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msgbsR: An R package for analysing 
methylation-sensitive restriction 
enzyme sequencing data
Benjamin T. Mayne1,2, Shalem Y. Leemaqz1,2, Sam Buckberry   3,4, Carlos M. Rodriguez Lopez   5,  
Claire T. Roberts1,2, Tina Bianco-Miotto   1,6 & James Breen1,7

Genotyping-by-sequencing (GBS) or restriction-site associated DNA marker sequencing (RAD-seq) 
is a practical and cost-effective method for analysing large genomes from high diversity species. 
This method of sequencing, coupled with methylation-sensitive enzymes (often referred to as 
methylation-sensitive restriction enzyme sequencing or MRE-seq), is an effective tool to study DNA 
methylation in parts of the genome that are inaccessible in other sequencing techniques or are not 
annotated in microarray technologies. Current software tools do not fulfil all methylation-sensitive 
restriction sequencing assays for determining differences in DNA methylation between samples. To 
fill this computational need, we present msgbsR, an R package that contains tools for the analysis of 
methylation-sensitive restriction enzyme sequencing experiments. msgbsR can be used to identify 
and quantify read counts at methylated sites directly from alignment files (BAM files) and enables 
verification of restriction enzyme cut sites with the correct recognition sequence of the individual 
enzyme. In addition, msgbsR assesses DNA methylation based on read coverage, similar to RNA 
sequencing experiments, rather than methylation proportion and is a useful tool in analysing 
differential methylation on large populations. The package is fully documented and available freely 
online as a Bioconductor package (https://bioconductor.org/packages/release/bioc/html/msgbsR.html).

Methylation-sensitive restriction enzyme sequencing (MRE-seq), often referred to as methylation-sensitive 
genotype-by-sequencing (msGBS), is a cost effective next-generation sequencing method to analyse DNA meth-
ylation in large genome species. Reducing genome complexity with restriction enzymes (REs) can be advan-
tageous as it may reach parts of the genome inaccessible to sequence capture approaches1. However, current 
MRE-seq data analysis tools do not satisfy all experimental designs. For example, using methylation-sensitive 
restriction enzymes in a MRE-seq experiment2,3 is an effective way to identify differentially methylated sites that 
may not be annotated or accessible in other technologies, such as microarrays. While other packages, such as 
Stacks4 and TASSEL5 exist to analyse restriction-site associated DNA marker sequencing (RAD-seq) data, these 
focus on identifying sequence variants and carrying out association mapping, and do not enable the analysis of 
methylation sites.

With the cost of NGS declining dramatically in recent years due to the increased throughput of current 
sequencing machines such as Illumina HiSeq X Ten and NovaSeq platforms, it is now feasible to determine DNA 
methylation on a large population. However, it is often difficult to adequately assess a large number of samples 
across a genome in one sequencing assay. The advantage of MRE-seq is that sequencing libraries are simple to 
produce, with only an enzyme digestion, adapter ligation and library amplification step needed, enabling an unbi-
ased analysis of methylation sites across the genome. Conversely, while quite accurate, the most popular approach 
for analysing large numbers of human methylation samples, Illumina HumanMethylation450 BeadChip array6 
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relies on prior knowledge of individual probes sites (the majority being CpGs), restricting its application to only 
well-studied and annotated genomes.
Compared to other sequencing approaches designed to identify DNA methylation, such as whole-genome 
bisulfite sequencing (WGBS) or methylation-capture techniques, MRE-seq infers methylation via read coverage 
and does not require additional sample treatment to convert methylated cytosines (i.e. sodium bisulfite treat-
ment). WGBS, a more high-resolution approach, is used in a more diverse set of biological systems (human, 
mouse, plants, fungi etc) yet is costly to produce due to the large amount of sequencing data required to accurately 
quantify methylation states on each bisulfite converted strand7. Determining read coverage, as opposed to WGBS, 
reduced representation bisulfite sequencing (RRBS) and array methods, enables a library preparation step that 
avoids treatment with sodium bisulfite, a process that damages and fragments input DNA8.

