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Abstract

The development of Leishmania parasites within sand fly vectors occurs entirely in the

insect gut lumen, in the presence of symbiotic and commensal bacteria. The impacts of host

species and environment on the gut microbiome are currently poorly understood. We

employed MiSeq sequencing of the V3-16S rRNA gene amplicons to characterize and com-

pare the gut microbiota of field-collected populations of Phlebotomus kandelakii, P. perfi-

liewi, P. alexandri, and P. major, the primary or secondary vectors of zoonotic visceral

leishmaniasis (ZVL) in three distinct regions of Iran where ZVL is endemic. In total, 160,550

quality-filtered reads of the V3 region yielded a total of 72 operational taxonomic units

(OTUs), belonging to 23 phyla, 47 classes, 91 orders, 131 families, and 335 genera. More

than 50% of the bacteria identified were Proteobacteria, followed by Firmicutes (22%), Dei-

nococcus-Thermus (9%), Actinobacteria (6%), and Bacteroidetes (5%). The core micro-

biome was dominated by eight genera: Acinetobacter, Streptococcus, Enterococcus,

Staphylococcus, Bacillus, Propionibacterium, Kocuria, and Corynebacterium. Wolbachia

were found in P. alexandri and P. perfiliewi, while Asaia sp. was reported in P. perfiliewi.

Substantial variations in the gut bacterial composition were found between geographically

distinct populations of the same sand fly species, as well as between different species at the

same location, suggesting that sand fly gut microbiota is shaped by both the host species

and geographical location. Phlebotomus kandelakii and P. perfiliewi in the northwest, and P.

alexandri in the south, the major ZVL vectors, harbor the highest bacterial diversity, suggest-

ing a possible relationship between microbiome diversity and the capacity for parasite trans-

mission. In addition, large numbers of gram-positive human or animal pathogens were

found, suggesting that sand fly vectors of ZVL could pose a potential additional threat to live-

stock and humans in the region studied. The presence of Bacillus subtilis, Enterobacter clo-

acae, and Asaia sp suggests that these bacteria could be promising candidates for a

paratransgenesis approach to the fight against Leishmaniasis.
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Author summary

Leishmania infantum, a parasitic protozoan causing fatal visceral leishmaniasis, is trans-

mitted to humans by several sand fly vectors. In this study, the microbiota within the mid-

guts of Phlebotomus kandelakii, P. perfiliewi, P.major and P. alexandri was analyzed by

16S ribosomal DNA (rDNA) Miseq sequencing, revealing highly diverse community

composition and abundance, from three diverse ecological and geographical regions of

Iran. It appears that the gut microbiota is highly dynamic and controlled by multiple fac-

tors, including sand fly host and environment. Proteobacteria were the principal bacterial

phylum isolated. High numbers of gram-positive human or animal pathogens were also

found, suggesting that sand fly vectors of ZVL could pose a potential threat to livestock

and human in the region. Furthermore, there was a positive correlation between vector

capacity and bacterial diversities, where the weakest ZVL vector had the lowest diversity,

whereas other, more efficient, vectors had higher diversity. This study showed that Bacil-
lus subtilis, Asaia sp. and Enterobacter cloacae are possible candidates for a paratransgenic

approach to reduce Leishmania transmission.

Introduction

Sand flies accumulate Leishmania parasites by feeding on human and other animal reservoir

hosts. The Leishmania parasite causes a spectrum of symptoms, including subclinical (inappar-

ent), localized (skin lesion), and disseminated (cutaneous, mucocutaneous, and visceral) infec-

tions. Leishmaniasis is a parasitic disease that is reported in parts of southern Europe, the

tropics, and subtropics, and is considered to be a neglected tropical disease (NTD). Out of the

20 NTDs ranked by the World Health Organization (WHO), the leishmaniases rank in the top

three among those caused by protozoa [1].

