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Abstract: Early diagnosis of cancer is of paramount significance for the therapeutic intervention of
cancers. Although the detection of circulating cell-free DNA (cfDNA) has emerged as a promising,
minimally invasive approach for early cancer diagnosis, there is an urgent need to develop a highly
sensitive and rapid method to precisely identify plasma cfDNA from clinical samples. Herein, we
report a robust fluorescent “turn-on” clutch probe based on non-emissive QDs-Ru complexes to
rapidly recognize EGFR gene mutation in plasma cfDNA from lung cancer patients. In this system,
the initially quenched emission of QDs is recovered while the red emission of Ru(II) complexes is
switched on. This is because the Ru(II) complexes can specifically intercalate into the double-stranded
DNA (dsDNA) to form Ru-dsDNA complexes and simultaneously liberate free QDs from the QDs-Ru
complexes, which leads to the occurrence of an overlaid red fluorescence. In short, the fluorescent
“turn-on” clutch probe offers a specific, rapid, and sensitive paradigm for the recognition of plasma
cfDNA biomarkers from clinical samples, providing a convenient and low-cost approach for the early
diagnosis of cancer and other gene-mutated diseases.

Keywords: fluorescent turn-on probe; circulating tumor nucleic acids; cell-free DNA; early cancer
diagnosis; detection of double-stranded DNA

1. Introduction

As one of the leading causes of morbidity and mortality worldwide, cancer remains a
significant threat to global healthcare [1]. Although many therapeutic modalities have been
developed to combat cancer, there is no treatment regimen to tackle cancer thoroughly with
satisfactory performance in the clinic [2–5]. Therefore, the early diagnosis of cancer before
its malignant progression and further metastasis is quite significant for increasing the sur-
vival rate of cancer patients [6]. An important focus of research to achieve this goal has been
made on identifying alterations in tumor-related gene expression in clinical samples [7–9].
In particular, the detection of circulating tumor nucleic acids, especially circulating cell-free
DNA (cfDNA), has been explored as a new but promising minimally invasive approach
for early cancer diagnosis. The cfDNA is an emerging cancer-specific biomarker due to
the mutation [10], aberrant methylation [11–13], microsatellite instability [14], and other
abnormalities of cfDNA in the plasma and/or serum of cancer patients [15].

A vast number of diagnostic tests have been exploited to analyze cancer-specific
plasma cfDNA for early cancer detection and therapeutic outcome evaluation [16,17].
Among them, DNA sequencing is one of the most widely available methods for cfDNA
identification in clinical utilization. However, intrinsic biological interference, massive sam-
ple capacity, and high expense are critical limitations that hinder the further widespread
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implementation of DNA sequencing methods such as polymerase chain reaction (PCR) [18]
and the “next-generation” sequencing (NGS) [19–21]. Recently, fluorescent techniques
based on the quenching-recovering (“turn-on”) mechanism offer competitive superiority
over DNA sequencing for cfDNA detection because of their high sensitivity, easy acces-
sibility, good repeatability, as well as low cost [22–24]. Although attractive in principle,
serious interference of biological or environmental background signals would substantially
reduce current fluorescence imaging probes [25]. Therefore, developing a highly sensitive
and reliable fluorescent probe to precisely identify plasma cfDNA from clinical samples is
challenging yet urgently needed.

In this work, we developed a robust fluorescent “turn-on” clutch probe to rapidly
detect lung cancer-specific cfDNA in patient plasma samples (Figure 1). Briefly, glutathione
(GSH)-modified CdTe Quantum Dots (QDs) were interacting with a typical fluorescence-
quencher Ru(II) complex [Ru(phen)2(dppz)]2+ to form a dual-component clutch probe
(termed as QDs-Ru complexes), in which the emission of QDs could be entirely quenched
by the Ru(II) complex via charge transfer. Fluorescent probes based on CdTe QDs have
been widely applied as one of the most commonly used sensing candidates due to their
unique tunable optical properties [26], simple synthesis and modification [27–31], and
exceptionally high quantum yield [32]. Interestingly, the addition of the non-emissive
QDs-Ru complexes into a double-stranded DNA (dsDNA) solution would render the
fluorescence recovery of the QDs. The Ru(II) complex could bind dsDNA to form a Ru-
dsDNA complex with a high affinity that would simultaneously liberate free QDs to turn
on their red fluorescence. More importantly, the as-formed Ru-dsDNA complexes would
also produce solid red fluorescence due to the prominently restrained solvent effects of the
Ru(II) complex in aqueous solutions. By virtue of the overlaid red fluorescence from both
QDs’ recovered emissions and the Ru(II) complexes’ emerged emissions, the as-prepared
fluorescent “turn-on” clutch probe could be effectively applied to selectively recognize
cancer-specific cfDNA with EGFR gene mutation from the blood plasma of lung cancer
patients, showing great promise for rapid, sensitive, practicable identification of circulating
tumor nucleic acids and further early cancer diagnosis.
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QDs and fluorescence-quencher Ru(II) complexes as robust fluorescent “turn-on” clutch probes for
the detection of cancer-specific cfDNA in patient plasma samples.
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2. Experimental Sections
2.1. Materials and Instruments

