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Introduction: Rheumatoid arthritis (RA) has been associated with changes in

lipid, arginine and NO metabolism with increased cardiovascular (CV) risk.

The aim of this study is to evaluate the effect of tofacitinib, a Janus kinase

(JAK) inhibitor, on arginine and methionine metabolism in correlation with

inflammation, functional and pathological vascular changes during one-year

treatment of patients with RA.

Materials and methods: Thirty RA patients with active disease were treated

with either 5 mg bid or 10 mg bid tofacitinib for 12 months. We determined

DAS28, CRP, IgM rheumatoid factor (RF) and anti-cyclic citrullinated peptide

(CCP) levels. We assessed brachial artery flow-mediated vasodilation (FMD),

carotid intima-media thickness (IMT) and pulse-wave velocity (PWV) by

ultrasound at baseline and after 6 and 12 months. We also determined

plasma L-arginine, L-citrulline, L-ornithine, inducible nitric oxide synthase

(iNOS), asymmetric (ADMA) and symmetric dimethylarginine (SDMA), L-N-

monomethyl-arginine (L-NMMA), cysteine, homocysteine, and methionine

levels at these time points.

Results: Twenty-six patients (13 on each arm) completed the study. CRP, ESR

and DAS28 decreased significantly during one-year treatment with tofacitinib.

Arginine and ADMA showed a negative univariate correlation with CRP but

not with FMD, PWV or IMT. Tofacitinib at 10 mg bid significantly increased

L-arginine, L-ornithine, iNOS and methionine levels after 12 months. ADMA

and SDMA levels did not change in our study. Methionine showed negative
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correlation with FMD at baseline and positive correlation with PWV after

12 months. No change was observed in FMD and PWV but a significant

increase was measured in IMT at 6 and 12 months. Multivariate analysis

indicated variable correlations of L-arginine, L-citrulline, ADMA, L-NMMA,

homocysteine and methionine with DAS28, CRP, ESR and RF but not with anti-

CCP after one-year treatment. With respect to vascular pathophysiology, only

PWV and methionine correlated with each other.

Conclusion: One-year tofacitinib treatment suppressed systemic

inflammation and improved functional status in RA. FMD, PWV have not

been affected by one-year tofacitinib treatment., while IMT increased further

despite treatment. Increased arginine and methionine might contribute to the

anti-inflammatory effects of tofacitinib. Increased arginine availability with no

changing ADMA may protect FMD and PWV from deterioration. The increase

of IMT in the anti-inflammatory environment cannot be explained by arginine

or methionine metabolism in this study.
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Introduction

Rheumatoid arthritis (RA) is an autoimmune inflammatory
rheumatic and musculoskeletal disease (RMD), which causes
progressive deformation of different joints (1). Protein
citrullination in the RA synovium is the first connection of the
disease to arginine metabolism (2–5). At the joint level, there
are known interactions between fibroblast-like synoviocytes
(FLS), macrophages and helper T (TH)-, B- and plasma cells
(6). In this environment, pro-inflammatory cytokines including
tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and
IL-6 are abundantly produced (6, 7). This pro-inflammatory
milieu promotes monocytes to differentiate to M1 type
macrophages (6, 8). These macrophages express inducible
nitric oxide synthase (iNOS) that stimulates the production
of pro-inflammatory cytokines, NO and ONOO− radicals
at cytotoxic levels (9, 10). High expression of iNOS convert
arginine into NO and citrulline (Figure 1) (10, 11). Synovial
tissue damage initiates the differentiation of monocytes into
M2 type macrophages (8), which cells produce large amount of
arginase 1 and convert arginine to ornithine and urea (Figure 1)
(10, 12, 13). Ornithine is converted to polyamines and proline
promoting cell division and growth as well as collagen synthesis
(11, 13). M2 macrophages produce anti-inflammatory cytokines
and are involved in wound healing and tissue regeneration at
the site of inflammation (8). The chronic inflammatory process
is changing in time depending on which macrophages and
cytokines are present and how the fibroblast-like synoviocytes
(FLS) are activated (6–8). Pro-inflammatory cytokines can
induce high amount of NO production with decreased arginase

activation in human FLS (14–16). At the same time synovial
M2 type macrophages show no increase in NO production
but significant increase in arginase activity in the presence of
pro-inflammatory cytokines (10, 12). The shift in the balance
between iNOS and arginase 1 in the inflammatory process
might shift the arginine metabolism either to citrulline or
ornithine over-production, respectively (Figure 1) (10, 12).