Visceral Leishmaniasis (Kala-azar) (VL) is the deadly form of Leishmaniasis. In 2021 more

than 90% of VL cases were reported from just 8 countries: Brazil, Eritrea, Ethiopia, India,

Kenya, Somalia, South Sudan, and Sudan. An estimated annual incidence of VL in the world

was over 30,000 new cases per year. In Iran, nearly 20 million people live in areas of endemic

VL foci: with an estimated annual incidence of VL ranging from 100 to 300 cases. Visceral

leishmaniasis is zoonotic in Iran and is caused by Leishmania infantum, and zoonotic visceral

leishmaniasis (ZVL) is endemic in the northwestern, southern, and northeast regions of the

country [2–5]. The causative agent of VL in different parts of Iran is transmitted by different

species of sandflies: including Phlebotomus kandelakii (Shchurenkova, 1929), P. tobbi (Adler &

Theodor, 1930), and P. perfiliewi (Parrot, 1930) in northwestern and northeastern Iran, and P.

major (s.l.) (Annandale, 1910), P. keshishiani (Shchurenkova, 1936) and P. alexandri (Sinton,

1928) in southern parts [5–11].

Symbiotic and commensal microbes can confer numerous unfavorable, neutral, or benefi-

cial effects on their arthropod hosts, and can play several roles in vector competence, nutri-

tional adaptation, fitness, development, reproduction, defense against environmental stress,

oviposition, egg hatching, larval survival, and immunity [12–20]. In sand flies, it has been dem-

onstrated that these microbes play a critical role in Leishmania parasite growth, development,

and vector competence [21–26]. The introduction of next-generation sequencing (NGS) tech-

nologies has permitted the rapid and more wide-ranging exploration of these microbial com-

munities. NGS has provided a novel tool for the analysis of microbial communities infesting

sand flies, including simultaneous and unbiased screening for various samples in a single

sequencing run. Like many other arthropods, the advent of 16S rRNA profiling using NGS
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sequencing methods has revealed complex microbiomes in sand flies. Recently the number of

studies using NGS to investigate the microbial diversity and composition of sand flies has

expanded [22, 27–30]. There are nine hyper-variable regions (V1-V9) of the bacterial 16S ribo-

somal RNA gene (16S) that can be targeted to identify bacterial taxa in 16S amplicon NGS

studies, and regions V1-V3, V3-V5, V4-V5 have been the most targeted in microbiome

studies.

We are developing a paratransgenic platform to control the transmission of L. infantum by

the sand fly vectors [4]. Here, we assess the richness of gut bacterial species from four field-col-

lected sand fly species. We investigated the effect of host and ecological variations on the bacte-

rial diversity carried by sand flies in three endemic areas of ZVL in Iran, during the period of

L. infantum transmission. Microbiome outlining of wild-caught sand flies will be of great help

in exploring possible vector control candidates for a paratransgenic control approach.

Methods

Study areas

The present study was carried out in three endemic ZVL foci in northeastern (Bojnord in

North Khorasan Province), northwestern (Meshkinshar in Ardabil Province), and southwest

(Mamasani in Fras Province) regions of Iran (Fig 1).

North Khorasan Province (36˚37’–38˚17’N, 55˚53’–58˚20’E) is a mountainous region, 1070

meters above sea level and with an area of more than 28,400 km2. The weather is hot (up to

32.4˚C) in summer and cold (minus 3.4˚C) in winter, with an average annual temperature of

13.2˚C. This region includes desert and mountainous areas and receives less than 250 mm

rainfall annually. Ardabil Province (37˚04’–39˚65’N, 47˚40’– 48˚71’E) is a steppe region

located 1490 meters above sea level with an area of more than 17,800 km2. The weather is hot

(up to 40˚C) in summer and cold (minus 20˚C) in winter, with an average annual temperature

Fig 1. Map of Iran and the sand fly collection sites. Base layer is from (https://commons.wikimedia.org/wiki/File:

Map_of_Iran.png).

https://doi.org/10.1371/journal.pntd.0010609.g001
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of 9.5˚C. The warm season is short (mid-May to mid-September). The annual rainfall is

approximately 325 mm, and the climate is warm and temperate, considered to be a local steppe

climate. Fars Province (29˚370–30@N, 52˚310–54@E) is a steppe region located 1545 meters

above sea level with an area of more than 122,608 km2. The weather is hot (up to 29.2˚C) in

summer and cold (minus 4.7˚C) in winter with an average annual temperature of 16.8˚C. The

annual rainfall is approximately 100–800 mm.