Tellurium (−200 mesh) and sodium borohydride (NaBH4) were purchased from Alfa
Aesar. L-glutathione(GSH) and urea were purchased from Beijing BioDee Biotechnology
Co. Ltd. (Beijing, China). Cadmium chloride hemipentahydrate (CdCl2·2.5H2O), ortho-
boric acid (H3BO3), disodium phosphate dodecahydrate (Na2HPO4·12H2O), sodium phos-
phate monobasic (NaH2PO4·2H2O), ethylenediaminetetraacetic acid (EDTA), hydrochloric
acid (HCl), sodium hydroxide (NaOH), potassium chloride (KCl), sodium bicarbonate
(NaHCO3), sodium chloride (NaCl), sodium citrate (C6H5Na3O7) and isopropanol were
purchased from Beijing Chemical Industry Group Co., Ltd. (Beijing, China). All of the
above were analytical reagent grade or better.

Plasmid Cas9 was kindly provided by the Yongjun Feng Group (Beijing Institute of
Technology, Beijing, China), and bovine serum albumin (BSA) was purchased from Sigma-
Aldrich (Shanghai, China). Different sequences of the single-stranded DNA (ssDNA)
were synthesized from Taihe Biotechnology Co., Ltd. (Bejing, China). The lines of the
oligonucleotides used in this work were shown as follows:

ssDNA: 5′-ATC AAG GAA TTA AGA GAA GCA ACA TCT CCG AAA-3′;
Complementary ssDNA (0 BM-ssDNA): 3′-TAG TTC CTT AAT TCT CTT CGT TGT

AGA GGC TTT-5′

5-bases-mutated ssDNA (5 BM-ssDNA): 3′-TAG TTG GTT AAT TCA CGT CGT TCT
AGA GGC TTT-5′

15-bases-deleted ssDNA (15 BD-ssDNA): 3′-TAG TTC TGT AGA GGC TTT-5′

Complementary Cas9 plasmid short ssDNA (0 BM-S-ssDNA): 5’-AAA TAG TCT ACG
ATA AAA TGA AAG TCT AGA GGA TTC TCA-3′

Complementary Cas9 plasmid 1-base-mutated short ssDNA (1 BM-S-ssDNA): 5’-AAA
TAG TCT AGG ATA AAA TGA AAG TCT AGA GGA TTC TCA-3′

Complementary Cas9 plasmid 3-bases-mutated short ssDNA (3 BM-S-ssDNA): 5’-ATA
TAG TCT ACG ATT AAA TGA AAC TCT AGA GGA TTC TCA-3′

Complementary Cas9 plasmid 5-bases-mutated short ssDNA (5 BM-S-ssDNA): 5’-
AAA TAG TGT ACG ATA ATA TGA ATC TCT ACA GGA TTC TCA-3′

Complementary EGFR exon-19-mutated ssDNA: 5’-TAG TTC CTT AAT TCT CTT
CGT TGT AGA GGC TTT-3′

Complementary EGFR exon-20-mutated ssDNA: 5’-CCT GAG ACC TAG GGT CTT
CCA CTC TTT CAA TTT TAA GGG-3′

The fluorescence emission spectrum was measured with a spectrophotometer (HORIBA
Jobin Yvon, Paris, France). The fluorescence intensity was measured by exciting the sample
at 390 nm. The UV-vis absorption spectrum was performed on a U-3900 spectrophotometer
(Hitachi, Tokyo, Japan). Transmission electron microscopy (TEM) was obtained on a JEOL
JEM-2100 electron microscope (Tokyo, Japan). The diameter of the synthesized compounds
was measured by a Nano-ZS90 Laser Particle Size Analyzer (Malvern, UK). The pH value
was measured by an AL104-IC PH meter (Mettler Toledo, Greifensee, Switzerland).