Many existing software already exist that can be used to analyse DNA methylation data (Table 1), however no 
particular software package can be used exclusively for large-scale MRE-seq experiments, creating a gap in the 
current computational methods for analysing this DNA methylation data. For example, to analyse methylation 
array data, packages such as ChAMP and minfi contain functions that analyse probe intensity to derive methyl-
ation states. Packages such as BiSeq9 and bsseq10 work by enabling downstream analysis of samples after bisulfite 
alignment procedures, and while these packages analyse sequencing data, the tools available to WGBS are not 
compatible with MRE-seq sequencing data. While WGBS packages aim to identify converted and unconverted 
cytosine’s to calculate DNA methylation, most software tools are unable to extract the total number of reads that 
mapped to a given RE recognition site. The extraction of sequencing coverage at genomic locations however, is a 
well-used application in other genomic apporaches and hence, computational functions are able to be leveraged 
from analysis packages used to analyse transcriptome sequencing (RNA-seq) and chromatin immunoprecipita-
tion with massively parallel DNA sequencing (ChIP-seq) data.

In this study, we developed msgbsR, an R package for the analysis of data obtained from MRE-seq experi-
ments. Our analysis pipeline allows researchers to conduct analyses of MRE-seq experiments, in order to iden-
tify differentially methylated sites. msgbsR includes tools which assesses read counts from a sorted and indexed 
genome alignments or BAM file(s) directly into the R environment, checking that the cut sites match the RE 
sequence, identifying differentially methylated sites, and seamless annotation using available reference genomes 
in the R/Bioconductor framework. To demonstrate the utility of the msgbsR analysis package, we analysed a 
population of rats (control vs treatment) for differential DNA methylation (Rattus norvegicus), and two publicly 
available agricultural crop datasets from barley (Hordeum vulgare) and maize (Zea mays) to show the extensive 
potential applications in epigenetic research.

Results
Overview of msgbsR pipeline.  The msgbsR package is a collection of functions that automate the process 
of identifying differentially methylated sites from a MRE-seq experiment, and enable visualisation of meth-
ylation-senstive sites within the genome. The analysis package works initially by analysing samples (restric-
tion-digested Illumina sequencing libraries) that have been aligned to their target genome. The set of alignment 
(BAM) files are then read by the package to create a preliminary table of read counts containing the locations 
of the reads that were mapped to the genome. To correctly identify true positive RE sites, the table is then fil-
tered to remove reads that did not map to the correct RE recognition site. Since restriction-digested counts 
are similarly distributed to other count data types, differential methylation analyses can be implemented from 
existing Bioconductor packages that were developed in RNA-seq studies. The msgbsR package contains wrapper 
functions to test for differential methylation using edgeR, however flexibility exists to enable additional packages 
to be used once the final table of read counts is obtained. In addition, msgbsR uses the Bioconductor package 
SummarizedExperiment to enable fast integration of raw count data with phenotypic/metadata and genomic 
information in a single data object.

Generating the table of read counts.  Using a reference genome, alignment of the sequencing data results 
in reads that begin at RE cut sites. As a result, reads will begin at a defined RE cut site, producing a pileup of reads 
at those genomic positions (Fig. 1A). Thus, it is possible to count the total number of reads that mapped to these 
RE cut site positions. The msgbsR analysis pipeline firstly starts with functions allowing the import alignments 
from indexed and sorted BAM file(s) (Fig. 1B), and verification of raw read counts at the RE cut sites. These 