Sand fly collection and identification

Wild sand flies were collected from the study areas between 2015 and 2016, using various

methods, including CDC light traps, and aspirators. Live sand flies were immediately trans-

ferred to the Insect Molecular Biology Laboratory, Department of Medical Entomology and

Vector Control, School of Public Health, Tehran University of Medical Science, Tehran, Iran,

under cold-chain conditions. Samples were washed first with sodium hypochlorite (bleach)

10%, followed by 70% ethanol for 3–5 min, then rinsed three times with sterile PBS and,

finally, with double-distilled water. After the washing steps, sand fly guts were gently dissected

under the stereomicroscope, using single use sterile insect needles. Before and between dissec-

tions, insect needles were sterilized by flaming. Dissections were done on sterilized single-use

slide covers, and the heads and terminal abdominal segments of the collected sand flies were

mounted with Pouri solution on glass slides for morphological identification to species level,

using known morphological keys [31, 32]. A total of 48 female sand fly samples (6 pools, each

one comprising 5–10 specimens), representing four species P. kandelakii, P. perfiliewi, P.

major, and P. alexandri from the three locations (Meshkinshahr, Bojnord, Mamasani), were

processed for microbiome identification (Table 1). To have similar samples, only female speci-

mens with empty abdomens (either unfed or egg-laid blood-fed) were selected for microbiome

processing.

Identification of bacteria

Following sand fly species identification, microbiota definition was carried out only for gut

specimens corresponding to known ZVL vectors. DNA was extracted from the homogenized

gut pools using a DNA extraction kit (QiAamp DNA micro kit), following the manufacturer’s

recommended protocol. DNA was stored at -20˚C until used for sequencing.

The 16S rRNA gene hyper-variable V3 region was amplified by PCR using fusion degener-

ate primers 341F (5’-CCTACGGGAGGCAGCAG-3’) and 518R (5’- ATTACCGCGGCTG

CTGG -3’), and was sequenced on an Illumina Miseq platform. The amplified fragment was

approximately 342 bp and raw data were screened and assembled by QIIME. The UCLUST

method was used to cluster the sequences into Operational Taxonomic Units (OTUs) at an

identity threshold of 97%. Each library pool was sequenced on a Junior+ System Genome

Sequencer and then taxonomically assigned to bacterial genera by comparing and clustering

Table 1. Details of the sand fly specimens processed for microbiome analysis.

District Location Coordinate Species Specimens tested

Meshkinshah Northwestern 37˚04’–39˚65’N, 47˚40’–48˚71’E P.kandelikii 8

P. perfiliewi 9

Bojnord Northeastern 36˚37’–38˚17’N, 55˚53’–58˚20’E P.kandelikii 8

P.major 5

P.alexandri 8

Mamasani Southwest 30˚060-30˚060N, 51˚240-51˚240E P.alexandri 10

https://doi.org/10.1371/journal.pntd.0010609.t001
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each sequence against the Greengenes database [33]. The sequence data obtained in this study

have been submitted to the Genbank sequence read archive (SRA) under the following ID

numbers: SRR19632069- SRR19632074.

As a negative control, we used the water from the final rinsing of the sand fly bodies and

this was inoculated into Falcon tubes containing brain heart infusion (BHI) broth medium. To

assess environmental contamination, the sand fly cuticles were used as an environmental con-

trol. These were removed from the sand fly carcass and subjected to DNA extraction by the

phenol chloroform method; PCR amplification of 16s rRNA gene, as reported by Weisburg,

(1991) produced a 1,500 bp fragment [34]. Thus, three no-template controls, PCR grade

RNAse-free water, the final rinse water, and the sterilized cuticles were used to detect any bac-

terial and/or DNA contamination in the amplification reagents. Where the negative control

was positive the specimen was eliminated from further analysis. Frequent changes of gloves

were used to avoid RNAse-DNAse contamination. Surface sterilization of the workstation

with bleach (10%) followed by alcohol (70%) was performed before and after each experiment.

In addition, we used instruments that were autoclaved before and after handling each sample,

and avoided talking, sneezing, and coughing, or touching the areas where DNA might be

present.