2.2. Synthesis of the GSH-Modified CdTe QDs (GSH-CdTe QDs)

To synthesize water-dispersible GSH-CdTe QDs, firstly, tellurium (Te) powder (63.8 mg)
was reacted with NaBH4 (100 mg) in an N2 saturated deionized water (5 mL), producing a
colorless solution of sodium hydrogen telluride (NaHTe). Then, CdCl2·2.5H2O (213.2 mg),
GSH (368.5 mg), and 0.04% mercaptopropionic acid solution (50 mL) were mixed in a three-
port flask, followed by the dropwise addition of NaOH to adjust the pH to 8.4–8.6 under
magnetic stirring in a N2 atmosphere for 30 min. Afterward, the above-obtained NaHTe
solution was rapidly injected into the Cd source precursor solution and slowly heated to
100 ◦C under N2 for another 5.5 h. At every 30 min interval, 100 µL samples were collected
to detect the emission wavelength, and the reaction was stopped when the ideal emission
wavelength was detected. The resulting GSH-CdTe QDs solution was then centrifuged at
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8000 rpm/min for 15 min and subsequently washed with GSH and isopropanol three times.
Finally, the GSH-CdTe QDs were dried into powder for further use.

The fluorescence quantum yield of the as-synthesized GSH-CdTe QDs samples was
determined according to the following formula:

φx = φs

(
Mx

Ms

)(
ηx

ηs

)2

x: GSH-CdTe QDs;
s: Rhodamine 6G;
φx: The quantum yield of GSH-CdTe QDs;
φs: The quantum yield of the reference substance rhodamine 6G;
Mx and Ms: The ratios of the respective integrated area of fluorescence to the maximum
absorbance at the excitation wavelength of GSH-CdTe QDs and the reference substance
rhodamine 6G;
ηx and ηs: The refractive index of GSH-CdTe QDs and reference substance rhodamine 6G.

2.3. Preparation of the QDs-Ru and Ru-dsDNA Complexes

When the molar ratio of GSH-CdTe QDs to Ru(II) complexes was 1:100, the fluores-
cence signal of the GSH-CdTe QDs would be almost wholly quenched. Therefore, the
molar ratio was used to prepare the QDs-Ru complexes. In a typical procedure, 5 µL of
the negatively charged GSH-CdTe QDs (1 µM) were mixed with 5 µL of the positively
charged Ru(II) complex [Ru(phen)2(dppz)]2+ (1 µM) in PBS buffer solution (pH 7.4), where
phen stands for 1,10-phenanthroline and dppz stands for dipyridophenazine at room tem-
perature for 10 min, leading to the formation of the QDs-Ru complexes via electrostatic
adsorption, whose fluorescence was detected at an excitation wavelength of 390 nm.

To form the Ru-dsDNA complexes, firstly, the specifically synthesized ssDNA
(1 µg/mL) with the random sequence was added to the above-prepared QDs-Ru complexes
at room temperature for 10 min incubation. Then, three different degrees of complementary
sequences of the above-synthesized ssDNA with different concentrations were added into
the mixture solution of ssDNA and the QDs-Ru complexes, which were incubated for
another 10 min. Thus, this led to the quick self-assembly of dsDNA as well as simultaneous
separation of GSH-CdTe QDs and Ru(II) complex from the QDs-Ru complexes. Meanwhile,
the Ru-dsDNA complex would be subsequently formed due to the high affinity of the
Ru(II) complex to dsDNA.

2.4. Denaturation of the dsDNA

Two kinds of DNA denaturants (urea, EDTA) with different concentrations were
respectively mixed with Cas9 plasmid (6932 bp long dsDNA, L-dsDNA) and 33 bp short ds-
DNA (S-dsDNA) for 10 min incubation. Afterward, the QDs-Ru complexes were added into
the denatured dsDNA for another 10 min incubation, followed by fluorescence detection.

In the case of the Cas9 plasmid (S-dsDNA), the denatured Cas9 plasmid and the
addition 6 mol/L of urea were mixed with QDs-Ru complexes for 10 min incubation.
Then, four different degrees of complementary short ssDNA (S-ssDNA) sequences of the
Cas9 plasmid were added into the above mixture solution for another 10 min incubation,
followed by fluorescence detection.

2.5. Biomolecular Interference Detection

An equal amount of dsDNA was added to the QDs-Ru complexes for 10 min incuba-
tion at room temperature. Subsequently, some biomolecules or ions such as Cl−, HPO4

2−,
citric acid, Na+, K+, Mg2+, Ca2+, and BSA were added to the above system. After 10 min,
the fluorescence of the as-prepared samples was measured accordingly.
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2.6. Detection of Clinical Samples

The urine samples from lung cancer patients were added to the QDs-Ru complexes
solution. After incubation for 10 min, the fluorescence of the above-mixed solution was
examined. Human blood samples were provided by Beijing Cancer Hospital from the
provider with the age range of 20–60 years. The human blood samples were collected and
centrifuged at 2000 rpm/min for 10 min. Then, the supernatant was transferred to a new
centrifuge tube with another centrifugation at 12,000 rpm/min for 5 min to obtain plasma,
which was stored at −20 ◦C for the following experiments. Then, 190 mL urea dissolved in
PBS (9 mol/L) were added into 5 µL of the above plasma to denature the dsDNA contained
in the plasma for stirring for 10 min. Afterward, the as-prepared QDs-Ru complexes were
added. 10 min later, two kinds of complementary ssDNA (5 µL) with exon 19 and exon
20 mutation sites in the EGFR gene were added to the above-mixed solution, followed by
fluorescence detection.