Rheumatoid arthritis (RA), similarly to diabetes, obesity and
hypertension, is associated with chronic systemic inflammation
leading to endothelial dysfunction, accelerated inflammatory
atherosclerosis manifesting in high risk of cardiovascular
diseases (CVD) (17–20). In addition to coronary artery disease,
endothelial dysfunction may cause myocardial hypertrophy
and interstitial fibrosis manifesting in diastolic dysfunction
and heart failure with preserved ejection fraction (EF) as
also observed in diabetes, obesity and hypertension (21).
The unique characteristic of CVD in RA is that there is
higher risk for CVD at lower levels of cholesterol but
high CRP levels. This lipid paradox may represent a special
form of endothelial dysfunction where pro-inflammatory
cytokines maintain the process of atherosclerosis (22, 23).
Arginine is methylated during post-translational modification
of different kind of proteins especially in the nucleus by
protein methyl transferase enzymes (PRMT) (11). Three types
of modifications are present on the proteins: N-monomethyl-
L-arginine (L-NMMA), asymmetric (ADMA) and symmetric
dimethyl arginine (SDMA) (11, 24). During protein turnover
in the proteolysis phase the free L-NMMA and ADMA
are metabolized to citrulline and dimethylamine by the
enzyme dimethylarginine dimethylaminohydrolase (DDAH)
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FIGURE 1

Metabolites of the urea cycle. ADMA, asymmetric dimethylarginine; L-NMMA, L-N-monomethyl-arginine; NO, nitric oxide; NOS, nitric oxide
synthase; SDMA, symmetric dimethylarginine.

(Figure 1) (11). Free SDMA is eliminated by the kidneys (25).
L-NMMA and ADMA are competitive inhibitors of arginine
at the NOS molecules causing decreased NO production and
NOS uncoupling which turns NOS to produce superoxide
anion instead of NO (11). ADMA and SDMA production
has been associated with systemic inflammatory states (26–
28). In arthritides, serum ADMA level is higher than
normal and is associated with endothelial dysfunction (28–
30). ADMA may cause endothelial dysfunction by disruption
of the physiological endothelial NO production (11, 28–30).
Physiological NO production inhibits platelet aggregation,
tissue factor expression, expression of adhesion molecules, as
well as smooth muscle cell (SMC) contraction, proliferation
and migration (11). These physiological roles keep the
endothelial layer intact and inhibit atherosclerosis or thrombus
formation (11).

Non-invasive, ultrasound-based methods are able to
evaluate endothelial function, such as flow mediated dilation
of brachial artery (FMD) (19, 31). Endothelial dysfunction
may enhance media thickening via SMC hypertrophy and
proliferation, as well as media fibrosis leading to increasing
arterial stiffness. This can be evaluated by aortic pulse wave
velocity (PWV) changes (31). Similarly, overt atherosclerosis is
reflected by increasing carotid intima media thickness (IMT)
and the development of carotid plaques, which can be detected
by B-mode ultrasound (19, 31).

Methionine is the source of methylation by PMRT enzymes
(Figure 2) (32). Homocysteine level is suppressed by cysteine
synthesis, which enhance glutathione (GSH) synthesis and
protection against oxidative stress (33). Increased methionine
intake was associated with increased plasma concentration of
homocysteine and reduced FMD in healthy human subjects
(34, 35). The mechanism of inhibition of endothelial function
by methionine load is not clear. Although the role of elevated
ADMA level or oxidative stress were hypothesized they were not
supported uniformly by various studies (34–36).

Methionine load with increasing plasma homocysteine
concentration did not alter PWV although it changes aortic
distensibility in healthy individuals (37). Population based
interventional study using vitamin B12 and folic acid in
hyperhomocysteinemic patients did not show any effect of
decreasing homocysteine level on PWV or IMT (38).