Data analysis

Cytoscape Software (http://www.cytoscape.org), a tool for visualizing complex networks

between data, was used to visualize bacterial richness and shared bacteria in the three sand fly

species through the network analysis [35]. Data, as CYS files containing vertices or nodes (rep-

resenting symbiont bacteria and sand fly hosts) and edges (representing links), were submitted

to Cytoscape software v.3.9.1. Bacterial and host nodes, as well as geographical region links,

were colored to better demonstrate their interaction. Microsoft Excel, GraphPad Prism and

Jvenn webtool software [36] were used for graphical representation.

Result

The NGS method allowed the successful characterization of the microbiome of field-collected

female sand fly guts. A 346 bp fragment of the hyper-variable V3 region of the 16S rRNA gene

was PCR amplified from the genomic DNA pools (from sand fly gut), using specific universal

primers, and was effectively sequenced using the Illumina-MiSeq platform. A total of 160,550

reads were generated after the removal of short reads, chimeras and the discard of spurious

OTUs from all species analyzed. The average number of reads was 6,023 per female gut

(Table 2 and Fig 1). The number of OTUs varied between species samples (minimum =

16,895, maximum = 43,948). Phlebotomus alexandri from the southwest of the country (Fars)

was found to harbor the highest number of reads, followed, respectively, by P. kandelakii from

Table 2. The number of bacterial reads of V3 region-16S rRNA gene of female sand fly ZVL vectors in Iran. B: Bojnord in northeast, S: Mamasani in southwest, M:

Meshkinshahr in northwest.

Species-Sample NO. of read Reads per female sample No. of Phylum No. of Family No. of Genus No. of species

P. alexandri-B 29242 3655 10 52 62 7

P. alexandri-S 43948 4394 17 82 174 26

P. kandelakii-M 30409 3801 14 79 145 25

P. kandelakii-B 16895 2112 14 69 120 15

P.major-B 21096 4219 9 55 82 9

P. perfiliewi-M 18960 2106 11 70 119 23

https://doi.org/10.1371/journal.pntd.0010609.t002
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the northwest (Ardabil), P. alexandri and P.major, both from the northeast (Bojnord), P. perfi-
liewi from the northwest (Ardabil) and, finally, P. kandelakii from the northeast (Bojnord),

which contains the lowest number of reads. These taxa spanned 23 phyla, 47 classes, 91 orders,

131 families, 335 genera, and 72 species.

In total, 160,550 quality-filtered reads of the V3 region of 16S rRNA gene were obtained

and clustered into 335 operational taxonomic units (OTUs) at the genus level, with 97% simi-

larity. In total, 23 bacterial phyla were associated with the gut microbiome. The phylum Pro-

teobacteria makes up the highest number of reads in in the female guts. Proteobacteria,

Firmicutes, Deinococcus-Thermus, Actinobacteria, and Bacteroidetes with, respectively, 51%,

22%, 9%, 6%, and 5%, were the most abundant phyla and were present in all sand fly species.

The relative abundance of the bacterial phyla in different species and localities is summarized

in Fig 2.

Fig 2. Mean relative abundance of the bacteria at the Phylum level in sand fly species at different locations of Iran. B: Bojnord in northeast, M:

Meshkinshahr in northwest, S: Mamasani in southwest.

https://doi.org/10.1371/journal.pntd.0010609.g002
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A total of 131 unique bacterial taxa families were detected in the species samples. We

detected four families with high average relative abundances in sand fly samples: Anaplasmata-

ceae (17%), Spiroplasmataceae (15%), Methylobacteriaceae (12%), and Thermaceae (0.8%). A

Venn diagram analysis revealed that a subset of 19 bacterial taxa families were common across

all different species and locations (Fig 3).