3. Results and Discussion
3.1. Preparation and Characterization of the Water-Dispersible GSH-CdTe QDs

The water-dispersible GSH-CdTe QDs were synthesized according to the previously
reported work [33,34]. Typically, GSH was modified on the surface of the QDs by the
formation of covalent bonds between the thiol of the GSH and the Cd atom at the CdTe
QD surface, which would further improve the water dispersibility and bioavailability of
the GSH modified QDs [26]. The as-synthesized GSH-CdTe QDs can be well dispersed
in deionized water, and the typical Tyndall effect confirmed the existence of such QDs
(Figure 2a). Figure 2b shows a transmission electron microscopy (TEM) image of the
GSH-CdTe QDs, revealing their well-defined nanospheres with an average diameter of
2.63 ± 1.0 nm. The inset in Figure 2b presents a hydrodynamic diameter of 1.49 nm and a
polydispersity index (PDI) value of 0.247 by dynamic light scattering measurement (DLS),
which is almost consistent with the TEM result. Moreover, the as-obtained QDs exhibit
a positive charge with a zeta potential of 8.49 mV (Figure 2c) could stabilize the QDs by
electrostatic repulsion in an aqueous environment.
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fluorescence, and Tyndall effect of QDs under natural light, UV, and IR light. (b) The TEM image and
particle size of GSH-CdTe QDs. (c) The zeta potentials of GSH-CdTe QDs. (d) The UV-vis absorption
and fluorescence spectra of GSH-CdTe QDs. (e) The stability of GSH-CdTe QDs via fluorescence
spectra under 29 days. (f) The pH stability of GSH-CdTe QDs from 5 to 12.



Nanomaterials 2022, 12, 1262 6 of 15

To investigate the optical properties of the GSH-CdTe QDs, the UV-vis absorption and
fluorescence spectra of the QDs dispersed in deionized water were respectively measured
and presented in Figure 2d. The GSH-CdTe QDs exhibit a strong absorption peak ranging
from 300 nm to 450 nm while producing a maximum emission peak at 605nm with a robust
red fluorescence tail extending to 750 nm [35,36]. A photograph of the GSH-CdTe QDs
solution under UV irradiation also showed intense red emission (Figure 2a). The quantum
yield of the water-dispersible GSH-CdTe QD was determined to be as high as 41.8% using
rhodamine 6G (em: 550 nm, ex: 510 nm, QY = 95%) as the standard. Moreover, we also
evaluated the photostability of the GSH-CdTe QDs over 29 days or in environments of
different pH. As shown in Figure 2e,f, no apparent fluorescence quenching was found at
the 605 nm emission peak during 29 days of storage, indicating the excellent chemical
stability of the QDs. More interestingly, the fluorescence intensity of the GSH-CdTe QDs
was stable over the pH range from 7 to 10 in PBS buffer solutions compared with that in
deionized water.

In contrast, their fluorescence intensity was significantly decreased when the pH value
was lower than 7 or higher than 10. The fluorescence quenching effect at a PH below
7 was ascribed to protonating the carboxyl groups on the surface of the GSH-CdTe QDs
under acidic pHs [37], leading to the surface charge density change. In contrast, that at PH
above 10 was attributed to removing part of the GSH surface ligand and under alkaline
pHs [33], rendering QDs agglomeration, both of which lead to fluorescence quenching
GSH-CdTe QDs.

3.2. Fluorescent “Turn-On” Properties of the Clutch Probe by Adding dsDNA

Notably, the Ru(II) complex plays two significant roles in achieving the detection
utilization of the as-designed clutch probe. On the one hand, the Ru(II) complexes can
react with the GSH-CdTe QDs via electrostatic adsorption to form QDs-Ru complexes,
resulting in fluorescence quenching of the QDs through a photo-induced electron transfer
process [38,39], which was demonstrated in Figure 3a (data from the red line to the gray
line). Notably, free Ru(II) complexes suffer from high susceptibility to water and the
resultant fluorescence quenching effect, whereas Ru(II) complexes inserted into the dsDNA
show strong red emission (data from the gray line to the blue line shown in Figure 3a)
because the hydrophobic environment within the double-helix structures of dsDNA could
prevent the Ru(II) complexes from being totally exposed to water and considerably avoid
the solvent effect in aqueous solutions [40]. Therefore, the Ru(II) complexes can serve as an
excellent clutch for dsDNA to form Ru-dsDNA complexes and concurrently release free
GSH-CdTe QDs from the QDs-Ru complexes.