Package
Type of DNA 
methylation data Format of files for importing

Filtering outliers and poor 
quality probes/sequences

Differential methylation 
analysis

msgbsR MRE-seq BAM Yes Yes

ChAMP39 Array IDAT Yes Yes

minfi40 Array IDAT Yes Yes

charm41 Array XYS Yes Yes

methylpipe42 WGBS BAM Yes Yes

BSmooth10 WGBS BAM Yes Yes

BiSeq9 RRBS/WGBS bismarkbed2graph output43 Yes Yes

Table 1.  Comparison between msgbsR and existing DNA methylation pipeline software tools. RRBS: reduced 
representation bisulfite sequencing, MRE-seq: methylation sensitive restriction enzyme sequencing, WGBS: 
whole genome bisulfite sequencing.
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sorted and indexed BAM files can be the output from an alignment tool such as Bowtie211 or Burrows-Wheeler 
Alignment (BWA)12 and sorted with SAMtools13. The rawCounts function takes a list of sorted and indexed BAM 
files and imports the raw read counts into the R environment. The rawCounts function internally takes advan-
tage of Rsamtools14 and GenomicFeatures15. After alignment, the beginning of each mapped read starts within 
the cut site of the recognition sequence of the RE. Rsamtools is used to extract the genomic location of the start 
of the read which then becomes the location of the cut site for each given read. The msgbsR package utilises 
other Bioconductor packages to ease data analysis, with rawCounts being directly applicable to the data for-
mat of a RangedSummarizedExperiment from the Bioconductor package SummarizedExperiment16. The resulted 
RangedSummarizedExperiment data object contains a table of read counts of potential cut site locations with their 
genomic coordinates, such as the chromosome, position and strand information. The genomic locations within 
the table of read counts correspond to the beginning of each mapped read from the BAM files(s) which are now 
located within a GRanges format enabling the data to be utilised by other Bioconductor packages.

The output of the rawCounts function uses the start position of all mapped reads in a BAM file. However, there 
may be incorrectly mapped reads that do not correspond to a specified RE recognition sequence. Incorrectly 
mapped reads can be filtered out of the analysis prior to any downstream analyses using the checkCuts function, 
which takes a GRanges data object that contains the positioning of the potential cut sites and the recognition 
sequence of the RE. The checkCuts function then uses a reference genome in the format of a BSgenome which 
is obtainable from Bioconductor. However, if a BSgenome is unavailable, a user-defined FASTA file can also be 
used to determine where the recognition sequence matches the reference genome. This function makes use of 
GenomicFeatures and can be used to extract the sequence from a BSgenome or FASTA file given a set of genomic 
coordinates. The user must firstly take the genomic coordinates of the mapped reads from the table of read counts 
and adjust the locations such that the positioning fits over the recognition site of the RE. It then uses these coor-
dinates to extract the sequence from the reference genome and compare it with the supplied RE recognition site. 
A GRanges object with the correct positions of the cut site that matched the input sequence is then returned. 
Incorrectly mapped reads can then be filtered out of the RangedSummarizedExperiment by removing locations 
that do not match with the output from checkCuts.

Package validation.  We performed the msgbsR analysis pipeline on our own MRE-seq dataset consisting 
of DNA from prostate tissue from the offspring of rats who were either fed a control (n = 26) or experiment high 
fat maternal diet (n = 18). This experiment focused on using the methylation sensitive RE, MspI, which cleaves 
at the recognition site C^CGG (Fig. 1A). Initially, after mapping there were a potential 1,616,611 MspI sites. 
However, after running checkCuts, this was reduced to 1,252,042 MspI sites. The incorrectly mapped reads were 
unique to an individual sample. In other words, the same incorrect site did not occur in multiple samples. We 
therefore found it advantageous having the function checkCuts, as it can remove incorrectly mapped reads which 
may have been introduced in an earlier step prior to running the msgbsR pipeline. By running the checkCuts 
function ensures there are no incorrect mapped reads within any downstream analyses. This is important as 
incorrect sites can impact downstream analyses such as returning sites that are differentially methylated but are 
in fact false positives.

Figure 1.  A simplified schematic of methylation-sensitive restriction enzyme sequencing approach and the 
msgbsR pipeline. (A) An example of MRE-seq/msGBS using the restriction enzyme, MspI, which cleaves DNA 
at the recognition sequence C^CGG if the internal cytosine is methylated. However, MspI does not cut at the 
recognition site if both cytosines are methylated or the external cytosine is methylated. (B) The data analysis 
pipeline represented by a flowchart which highlights the names of the main functions in the msgbsR package.
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We also used msgbsR on a publicly available MRE-seq experiment focusing on barley and maize (SRP004282.1) 
leaf samples2 (The script on how this was downloaded and analysed from NCBI SRA is supplied in Supplementary 
Data 1 and 2). This experiment used ApeKI, a methylation-sensitive endonuclease that recognizes the 5 bp 
sequence GCWGC (W = A or T). Firstly, we mapped the barley and maize samples to their respective available 
reference genomes (see methods) and used the rawCounts function on the resulted sorted and indexed BAM files 
to determine count numbers. Initially, this resulted in a total of 4,081,975 and 1,155,762 potential ApeKI sites 
for the maize and barley data set respectively. However, after running the checkCuts function this was reduced 
to 3,791,316 and 1,032,360 cut sites for the maize and barley data set respectively. This was potentially due to 
potentially incorrectly mapped reads and ensured all downstream analyses were performed using sites that were 
correctly mapped.