At the genus level, a total 335 genera were identified from the four sand fly species originat-

ing from three diverse regions of the country. There were 145 bacterial genera in P. kandelakii
(Meshkinshahr, northwest), 62 in P. alexandri (Bojnord, northeast), 82 in P.major (Bojnord,

northeast), 119 in P. perfiliewi (Meshkinshahr, northwest), 174 in P. alexandri (Mamasani,

southwest) and 120 in P. kandelakii (Bojnord, northeast). Among these, 17 genera: Spiro-
plasma, Pseudomonas, Acinetobacter, Tepidimonas, Sphingomonas,Wolbachia, Paracoccus,
Methylobacterium, Streptococcus, Enterococcus, Staphylococcus, Pavimonas, Lactobacillus,
Meiothermus, Propionibacterium, Kocuria, and Corynebacterium were the most prevalent. The

reproductive endosymbiontWolbachia comprised 16% of the total reads and was recorded in

P. alexandri from the southwest and P. perfiliewi from the northwest of the country. Also, we

identified for the first time, Asaia sp. bacteria in the P. perfiliewi sandfly. The relative abun-

dance of each genus is shown in Fig 4.

At the species level, a total of 72 species were identified from the four sand fly species origi-

nating from three diverse regions of the country. There were 26 bacterial species in P. alexan-
dri (Mamasani, southwest), 25 in P. kandelakii (Meshkinshahr, northwest), 23 in P. perfiliewi
(Meshkinshahr, northwest), 15 in P. kandelakii (Bojnord, northeast), 9 in P.major (Bojnord,

northeast), and 7 in P. alexandri (Bojnord, northeast). Bacillus subtilis and Pseudomonas aeru-
ginosa were found in all four sand fly species studied, while Kocuria palustris, Aeromonas spp.,
and Enterobacter cloacae were found in three of the four sand fly species. The most frequently

isolated bacteria in sand flies wereWolbachia spp., followed by Pseudomonas aeruginosa, Lysi-
nibacillus sphaericus, Kocuria palustris, Bacillus subtilis, Enterobacter cloacae, Streptococcus
constellatus, and Bacillus licheniformis. 53 out of the 72 bacterial species (73.6%) were found in

either a single sand fly species or in one specific location. Bacillus subtilis was found in all the

sand fly specimens, except for the northeast population of P. kandelakii (Fig 5).

Further analysis of sequence reads revealed that, on average, the microbiome of the four

sand fly species is more associated with gram positive (57.7%) and pathogenic bacteria

(69.15%) (Wolbachia was excluded from analysis): with 52 out of 72 species being known as

human or animal pathogenic bacteria (S1 Table).

Effect of ecological habitat on microbiome community

To study the effect of the sand fly’s ecological habitat on the bacterial community of its gut, we

compared Alpha-diversity indices (Shannon, Simpson-e) that describe the diversity of the

microbial community of the same sand fly genus/species at different sampling locations. Here

we compared the microbial communities of two populations of P. kandelakii (northwest versus

northeast), and two populations of P. alexandri (northeast versus southwest). This analysis

showed a considerable variation in the composition of the microbial community in sand flies

collected from different locations. For P. alexandri, the diversity of the southwestern popula-

tion was much richer than that of the northeastern one, and for P. kandelakii, the population

diversity of the northwestern population was higher than that of the northeastern population.

Nonetheless, the same sand fly species from different locations shared a few ‘core’ bacterial

taxa; however, network analysis showed that the number of species-shared bacteria (n = 3–6,

10–15.8%) is much lower than the number of location-specific bacteria (Fig 6) in both the

sand fly species analyzed.
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Fig 3. Venn diagram of the bacterial families present in four sand fly species and their associated locations. I: B: Bojnord in northeast, S:

Mamasani in southwest, M: Meshkinshahr in northwest of Iran. The shared bacteria with less than 3 families are not shown. II: numbers of each

family of bacteria in each sand fly population. III: the total number of bacterial families shared by the respective number of sandfly specimens.

Venn diagram was constructed using the jvenn webtool [36].

https://doi.org/10.1371/journal.pntd.0010609.g003
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Effect of host species on microbiome community

To study the effect of the host species on the bacterial community of the gut, we compared

Alpha-diversity indices (Shannon, Simpson-e) that describe the diversity of the microbial

community in different host species from the same sampling locations (sympatric species).