Impressively, as the concentration of added Ru(II) complexes increased, the fluorescence
intensity of the GSH-CdTe QDs gradually decreased (Figure 3b). When the molar ratio of
GSH-CdTe QDs to Ru(II) complexes was 1:100, the fluorescence signal of the GSH-CdTe
QDs would be substantially quenched. Thus, a molar ratio was used to prepare the QDs-Ru
complexes. On the other hand, the Ru(II) complex, regarded as a typical fluorescence switch
for DNA molecules, can specifically intercalate into the major or minor grooves of the double-
stranded DNA (dsDNA) to form Ru-dsDNA complexes, leading to the emergence of Ru(II)
complexes’ fluorescence. As presented in Figure 3c,d, the recovered fluorescence of a mixture
of QDs-Ru complexes and dsDNA gradually enhanced along with the increase of dsDNA
concentration, where a well proportional linear relationship between the concentration of
the added dsDNA and the recovered fluorescence intensity of the probe system could be
found [41,42]. Furthermore, the detection limit of such a probe system was determined to
be 0.06 ng/mL for dsDNA under the 3× signal-noise ratio (S/N = 3).

The absorption spectra of Ru-DNA and QDs were respectively depicted in Figure 3e,
where several peaks in the visible region of Ru-DNA are attributed to the characteristic
absorption bands from Ru complexes [43]. Most attractively, the same range of the ab-
sorption wavelength at 300–500 nm and almost the same emission peak at 605 nm of the
Ru-dsDNA complexes and the GSH-CdTe QDs were indicated in Figure 3e,f. The overlaid
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“turn-on” red fluorescence stemming from the recovered emission of free GSH-CdTe QDs
and emerged emission of the Ru(II) complexes could be simultaneously excited by a single
wavelength at 390 nm, significantly improving the sensitivity and practicability of the
as-designed probe in the following clinical samples identification.

1 
 

 
Figure 3. The fluorescent “turn-on” properties of the QDs-Ru complex. (a) The fluorescence quench-
ing and recovery of QDs because of the Ru(II) complex and dsDNA interaction. (b) The fluorescence
of GSH-CdTe QDs was quenched gradually with the increase of the Ru(II) complex’s concentration.
(c) The fluorescence of GSH-CdTe QDs was recovered gradually with the increase of the concentra-
tion of dsDNA. (d) The linear relationship between the concentration of dsDNA and the recovered
fluorescence intensity. The limit of detection is 0.06 ng/mL for dsDNA (S/N = 3). (e) The fluorescence
spectrum and UV-vis absorption of GSH-CdTe QDs and Ru-dsDNA. (f) GSH-CdTe QDs and Ru-
DNA complexes have similar emission wavelengths at the same excitation wavelength (ex: 390 nm,
em: 605 nm).

After verifying that dsDNA can efficiently recover the fluorescence of the GSH-CdTe
QDs, we next evaluated the influence of dsDNA concentration or sequence lengths on
the fluorescence recovery capabilities. Since the cfDNA in human blood is intrinsically
dsDNA fragments with different sequence lengths ranging from 100 bp to more than
2 million bp [44], both a short dsDNA (33 bp) and a long plasmid dsDNA (6932 bp) were
respectively used to “turn-on” the fluorescence of the QDs-Ru complexes. It can be seen
from Table 1 that the fluorescence intensity of the short dsDNA (33 bp) is comparable to
that of the long dsDNA (6932 bp) at the same concentration. This result indicates that
the response capacity of the fluorescent “turn-on” clutch probe is highly dependent on
the concentration of the to-be-detected dsDNA instead of its sequence length. This is
because the interacting driving force between Ru(II) complexes and dsDNA only relies on
the number of grooves within DNA double-helix structures, consisting of four different
base pairs [45,46]. In other words, the fluorescence intensity of the to-be-detected dsDNA
only depends on the concentration of dsDNA rather than the sequence lengths or base
compositions of dsDNA.
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Table 1. The Fluorescence intensities of the QDs-Ru complexes were adding dsDNA fragments with
different sequence lengths and different concentrations.