Visualisation.  MRE-seq experiments can produce varying numbers of cut sites and reads depending on the 
DNA methylation state and the efficiency of the library preparation step for each individual sample. A way to 
overcome false positives associated with differences in read numbers between samples is to remove samples that 
produced a low number of reads and/or cut sites. This can be done before performing differential DNA methyl-
ation analysis using the plotCounts function incorporated in the msgbsR package. The plotCounts function cal-
culates the library size of each sample by calculating the total number of reads per sample. It also determines the 
total number of cut sites produced per sample by calculating the total number of cut sites that contained at least 
one read in each sample. The plot shown in Fig. 2 was generated using the plotCounts function, showing the total 
number of reads compared to the total number of cut sites produced for each individual sample from the publicly 
available data set described above2 for the Barley (Fig. 2A) or the Maize (Fig. 2B) data set. We also performed this 
function on our own data set focusing on prostates from rat offspring from either a control or experimental high 
fat maternal diet. The total number of cut sites for each individual sample before and after running the checkCuts 
function is supplied in Supplementary Data 3. Ideally, MRE-seq should be performed multiple times to produce 
technical replicates enabling us to determine if outliers were introduced as a result during sequencing. To identify 
additional outliers, an unsupervised clustering analysis such as principle component analysis (PCA), can also be 
performed (as shown with our sample data in Supplementary Data 4), however for demonstration purposes all 
sample were used in downstream analyses.

Differential methylation analysis.  One of the advantages of MRE-seq experiments is the ability to 
sequence hundreds of samples from different groups or conditions, without the need of additional sequencing 
applications (such as MeDIP-seq within the MethylMnM analysis example), and thus increase statistical power 
in differential methylation analyses. The msgbsR package contains a function that automates normalisation and 
determines differentially methylated sites between groups, enabling the analysis of complex experimental designs. 
Since the data generated from a MRE-seq experiment is in the form of read counts, we can take advantage of tools 
typically used in RNA-seq analyses17. The diffMeth function uses edgeR18 tools to automate splitting the data, 
perform normalisation and identify differentially methylated sites. diffMeth is a wrapper function which auto-
matically normalises based on library size. However, if the user wants to use other differential expression tools 
such as limma19 or DEseq220, they can directly take the raw read counts from msgbsR and use them combination 
with those packages.

Gene expression count packages such as edgeR18, developed initially through gene expression microarrays, 
work on negative bionomically distributed data. The read counts from MRE-seq have a negative binomial dis-
tribution (demonstrated in Fig. 3B using a random control sample from our own MRE-seq data), ensuring that 
RNA analysing packages can be leveraged for analysis. We tested if the data using all samples was negative bino-
mial using the goodfit function from the vcd R package21 which returns a p-value after fitting data to a nega-
tive binomial distribution. Using our data presented here in this manuscript, we found the data to fit a negative 

Figure 2.  The output of the plotCounts function showing the distribution of the library size compared to the 
total number of ApeKI cut sites produced for each sample from either the (A) barley or (B) maize data set. Each 
individual point represents a unique sample.
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binomial distrubtion (p < 2.2e–16), which ensured us that existing methods could be used to test for differential 
methylation.

We performed differential DNA methylation analysis using the diffMeth function, and found 31,768 sites to be 
significantly differentially methylated (FDR < 0.05) between control and experimental sample groups (Fig. 3C). 
We further explored the differentially methylated sites by annotating the sites to the nearest gene (see methods) 
and using these genes to perform a gene ontology (GO) analysis. We found GO terms such as cell development 
(GO:0048468) and cell differentiation (GO:0030154) to be significantly associated with the annotated genes sug-
gesting that the methylation differences between the control and experimental groups are associated with genes 
that may be altered in prostate tissue that has been exposed to a high fat diet environment during its development.

