine study for colon cancer [45]. Although tumor-specific T
cells were identified in patients after vaccination, these vaccines never panned out, as tumor-specific T
cells are not enough on their own for tumor eradication [46]. Indeed, it seems that the interaction of
BCG with other immune cell types may be critical for better defining the role of BCG in vaccination
against TB and cancer.

3. Innate Immune-Based Immunotherapies for Cancer and TB

BCG has been used in the past as a treatment for bladder cancer that works through potent
stimulation of the innate immune system. The activation of neutrophils and production of neutrophil
extracellular traps (NETs) can directly lead to tumor cell kill [47]. The direct stimulation of macrophages
with BCG can also elicit high levels of TNF-α that can result in direct tumor cell kill [48]. Importantly,
this leads to the recruitment of T cells and production of IFN-γ, IL-2, and TNF-α, which leads to tumor
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cell kill, but not necessarily through tumor specific mechanisms [49]. Although these mechanisms
require local BCG stimulation to induce direct cancer-killing properties, a strong conversion from a
Th2-like response to a Th1 immune response has also been observed in responders to intravesicle BCG
therapy, suggesting that, similar to TB [50], BCG-mediated changes in polarization of the immune
system are protective against cancer, and they are more important for the immune response than the
induction of antigen-specific T cells [51]. Therefore, the proper training of macrophages represents a
way to reverse the negative effects of immune polarization in the TME, with BCG as an example, as a
method for this training. It is known that in certain cancers, such as head and neck squamous cell
carcinoma (HNSCC), the increased presence of M2-polarized macrophages correlates with negative
clinical prognostic markers [52]. Although cancer is not a natural source of MDP to induce trained
innate immunity, there is evidence to suggest that artificially stimulating epigenetic reprogramming
within the TME can induce anti-cancer immune responses. The induction of trained innate immunity
with muramyl tripeptide in patients with osteosarcoma has shown success by increasing overall
and disease-free survival [53]. Others have identified β-glucans from yeast as a potential method
of inducing trained innate immunity in the TME through the pathogen recognition receptor (PRR)
dectin-1 [25] (Figure 1b). This process of trained innate immunity is dependent on the activation of
mTOR pathways to epigenetically modify the cells [54]. This is particularly pertinent to antitumor
immunity, as other work has identified that cancer cell-induced training of innate immune cells can
occur through the mTOR pathway (Figure 1b). It is hypothesized that this is induced through the
production of lactate by the cancer cell that interacts with the lactate receptor GPR81 on monocytes [55].
Such epigenetic reprogramming can assist in keeping TAMs activated and pro-inflammatory [55]
(Figure 1b). It is unknown how artificially stimulating this same pathway with β-glucans can be
utilized for immunotherapy. Although not considered trained innate immunity, polarization switching
from M2 to M1 has been achieved through CD40 agonists [21], the use of β-glucan from yeast [22],
and in STAT3 inhibitors [23] (Table 1). Perhaps macrophage training induce by BCG or other sources
should be considered as an alternative.

Conversely, both CD40 agonists and STAT3 inhibitors have shown potential for translation into
tuberculosis research. CD40 agonists have been observed to boost the T cell response to TB infection [56],
but they have not been evaluated for inducing the classical activation of macrophages. Similarly,
studies have shown that STAT3 activation does correlate to impaired T cell function in tuberculosis
patients [57]. Additionally, the formation of foamy macrophages has been linked to STAT3, suggesting
that STAT3 inhibitors could potentially play a role in macrophage polarization in tuberculosis [58].
Other immunotherapeutic approaches against TB have come from an unlikely source. Recent studies
have highlighted the potential that rifampicin, in addition to being an effective antibiotic to treat
tuberculosis, might be an effective immunotherapeutic. Early studies of human lung epithelial cells
showed that rifampicin can increase the production of nitric oxide synthase (iNOS) [24]. Current
understanding shows that rifampicin can increase the amount of iNOS and therefore nitric oxide (NO)
produced by macrophages in response to pro-inflammatory cytokines such as IL-1β, IFN-γ, and TNF-α.
NO production serves as an important mediator of host defense to tuberculosis [59] and an important
cytokine for classifying M1 polarized macrophages [60]. Although studies are ongoing, rifampicin is,
in theory, an excellent combination antibiotic and immunotherapeutic for the treatment of tuberculosis.