0.5 ng/mL 5 ng/mL 10 ng/mL 20 ng/mL 40 ng/mL 60 ng/mL 80 ng/mL

Short dsDNA (33 bp) 151,900
± 6883.5

157,790
± 3680.9

173,570
± 9251.5

209,880
± 5014.1

273,980
± 8090.8

323,070
± 4491.8

424,740
± 5339.4

Long plasmid dsDNA
(6932 bp)

151,180
± 7485.4

151,790
± 5923.3

171,740
± 5895.5

203,090
± 7346.2

273,090
± 5808.3

306,078
± 3851.5

424,190
± 3246.2

3.3. Fluorescent “Turn-On” Properties of the Clutch Probe by Successively Introducing ssDNA
and Its Corresponding Complementary ssDNA

Apart from detecting the dsDNA, we next investigated if the quenched fluorescence
of QDs-Ru complexes could be “turned on” by successfully adding single-stranded DNA
(ssDNA) and its corresponding complementary ssDNA. As shown in Figure 4a, upon
beforehand adding ssDNA to the QDs-Ru complexes solution, the fluorescence intensity
of the clutch probe gradually enhanced with the increase of the complementary ssDNA’s
(C-ssDNA) concentration. As the amount of the added C-ssDNA increases, a growing
number of dsDNA will be assembled, which further precisely clutches the Ru(II) complexes
from the non-emissive QDs-Ru complexes to form the fluorescent Ru-dsDNA complexes
and simultaneously liberate the fluorescent GSH-CdTe QDs.
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Figure 4. The specificity and mechanisms of the clutch probe. (a) The fluorescence of QDs is recovered
with the increase of complementary ssDNA’s (C-ssDNA) concentrations. (b) The fluorescence spectra
of QDs and Ru-DNA complexes after interaction with different complementarity of two ssDNA
(0BM-ssDNA: fully complementary ssDNA; 5BM-ssDNA: 5 bases mismatched ssDNA; 15BD-ssDNA:
15 bases deleted ssDNA). (c) Mechanism of specific recognition by fluorescent probes. (d) The fluo-
rescence spectra of QDs and Ru-DNA complexes after interaction with different complementarity
of Cas9 plasmid L-dsDNA and specific Cas9 plasmid L-ssDNA (0BM-ssDNA: fully complemen-
tary ssDNA; 1BM-ssDNA: 1 base mismatched ssDNA; 3BM-ssDNA: 3 bases mismatched ssDNA;
5BM-ssDNA: 5 bases mismatched ssDNA).
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It is well documented that the cfDNA in the blood of cancer patients generally has
DNA bases mutation (BM-DNA) and DNA bases deletion (BD-DNA), which could change
the structure of dsDNA [47,48]. Therefore, we will further verify whether the fluorescent
“turn-on” clutch probe can detect BM-DNA and BD-DNA. First, we individually synthe-
sized a ssDNA with a sequence of 5′-ATC AAG GAA TTA AGA GAA GCA ACA TCT CCG
AAA-3′ and its corresponding complementary ssDNA (0 BM-ssDNA) with a sequence of
3′-TAG TTC CTT AAT TCT CTT CGT TGT AGA GGC TTT-5′, complementary 5-bases-
mutated ssDNA (5 BM-ssDNA) with a sequence of 3′-TAG TTG GTT AAT TCA CGT CGT
TCT AGA GGC TTT-5′, and complementary 15-bases-deleted ssDNA (15 BD-ssDNA) with
a sequence of 3′-TAG TTC TGT AGA GGC TTT-5′. Then, after adding the as-synthesized ss-
DNA into the QDs-Ru complexes, the above three types of the complementary ssDNA were
respectively added into the mixture solution. As expected, it can be found from Figure 4b
that the higher the complementary degree between the ssDNA and its complementary
ssDNA, the more vigorous the fluorescence intensity of the probe system could be detected.
That means the clutch probe’s excellent fluorescent “turn-on” capability became functional
by adding ssDNA and its corresponding complementary ssDNA.

In addition, for the practical identification of the cancer-specific cfDNA, the initial
double helix structure of the long dsDNA (L-dsDNA, such as the cfDNA) should be
unwound into long ssDNA (L-ssDNA) via DNA denaturant. Subsequently, L-ssDNA
was specifically re-assembled with a deliberately designed short ssDNA (S-ssDNA) into a
hybrid DNA possessing a short segment of dsDNA (S-dsDNA). In such a process, the “off”-
stated clutch probe could be recovered into “on”-stated in the presence of the short dsDNA
segment—this mechanism is illustrated in Figure 4c. In this case, urea, as a common DNA
denaturant, was chosen to break the double helix structure of the L-dsDNA. It is also worth
noting that the concentration of the denaturant urea added in the L-dsDNA-containing
solution is critical. Because at that given concentration, the L-dsDNA can be unwound into
L-ssDNA while the follow-up re-assembled S-dsDNA will not be denatured.