Here we compared the gut microbial communities of P. kandelakii and P. perfiliewi from the

northwest, and those of P. alexandri, P.major, and P. kandelakii species from the northeast of

the country. This analysis showed that the diversity of the microbial communities differs

between all four species; with the diversity being greatest in P. kandelakii, followed by those of

P. perfiliewi and P.major, with the least diversity being observed in P. alexandri. Network anal-

ysis showed that the number of bacteria shared between sympatric species is much lower than

species-specific bacteria (1 versus 5/7/13 and 10 versus 13/15) (Fig 7), indicating that host-spe-

cific factors influence the overall composition of the bacterial community. For example, there

were no core bacteria shared between the three sympatric species (P. alexandri, P.major, and

P.kandelakii) collected from the northeast, B. subtilis, K. palustris andH. ganmani shared only

between P. alexandri and P.major, P.major and P. kandelakii, and P. alexandri and P. kandela-
kii respectively, and only 10 out of 38 (26.3%) bacterial species were shared between P. kande-
lakii and P. perfiliewi from the northwest.

Discussion

This study provides evidence on the microbiome composition of the midgut of four Old

World ZVL vectors, P. kandelakii, P. perfiliewi, P. alexandri, and P.major. Our results show

that, in total, more than 51% of the bacteria identified belong to the phylum Proteobacteria,

which is partly in accordance with the results (56.4%) from a previous culture-dependent

study on three sand fly species, P.major, P. kandelakii and P. halepensis (Theodor, 1958) [4]

from northern Iran, and several other Old World sand fly species (47%) [22, 28, 37–41]. Inter-

estingly, the abundance of Proteobacteria phylum in New World (Lutzomyia sp.) sand fly spe-

cies has been shown to be slightly higher (57–67.6%) than in Old World species [27, 30, 42–

45]. Since members of the Proteobacteria phylum can fix atmospheric nitrogen and contribute

to host sustenance [46], it is possible that this difference might reflect differing nutritional con-

straints between Old and New World sandfly species and /or environments.

Fig 4. Relative abundance of the common bacterial genera presents in four different sand fly ZVL vector species

collected from three diverse ecological locations. B: Bojnord in northeast, S: Mamasani in southwest, M:

Meshkinshahr in northwest of Iran.

https://doi.org/10.1371/journal.pntd.0010609.g004
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Our analysis also shows that the Firmicutes phylum is the second most abundant bacterial

phylum in the four sand fly species in Iran, which agrees with previous studies [22]. Interest-

ingly, however, the percentage abundance (22%) that we detect is lower than that previously

reported for Old World sand fly species (39.8–41.42%), and more comparable with that previ-

ously found for New World species (23.9%) [22].

In the present study, four bacterial families were found with high average relative abun-

dance in the four sand fly species: Anaplasmataceae (17%), Spiroplasmataceae (15%), Methylo-

bacteriaceae (12%), and Thermaceae (0.8%). However, a meta-analysis study [22], previously

showed that species of the Enterobacteriaceae family were the most prevalent (>60%) in both

the New- and Old-World sand fly species, followed by those from the Moraxellaceae and Pseu-

domonadaceae families (<20%) and Xanthomonadaceae (<10%). Such differences in the gut

microbiome composition might be the result of several factors, but in general, they could be

explained by the phylogenetic relatedness of the sand flies and the diversity of their habitat.

Considerable numbers of pathogenic bacteria species were recorded in the four sand fly

species, which might suggest that, as well as being vectors of ZVL, sand flies could also pose an

additional threat to the health of livestock and humans. The risk of these pathogenic bacteria

Fig 5. Network analysis showing the shared and non-shared gut bacteria of four sand fly species collected from three diverse regions of Iran, revealed by

NGS. B: Bojnord in northeast, S: Mamasani in southwest, M: Meshkinshahr in northwest of Iran.

https://doi.org/10.1371/journal.pntd.0010609.g005
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remains to be determined. Furthermore, the relative prevalence of putative pathogens was

highly dependent on the sand fly species, and there was a positive correlation between vector

capacity and prevalence of pathogenic bacteria. Phlebotomus major, which is known to be the

weakest ZVL vector in Iran, carries the lowest rate of pathogenic bacteria (23.5%), whereas the

other three species, which are more important ZVL vectors, carry much higher rates (66.3–

88.5%) of pathogenic bacteria.