Comparisons to existing packages.  As explained above, msgbsR is unique in its analysis of MRE-seq 
data, and while most packages do not implement the same approach, we compared our rat analysis to an existing 
package called MethylMnM22. MRE-seq data is primarily analysed in MethylMnM as a companion with methyl-
ated DNA immunoprecipitation (MeDIP) sequencing data to accurately identify differentially methylated regions 
(DMRs) between sample groups3. Using MethylMnM package we aimed to firstly identify whether CpG sites 
were accurately defined in rat genome bins that compared with our package, and whether we could compare our 
differentially methylation results. Using a 10 kb bin size, we found 88% of rat genome bins contain at least one 
MspI cut site.

Unfortunately, given that MethylMnM determines differential methylation using additional MeDIP data 
to determine a p-value within its MnM.test function, we were unable to compare the results of differential 

Figure 3.  The msgbsR pipeline on our rat prostate MRE-seq data. (A) Output of the plotCounts function 
showing the distribution of the total number of reads and cut sites per sample. Samples are coloured depending 
on their diet group. (B) A histogram of reads for a control sample showing a negative distribution. (C) A 
volcano plot showing differentially methylated sites (FDR < 0.01) between the control diet (blue dots) and the 
experimental diet (red dots).
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methylation. Therefore, the comparison with MethylMnM not only demonstrates that MRE-seq can reach good 
coverage throughout the genome, but also that given a population-level project, such as the high-fat rat diet 
study or barley and maize leaf samples analysed above, msgbsR can be used as a complete analysis pipeine to 
analyse sequence data and determine differential methylated sites without the need for additional sequencing 
technologies.

Discussion
The advancement of high throughput technologies has enabled varying sequencing techniques. However, there 
is a limited number of bioinformatics tools available for the analysis of all the available sequencing protocols. 
MRE-seq is a reduced representation of whole genome sequencing which can be used to study DNA methylation 
and parts of the genome that are normally inaccessible in other sequencing technologies1. However, there is a 
current lack of bioinformatics tools that are tailor made for the analysis of MRE-seq experiments within the liter-
ature. Here in this study we outline msgbsR, an R package which can be used in part of the pipeline in analysing 
large-scale MRE-seq experiments. Our package works by identifying methylated sites and read counts directly 
from sorted and indexed BAM files into the R environment and can verify if the reads have mapped correctly 
to the recognition site of the RE by using a reference genome in the format of either a BSgenome or FASTA file.

To our knowledge, this is the first software package that is available that can work with an entire MRE-seq 
project directly and specifically, and create a table of reads based on REs cut sites. This fills a significant com-
putational analysis gap in the current DNA methylation analysis approaches, especially given the increased use 
of MRE-seq data in agricultural and ecological analysis settings. Similar analysis pipelines and R/Bioconductor 
packages are available for methylation data which share significant features of msgbsR yet differ in input data. For 
example, the ChAMP package, which works solely with Illumina HumanMethylation450 BeadChip, is a pipeline 
package that takes data generated outside of the R environment (IDAT files) to create a matrix of DNA methyl-
ation values (beta values). Both have options to filter the data such as removing probes or cut sites, as well as the 
ability to perform differential methylation analyses.

Reduced representation sequencing conducted in MRE-seq enables a larger number of samples to be 
sequenced, making this a more suitable methylation analysis platform compared to high-resolution protocols 
such WGBS. For example, in an agricultural setting it may be used to assess both genetic and epigenetic varia-
tion over mapping populations23 or for assessing the epigenetic impact of breeding populations in new environ-
ments24. In a medical setting the DNA methylation data can be used to make group comparisons25. Furthermore, 
single nucleotide polymorphisms (SNPs) can also be obtained from MRE-seq data, thereby making this approach 
essential for genome-wide and epigenome-wide associations studies at the same time. msgbsR can also be used 
with non-methylation sensitive data to verify reads have been mapped correctly and to determine if there are any 
differences in read counts between groups, allowing it to be used in conjunction with other Bioconductor pack-
ages for assessing genetic variation, such as GWAStools26.

Differential DNA methylation can be performed using msgbsR which contains a wrapper function using 
edgeR18. We choose to make a wrapper function of edgeR since MRE-seq experiments typically contain sam-
ples from multiple groups. Performing differential methylation analyses can become time consuming especially 
when there are multiple comparisons to consider. Our wrapper function uses the recommend trimmed mean of 
M-values (TMM) normalisation method suggested by edgeR27. However, we do acknowledge users may wish to 
use other bioinformatics tools to perform differential methylation analyses. Users may want to perform other nor-
malisation methods or use other downstream packages such as methylSig28, BiSeq29 or DSS30, packages designed 
to identify differentially methylated sites and regions. However, these tools have been primarily designed to work 
with whole genome bisulphite (WGBS) sequencing whereby methylation is determined through the proportion 
of methylated and un-methylated reads, and may not necessarily fulfil the user requirements when working with 
MRE-seq data.