After monitoring the fluorescence changes of the QDs-Ru complexes individually
incubated with an L-dsDNA or an S-dsDNA at different urea concentrations, we selected
9 mol/L of urea as the denaturation concentration toward L-dsDNA. At that concentration,
the fluorescence of the L-dsDNA group rapidly decreased while the fluorescence of the
S-dsDNA group was still robust (Figure S1).

After confirming the denaturation concentration, we used 9 mol/L urea to break the
double-helix structure of a Cas9 plasmid L-dsDNA and then added the QDs-Ru complexes.
Subsequently, the above mixture solution added four deliberately designed complementary
Cas9 plasmid S-ssDNA with different sequences towards a specific Cas9 plasmid L-ssDNA
segment. The sequences of the four complementary Cas9 plasmids S-ssDNA are shown
as follows: 0 BM-S-ssDNA with the sequence of 5′-AAA TAG TCT ACG ATA AAA TGA
AAG TCT AGA GGA TTC TCA-3′; 1 BM-S-ssDNA with the sequence of 5′-AAA TAG
TCT AGG ATA AAA TGA AAG TCT AGA GGA TTC TCA-3′; 3 BM-S-ssDNA with the
sequence of 5′-ATA TAG TCT ACG ATT AAA TGA AAC TCT AGA GGA TTC TCA-3′ and
5 BM-S-ssDNA with the sequence of 5′-AAA TAG TGT ACG ATA ATA TGA ATC TCT
ACA GGA TTC TCA-3′.

As presented in Figure 4d, on the one hand, when compared to the group that added
only PBS, the other four groups which introduced complementary Cas9 plasmid S-ssDNA
with different sequences show noticeable fluorescence enhancements, suggesting the suc-
cessful formation of the S-dsDNA in the opened L-ssDNA. Furthermore, the fluorescence
gradually enhanced with the increase of the complementary degree, which is in line with
the results in Figure 4b. These results demonstrated the excellent potential of the fluorescent
“turn-on” clutch probe for cfDNA detection.

3.4. Detection of Clinic Plasma cfDNA from Lung Cancer Patients

To investigate the feasibility of the fluorescent “turn-on” clutch probe for clinical
application, we first evaluate the biomolecules interference effect in this system which
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is usually found in practical plasma detection [49,50]. As shown in Figure 5a, there is
a negligible influence on the detected fluorescence when various biomolecules or ions,
including Cl−, HPO4

2−, citric acid, Na+, K+, Mg2+, Ca2+, and BSA were respectively
added to the dsDNA and GSH-CdTe QDs mixture. On the other hand, urine and plasma
are the two most commonly utilized clinical test samples due to their high association
with some metabolic mechanisms of diseases [51,52]. Therefore, we first evaluated the
fluorescent “turn-on” property at 605 nm in urine samples from lung cancer patients in this
work. Interestingly, there is no noticeable fluorescence enhancement at 605 nm (Figure 5b),
suggesting that either the urine samples contain no cfDNA or the cfDNA content within
the urine is extremely low.
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Alternatively, we then evaluated whether the as-prepared probe could be applied to
detect the cancer-specific cfDNA in the plasma of cancer patients. It has been well-reported
in the clinic that the epidermal growth factor receptor (EGFR) gene mutations occur most
frequently in non-small cell lung cancer patients. Remarkably, approximately 60% of such
cancer patients possess a mutation in exon 19 or exon 20 of the EGFR gene [53]. Based on
these findings, we deliberately designed complementary EGFR exon-19-mutated or exon-
20-mutated ssDNA to pair with the unwound EGFR exon-19-or exon-20-mutated cfDNA
in plasma samples, which combined with the clutch probe to detect EGFR mutation
in lung cancer patients. After successively adding the QDs-Ru complexes and the as-
designed exon-mutated ssDNA, a higher fluorescence intensity recorded in the plasma
samples represents a higher complementary degree to the mutant sequences in the EGFR
gene. For practical application, we prepared 30 clinical plasma samples, 20 of which
were collected from lung cancer patients (sample number is 1–20) and 10 of which were
collected from the healthy person as negative controls. The detection results of EGFR exon
19 and exon 20 mutations from the clinical samples are summarized in Tables 2 and 3. It
is found that samples 2, 3, 4, 5, 8, 11, 13, 14, 18 in Table 2 and samples 4, 17, and 18 in
Table 3 show a significant difference between the plasma fluorescence from the lung cancer
patient and healthy person, showing that the cfDNA in the above samples, respectively,
had a high complementary degree to the EGFR exon 19 and exon 20 mutations in lung
cancer patients.
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Table 2. The detection results of EGFR exon 19 mutations from the clinical samples.