This study has shown that that the bacterial diversity in the gut microbiomes of P. alexan-
dri-S (26), P. kandelakii-M (25), and P. perfiliewi-M (23) was significantly higher than in that

of P.major (9). Accordingly, P. alexandri, P. kandelakii and P. perfiliewi are the main ZVL vec-

tors in southern and northwestern parts of the country. Interestingly, in the northeastern area,

where these sand fly species do not play a major role in ZVL transmission, their bacterial diver-

sity decreased (to 15 for P. kandelakii-B and 7 for P. alexandri-B). The influence of the bacte-

rial composition of the microbiome on the competence of insect vectors of parasitic diseases

has already been confirmed in mosquitoes, sand flies, ticks, and tsetse flies [4, 23–24, 47–50].

For example, using antibiotics to disturb the gut microbiota of sand flies P. duboscqi (Neveu-

Lemaire, 1906) and Lutzomyia longipalpis (Lutz & Neiva, 1912) correspondingly halted the

Fig 7. Network analysis showing the shared (yellow square, purple square, pink hexagon, green squares) and non-shared (red, green, and blue circles) gut

bacteria of sympatric sand fly species in northeast (left panel) and northwest (right panel) locations of Iran revealed by NGS.

https://doi.org/10.1371/journal.pntd.0010609.g007

Fig 6. Network analysis showing the shared (green squares) and non-shared (blue/red circles) gut bacteria from samples of the same sand fly species

collected from two diverse regions of Iran. Left panel: two populations of P. alexandri (B: northeast versus S: southwest), right panel: two populations of P.

kandelakii (M: northwest versus B: northeast).

https://doi.org/10.1371/journal.pntd.0010609.g006
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development and expansion of Leishmania major and L. infantum within the sand fly guts

[23–24]. Thus, the interaction between the gut microbiome of the sand fly host and the Leish-
mania parasites appears to be beneficial for the parasites. In addition, studies in mosquitoes

showed that some gut bacterial species can directly or indirectly reduce [51–57], or enhance

[58–60], parasite transmission. Conversely, pathogens such as the malaria parasite and Zika,

and Chikungunya viruses can shape the abundance and composition of the mosquito gut

microbiome [12, 61–63]. However, less information is currently available on the influence of

bacteria on the vectorial competence of sand flies, and it is essential to determine what bacte-

rial species and by which mechanism(s) the bacterial microbiome may enhance or repress

Leishmania development in the sand fly gut. It is worth mentioning that unfortunately in this

work alterations of gut sand fly microbiota due to seasonal variations were not studied. Sea-

sonal alterations could be related to an increase or decrease in pathogens transmission.

In this study we found some Bacillus species, including B. soli, B. licheniformis, and B. subti-
lis, in the four sand fly species, as expected, since the bacteria of this genus are found in almost

all Old-World sand fly species [22]. Bacillus subtilis was found in all four sand fly species stud-

ied here (P. kandelakii, P. alexandri, P. perfiliewi, and P.major), and it has previously been iso-

lated from P.major, P. halepensis, P. papatasi (Scopoli, 1786) and P. perniciosus (Simic, 1932)

[4, 22, 41]. Its frequent presence in several sand fly species and its being non-pathogenic, easily

culturable and genetically malleable led to its consideration as a good bacterial candidate for

paratransgenic approaches. Indeed, it has previously been used as a promising paratransgenic

agent to impair parasite growth and reduce Leishmania transmission [22, 41, 64]. In addition

to B. subtilis, we have isolated Asaia sp. and Enterobacter cloacae from the sand flies, both of

which are known to be suitable paratransgenic agents, having previously been used to develop

paratransgenic mosquitoes [57, 65–67].