The msgbsR package is fully documented, contains a tutorial data set and is freely available from Bioconductor. 
With its extended use with large-scale DNA methylation projects, we hope to further develop additional analysis 
features, such as the ability to input different DNA methylation data types and DMR identification functions.

Methods
Library preparation and sequencing of rat MRE-seq.  DNA was extracted from prostates and then 
digested with EcoRI and MspI using the MSAP technique31,32. EcoRI is a RE and recognises the sequence 
G^AATTC and is not methylation sensitive. Illumina sequencing primer adapters were ligated to the digested 
genomic DNA. Using a technique as previously described33,34, cycling was performed using a BioRad 100 thermo-
cycler at 37 °C for 2 hours followed by enzyme inactivation for 20 min at 65 °C. Barcoded adapters were designed 
with an MspI overhang and a common Y adapter with an EcoRI overhang using the script by Thomas P. van 
Gurp (www.deenabio.com/services/gbs-adapters) and were ligated as previously described33. T4 ligase (200U) 
and T4 ligase buffer (NEB T4 DNA Ligase #M0202) along with 0.1 ρmol and 15 ρmol of the barcoded MspI 
adapter and EcoRI adapter respectively. The reaction mixture was incubated at 22 °C for 2 hours and then 65 °C 
for 20 mins for enzyme inactivation. 5 µL from each ligation reaction were pooled together and then divided into 
equal volumes for column clean-up using the PureLink PCR Purification Kit (Life Technologies). Samples were 
then pooled back together for a total of 60 µL in molecular biology grade water. PCR reactions were performed 
in a 25 µL volume with 10 µL of digested DNA, 5 µL of 5× NEB MasterMix, 2 µL of 10 µM Forward and Reverse 
primers at 10 µM. PCR cycle reactions (Solexa) were performed at 98 °C for 30 seconds, followed by 16 cycles of 
98 °C for 30 seconds, 62 °C for 20 seconds and 72 °C for 30 seconds and finally 72 °C for 5 min. Size selection of 
fragments was performed using Ampure XP magnetic beads (Beckman). Fragments were captured and eluted 
into 30 µL of water. Samples were sequenced using an Illumina HiSeq2500 (Illumina Inc., San Diego, CA, USA) 
at the Queensland Brain Institute (QBI).

http://www.deenabio.com/services/gbs-adapters
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Publicly available data set.  The publicly available data set (SRP004282.1) used to demonstrate several 
functions of msgbsR was firstly obtained from the Sequence Read Archive (SRA)35. SRA files were then converted 
to FASTQ files using the SRA tool kit version 2.2.2a36. This study contained two data sets containing samples from 
either barley or maize leaves2. Both data sets were demultiplexed using specific barcodes provided within the 
study2 and GBSX37. This resulted in each individual sample from each data set in a FASTQ format.

Processing of sequencing data.  Alignment of reads was performed using bowtie2 v2.2.311 to each respec-
tive reference genome. We used the latest barley reference genome (ASM32608v1) which was obtained from 
the plant Ensembl website (plants.ensembl.org/Hordeum_vulgare/). For maize, we used the Ensembl release 
(AGPv4) which we obtained from the Illumina iGenomes website. For the Rat data we used UCSC latest release 
(rn6) which was obtained from the Illumina iGenomes website. Alignment with bowtie2 resulted in BAM files 
which were then sorted and indexed using SAMtools v1.213. The sorted and indexed BAM files were then directly 
read into the R environment using the rawCounts function within the msgbsR package enabling downstream 
analyses with msgbsR. Since the offspring were from some of the same mothers, differential methylation was 
performed using the mother as a blocking factor.

Gene Ontology Analysis.  Differentially methylated sites were annotated to the nearest gene using the nearest  
function within the GenomicRanges Bioconductor package15. These genes were then used for GO analysis which 
was performed using g:Profiler38 where term with an adjusted p-value < 0.05 were considered significant.
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