Sample Number

Fluorescence Intensity
of Plasma Samples
from Lung Cancer

Patients (Value CP)

Mean Fluorescence
Intensity of 10 Plasma
Samples from Heathy

Person (Value HP)

(Value CP-Value
HP)/Value HP (%) Significance Test (p)

1 2,331,856.66 2,393,280.33 −2.56651 /
2 3,427,146.66 / 43.19871 ***
3 2,971,850 / 24.17476 **
4 2,844,531 / 18.8549 **
5 2,932,493.33 / 22.53029 **
6 2,265,600 / −5.33495 /
7 2,274,700 / −4.95472 /
8 2,714,736.66 / 13.43162 *
9 2,108,196.66 / −11.9118 /
10 2,309,500 / −3.50065 /
11 3,049,036.66 / 27.3999 ***
12 2,250,156.66 / −5.98023 /
13 2,708,510 / 13.17145 *
14 3,096,290 / 29.37431 ***
15 2,266,550 / −5.29526 /
16 2,265,250 / −5.34958 /
17 2,036,547 / −14.9056 /
18 2,755,478.66 / 15.13397 *
19 2,318,096.66 / −3.14145 /
20 2,325,440 / −2.83462 /

* p < 0.05, ** p < 0.01, *** p < 0.001.

Table 3. The detection results of EGFR exon 20 mutations from the clinical samples.

Sample Number

Fluorescence Intensity
of Plasma Samples
from Lung Cancer

Patients (Value CP)

Mean Fluorescence
Intensity of 10 Plasma
Samples from Heathy

Person (Value HP)

(Value CP-Value
HP)/Value HP (%) Significance Test (p)

1 2,285,445.66 2,205,912.698 3.605445 /
2 2,255,669.33 / 2.255603 /
3 2,011,476 / −8.81434 /
4 2,698,380 / 22.32488 ***
5 2,232,551 / 1.207586 /
6 2,144,325 / −2.79194 /
7 2,210,035 / 0.186875 /
8 2,019,885.33 / −8.43312 /
9 1,977,845 / −10.3389 /
10 2,144,789.66 / −2.77087 /
11 2,254,776 / 2.215106 /
12 2,155,698 / −2.27637 /
13 2,144,478.66 / −2.78497 /
14 2,236,698.33 / 1.395596 /
15 2,166,458 / −1.78859 /
16 2,215,936.33 / 0.454398 /
17 2,622,463.33 / 18.88337 ***
18 2,780,916.66 / 26.06649 ***
19 2,155,638 / −2.27909 /
20 2,286,542 / 3.655145 /

*** p < 0.001.

It is worth noting that we cannot negate the effect of the concentration of dsDNA in
the blood samples on the fluorescence signal values. However, whether it is the better
complementarity with the target dsDNA strand or the higher concentration of the detected
dsDNA, it has a positive effect on the final detection results, which implies that more tumor-
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specific dsDNA exited and could be detected in cancer patients. Collectively, a total of
12 samples with EGFR mutations in cfDNA could be identified by the fluorescent “turn-on”
DNA clutch probe, demonstrating the positivity rate of EGFR mutations in lung cancer
patients is 60%, and the mutation probability of exon 19 is higher than that of exon 20 in
EGFR gene, both of which are consistent with the clinical reports. More attractively, the
cancer-specific mutant cfDNA could be distinguished from non-mutant type in lung cancer
patients by only using as little as 5 µL unhandled plasma, where the plasma volume used
here is significantly less than that required for a routine clinical plasma test (e.g., 0.2–2 mL),
making the as-designed probe more practicable [54–56].

4. Conclusions

In summary, we established a new but reliable strategy for plasma cancer-specific
cfDNA identification in lung cancer patients, which is based on a fluorescent “turn-on”
DNA clutch probe (QDs-Ru complexes) via integration of red fluorescence from both
QDs’ recovered and Ru(II) complexes’ emerged emissions. Particularly, the as-prepared
fluorescent probe could be effectively applied to selectively recognize EGFR gene mutation
in plasma cfDNA due to the high affinity of the Ru(II) complex towards double-stranded
DNA. More importantly, only a minimal volume of plasma sample (e.g., 5 uL) was required
to be used for a typical run of cfDNA detection by applying the as-designed strategy,
which is much less than that of a routine clinical plasma test (e.g., 0.2–2 mL). In short,
the fluorescent “turn-on” clutch probe offers a rapid, sensitive, practicable paradigm for
recognizing plasma cfDNA biomarkers from clinical samples with easy accessibility and
low cost, which also shows great promise for early diagnosis of cancer and other gene-
mutated diseases.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12081262/s1, Figure S1: The fluorescence spectra of different
concentrations of urea with L-dsDNA and S-dsDNA.
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