Although it is well known that host species and ecological factors can have a strong impact

on insect gut microbiota [68–70], the impact of these factors on sand fly microbiota remains

poorly understood. The results of this study show that both environmental and host species

identity can have a marked effect upon the microbial communities in the sand fly midgut, with

distinct microbial communities being found in different populations of the same sand fly spe-

cies. Also, we showed that the microbial communities of different sympatric species were dis-

tinct from each other. Thus, both host phylogeny and ecological factors can influence gut

microbial composition and diversity, potentially impacting pathogen acquisition and trans-

mission by the sand fly vectors. It is known that several factors can influence the composition

of microbial communities, including host species, genetic background, blood-meal source, lar-

val and adult environment, climate, temperature, humidity, site and season of collection, body

size, sex, stage of development, infection with pathogens and other microbes, and previous

exposure to insecticides [22, 48, 50, 63, 68–79]. These results highlight the need for further

studies to decode the roles of ecological and host factors in determining the gut microbiome

and, hence, the vector competence of different sand fly species.

Conclusions

This is the first report of gut bacterial microbiome of wild-caught P. kandelakii, P. perfiliewi, P.

alexandri, and P.major collected in three endemic areas for ZVL in Iran. Our results show the

presence of several pathogenic bacterial species, suggesting that sand fly vectors of ZVL also

could pose an additional potential threat to livestock and humans in the country. We also

show that Bacillus subtilis, Enterobacter cloacae, and Asaia sp. are possible candidates for a

paratransgenic approach to reduce Leishmania transmission. Further studies are needed to

decode the role of the gut microbiome in the vector competence of different sand fly species.
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78. Muturi EJ, Njoroge TM, Dunlap C, Cáceres CE. Blood meal source and mixed blood-feeding influence

gut bacterial community composition in Aedes aegypti. Parasites & Vectors. 2021; 14(1):1–10. https://

doi.org/10.1186/s13071-021-04579-8 PMID: 33509255

79. Koosha M, Vatandoost H, Karimian F, Choubdar N, Oshaghi MA. Delivery of a genetically marked Ser-

ratia AS1 to medically important arthropods for use in RNAi and paratransgenic control strategies.

Microbial ecology. 2019; 78(1):185–94. https://doi.org/10.1007/s00248-018-1289-7 PMID: 30460544

PLOS NEGLECTED TROPICAL DISEASES Sand fly microbiome

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010609 July 19, 2022 17 / 17

https://doi.org/10.1186/1756-3305-4-82
https://doi.org/10.1186/1756-3305-4-82
http://www.ncbi.nlm.nih.gov/pubmed/21595907
https://doi.org/10.1371/journal.pone.0143541
http://www.ncbi.nlm.nih.gov/pubmed/26636338
https://doi.org/10.1186/s13071-016-1427-3
https://doi.org/10.1186/s13071-016-1427-3
http://www.ncbi.nlm.nih.gov/pubmed/26965746
http://www.ncbi.nlm.nih.gov/pubmed/29367928
https://doi.org/10.1128/AEM.01226-14
http://www.ncbi.nlm.nih.gov/pubmed/24928884
https://doi.org/10.1111/mec.13877
https://doi.org/10.1111/mec.13877
http://www.ncbi.nlm.nih.gov/pubmed/27718295
https://doi.org/10.1016/j.cois.2018.05.008
http://www.ncbi.nlm.nih.gov/pubmed/30551768
https://doi.org/10.1371/journal.ppat.1002742
http://www.ncbi.nlm.nih.gov/pubmed/22693451
https://doi.org/10.1016/j.actatropica.2011.10.015
https://doi.org/10.1016/j.actatropica.2011.10.015
http://www.ncbi.nlm.nih.gov/pubmed/22074685
https://doi.org/10.1038/ismej.2016.152
http://www.ncbi.nlm.nih.gov/pubmed/27858931
https://doi.org/10.1371/journal.pone.0194521
http://www.ncbi.nlm.nih.gov/pubmed/29641577
https://doi.org/10.1371/journal.pntd.0005377
https://doi.org/10.1371/journal.pntd.0005377
http://www.ncbi.nlm.nih.gov/pubmed/28245239
https://doi.org/10.1186/s13071-021-04579-8
https://doi.org/10.1186/s13071-021-04579-8
http://www.ncbi.nlm.nih.gov/pubmed/33509255
https://doi.org/10.1007/s00248-018-1289-7
http://www.ncbi.nlm.nih.gov/pubmed/30460544
https://doi.org/10.1371/journal.pntd.0010609