4. Checkpoint Inhibition

Checkpoint inhibitors represent a growing area of research in cancer immunotherapy, and its
applicability potentially extends to tuberculosis. In the TME, T cell exhaustion leads to ineffective
immune responses, and the associated molecular mechanisms have been reviewed elsewhere [61].
In tumor immunotherapy, successful treatment methods so far have relied on immune checkpoint
inhibitors with targets such as programmed cell death protein 1 (PD-1), programmed death ligand 1
(PD-L1), and cytotoxic T-lymphocyte associated protein 4 (CTLA-4). The underlying premise is that
the controlled downregulation of regulatory immune pathways can lead to increased efficacy of the
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immune system’s clearance of an infection or tumor [62,63]. Chronic infections such as tuberculosis
are similar to cancer in that there is an extended period of time with high levels of antigen exposure.
Prolonged exposure to tuberculosis antigens does lead to an increased expression of PD-1 on CD4 and
CD8 T cells, and blocking PD-1 or PD-L1 with an antibody increases CD4 and CD8 T cell activity [64].
PD-1 blockade also shows some promise in saving effector T cells from apoptosis during pulmonary
infection [65]. As T cell exhaustion has been shown to restrict the functionality of ESAT-6-specific CD4
T cells during M. tuberculosis infection [66], it is reasonable to think from a mechanistic standpoint that
anti-exhaustion therapies will improve the immune response to tuberculosis. While mechanistically
sound, this has unfortunately not proven to be the case [67]. Evidence suggests that the blockade
of PD-1/PD-L1 is not enough to rescue effector T cell function in the case of chronic M. tuberculosis
infection. In addition, mice lacking the PD-1 receptor (PD-1−/−) show increased susceptibility to
pulmonary tuberculosis [68,69]. It is hypothesized that this is due to a lack of homeostasis in the immune
response and subsequent immune hyperactivation leading to inflammatory damage. Furthermore,
PD-1 expressing T cells during M. tuberculosis infection are not exhausted T cells in the classical sense,
as they actually play a role in maintaining antigen-specific effector T cells [70]. Epigenetic remodeling
that accompanies T cell exhaustion is also not affected by PD-L1 blockade and can lead to a relapse of
exhaustion if antigen presence remains high. This leads to exhausted populations failing to convert to
memory responses [20]. Tuberculosis is not alone in lack of a response to PD-1 blockade; for example,
HNSCC has shown response rates as low as 10–15% [71,72]. As such, there is a need for alternative
immunotherapies to reverse T cell exhaustion in diseases such as tuberculosis and HNSCC through the
use of other checkpoint inhibition molecules. T cell immunoglobulin and mucin domain-containing-3
(TIM3) is another immunotherapy target that shows promise. Unlike with PD-L1, the blockade of
TIM3 actually does improve outcomes to M. tuberculosis infection, and this is thought to be largely
mediated through the restoration of exhausted T cells [73,74]. Furthermore, it has been identified
that PD-1 blockade actually increases TIM3 expression in HNSCC. Combination approaches with a
dual blockade of both PD-1 and TIM3 may be required to overcome T cell exhaustion in both of these
diseases [75].

5. T Cell Infiltration and Homing

Proper homing of T cells has been identified as a major problem within the TME of multiple
cancer types [76]. In lung squamous cell carcinoma, the lack of T cell infiltration into tumors is a poor
prognostic indicator. In this particular example, imaging clearly shows the presence of an abundance
of T cells gathered on the periphery of tumor islets, but a lack of infiltration [77]. The interaction
between TAMs and the CD8 T cells within the tumor stroma has been reported as a main barrier
that prevents intratumoral T cell infiltration [77]. Although targeting macrophages may represent
a crucial first step in identifying new mechanisms to improve intratumoral T cell homing in cancer
immunotherapies [77], it is important to note that the blockade of macrophages through CSF-1R in
lung cancer models increased T cell infiltration, but not tumor clearance. Antitumor responses were
only improved upon the addition of anti-PD-1 [77]. This highlights the importance of T cell activation
and the role for macrophages in T cell homing. Cytotoxic T Lymphocyte Associated protein 4 (CAR-T)
cell therapy is also benefiting from increasing T cell homing through CXCL2-related mechanisms [78].

Immunotherapies to facilitate proper T cell homing also have a potential to aid the treatment
of tuberculosis [79]. Although BCG can function in the mouse model independent of T cells, most
vaccine development for M. tuberculosis is centered on an induction of strong T cell responses in
the lungs following vaccination to induce long-term protection [80]. Upon infection in the lung,
antigen-presenting cells (APCs) are responsible for trafficking to the mediastinal lymph node to activate
M. tuberculosis-specific CD4+ T cells [81,82]. Following T cell priming and clonal expansion, T cells
circulate to the lungs. These T cells are part of the Th1 immune response, which is dependent on
cytokines such as IL-12 and IFN-γ (Table 1). IL-12 produced by APCs induces the expression of
T-bet, which is a T cell transcription factor that is known for further activating the Th1 response [83].
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In addition to its key role in activating macrophages [84], IFN-γ also plays a role in inducing further
T-bet expression [85]. However, upon arrival to the infected lung tissue, many T cells are unable to cross
to the lung parenchyma and instead home to the lung vasculature, where they are non-protective [86].
Although these vascular T cells produce higher levels of IFN-γ, they are less protective than the
populations of T cells that home into the parenchyma. This is even maintained after adoptive transfer
of the parenchymal populations [87]. From this, it has been hypothesized that although IFN-γ plays an
important role in mycobacterial killing in the spleen, it may not be as important for protection from
tuberculosis in the lung [88]. Further evidence has shown that this lack of killing may be due to the
inability of T cells to localize to the center of the granuloma where infected macrophages reside [89].
Future T cell-based immunotherapies for cancer and tuberculosis would be aided by accounting for
not only T cell activation, but also T cell homing.

6. T Cell Antigen Exposure and Exhaustion

Antigen exposure in the TME is currently an area of high focus due to modern techniques and the
availability of newly generated datasets. Recent studies have identified that durable antitumor immune
responses require the activation of both CD8 and CD4 T cells through MHC-I and MHC-II molecules,
respectively [90]. Multiple cancer types including colorectal, melanoma, head and neck, and lung cancers
have demonstrated good clinical outcomes in correlation with a strong TH1 immune response [91,92]
and a strong memory T cell response being a driving factor behind lasting antitumor immunity [93].
The role of T cells in antitumor immunity has been heavily tied to the identification of neoantigens,
which are antigens recognized by CD4 and CD8 T cells that are unique enough so as to not get confused
with self-recognizing T cells. Neoantigen discovery has an important role in the future of tumor
immunity, as T cells specific to neoantigens not only improve the overall TME in immunologically cold
tumors [94], but they are also less susceptible to immune tolerance [95]. Neoantigen discovery has the
potential to benefit new CAR-T cell therapy by improving the cell targets. Additionally, in conjunction
with a wide variety of proteomic and genomic techniques, cancer vaccines against tumor mutations, even
specific to the mutanome of individual patients, are options being explored for cancer vaccines [94–99].
In particular, recent advancements with the single-cell characterization of T cells can assist in identifying
specific T cell populations for therapeutic intervention [100]. Although these methods are reliant on
T cells, their relevance to tuberculosis remains low, as neoantigens are a tumor-specific phenomenon,
and options for anti-cancer vaccines have been extensively reviewed elsewhere [96].

The induction of antigen-specific T cell responses has posed unique problems for designing
efficacious vaccines for Mycobacterium tuberculosis. The importance of both CD4+ and CD8+ T cells
to survival after M. tuberculosis infection has been demonstrated in both the mouse and non-human
primate model of tuberculosis [101–104]. However, vaccine-induced T cells have not been so easily
linked to increased protection. For example, after BCG vaccination, IFN-γ-producing T cells specific
to mycobacterial antigen do not always correlate to a reduction in mycobacterial burden [105].
Recent evidence suggests that T cells specific for tuberculosis antigens face contradictory complications
when attempting to clear infection; specifically, with two common vaccine target antigens Ag85B
and ESAT-6. Ag85B is a protein that is not heavily expressed during active disease, whereas ESAT-6
is highly expressed during that time. T cells corresponding to these antigens can be found in the
lungs of vaccinated mice. Unfortunately, T cells specific to both of these antigens show very limited
protection to M. tuberculosis infection for very unique reasons, as Mycobacterium tuberculosis undergoes
different cycles of growth during infection. During active disease, when the mycobacterium is actively
replicating, AG85B is expressed in very low levels. Ag85B-specific T cells show a limited control of
infection due to these low levels of antigen expression. Alternatively, ESAT-6 is a highly expressed
protein during active infection. Specific T cells to ESAT-6 are prone to over activation and T cell
exhaustion [66]. Proper antigen exposure due to replication cycles is an important component of
immunotherapy design and timing of treatment. The application of new single-cell technologies to
identify problematic T cell populations would greatly aid therapeutic intervention.
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7. Discussion

Although the two diseases are immunologically similar, the research conducted in the fields of
tuberculosis and cancer have separate focuses. Tuberculosis research has centered on prevention,
while cancer research has mostly focused on immune-mediated clearance of an already established
disease. Given the parallels between the immune responses to these diseases, the hopes of this review
are to bridge the two fields, so that some of the vast literature of cancer research is usable in the
tuberculosis field, and the niche immunology knowledge gained in tuberculosis research is available to
the cancer field. As tuberculosis research has uncovered, there are many factors that can influence the
efficacy of immunotherapies, including antigen availability during disease progression and the fact
that PD-1 may not be an exhaustion-specific marker that is useful for efficient checkpoint inhibition.
There is also the potential of BCG as a future biological response modifier affecting macrophage
polarization. Future immunotherapies for cancer can consider this for the timing of treatment and
potential combination therapies. The enormous volume of cancer work has revealed much for the field
of tuberculosis; checkpoint inhibition through a combination of PD-1 and TIM3 may be required for
the successful reversal of T cell exhaustion, and macrophage polarization immunotherapies have been
successfully used to modulate the immune response. Given that macrophage polarization is thought
to be responsible for BCG-induced protection, other means of modulating macrophage polarization
merit consideration. If these diseases are to be cured, a strong collaboration between these two fields
will be key in finding new angles and therapies.
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BCG Bacille Calmetter Guerine
CTLA-4 Cytotoxic T Lymphocyte Associated protein 4
HNSCC Head and Neck Squamous Cell Carcinoma
MDP Muramyl Dipeptide
NETs Neutrophil Extracellular Traps
NO Nitric Oxide
PD-1 Programmed Death Protein 1
PD-L1 Programmed Death Protein Ligand 1
TAM Tumor Associated Macrophage
TB Tuberculosis
TIM-3 T cell Immunoglobulin and Mucin Domain Containing-3
TME Tumor Microenvironment
Mtb Mycobacterium tuberculosis
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