Targeted therapies including biologic and targeted synthetic
disease-modifying drugs dampen systemic inflammation, RA
disease activity and they may also have beneficial effects on CV
outcomes (17, 39, 40). As of today, four Janus kinase (JAK)
inhibitors, tofacitinib, baricitinib, upadacitinib and filgotinib
have been approved for the treatment of RA (41). JAK inhibition
has been associated with elevation of lipids, possibly due to the
lipid paradox described above (17, 42, 43). We have recently
reported that tofacitinib dampened aortic wall inflammation by
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FIGURE 2

Metabolites of the methionine and folate cycles. DHF, dihydrofolate; DHFR, dihydrofolate reductase; MTHF, methylene-tetradhydrofolate; MTX,
methotrexate; THF, tetrahydrofolate.

PET/CT (44). There has been only one study assessing IMT in
tofacitinib-treated patients (45).

To our best knowledge there have been no other studies
on the effects of JAK inhibitors on vascular pathophysiology
measured by FMD, PWV and IMT in parallel with arginine
and methionine metabolism. No previous studies evaluated
arginine metabolism as an indicator of change in inflammation
or endothelial dysfunction.

We conducted a prospective one-year study in order to
assess the effects of tofacitinib on inflammation and functional
status as well as FMD, PWV and IMT in RA patients. We
propose that one-year tofacitinib treatment will, as a JAK-STAT
inhibitor decrease pro-inflammatory cytokine levels, decrease
inflammation and improve functional status with signals from
methionine and arginine metabolism such as citrulline and
ornithine levels. Improving inflammation may improve vascular
status parallel with indicators of endothelial dysfunction in
arginine metabolism like L-NMMA or ADMA levels.

Patients and methods

Patients and study design

Thirty patients with active RA were recruited for this
tofacitinib interventional study. Patient characteristics are
presented in Table 1. Inclusion criteria included definitive

diagnosis of RA according to the 2010 European League Against
Rheumatism (EULAR)/American College of Rheumatology
(ACR) classification criteria for RA (1); moderate-high disease
activity (DAS28 > 3.2) at baseline and clinical indication of
targeted therapy. Patients were either naïve to any targeted
therapies (n = 16) or initiated tofacitinib after stopping a
biologic followed by an appropriate washout period (n = 14).
Exclusion criteria included inflammatory diseases other than
RA, acute/recent infection, standard contraindications to JAK
inhibition, uncontrolled CV disease or hypertension, chronic
renal or liver failure and malignancy within 10 years.

The 30 enrolled patients were randomly assigned in a
1:1 ratio to either 5mg or 10mg tofacitinib twice daily (bid)
treatment arms. All patients received tofacitinib in combination
with either methotrexate (MTX) (n = 23) or leflunomide (n = 7).
MTX and leflunomide had been taken in stable dose at least
one year prior to the present study. No dose changes of these
DMARDs were allowed throughout the course of the study.
Although most patients may have received corticosteroids prior
to the study, none of the patients had been on corticosteroids for
at least 3 months prior to and during the study.

Clinical assessments were performed at baseline, and after
6 and 12 months of therapy. Four patients (2 on each arm)
completed the 6-month follow-up but did not complete the
one-year treatment. Twenty-six patients completed the one-year
treatment period and were included in the data analysis.
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TABLE 1 Patient characteristics.

Tofacitinib
5 mg bid

Tofacitinib
10 mg bid

Total

Number of recruited patients (n) 15 15 30

Female:male ratio 14:1 13:2 27:3

Age (mean ± SD) (range), years 52.3 ± 11.4 (27–69) 53.3 ± 8.8 (34–69) 52.8 ± 10.0
(27–69)

BMI (kg/m2) 29.5 ± 5.6
(22.0–40.2)

30.6 ± 8.6
(20.8–51.4)

30.0 ± 7.1
(20.8–51.4)

Positive CV history (n) 3 3 6

Positive history of hypertension (n) 6 8 14

Positive history of diabetes mellitus (n) 1 1 2

Smoking (current) (n) 4 3 7

Disease duration (mean ± SD) (range), years 6.3 ± 4.7 (1–15) 7.1 ± 4.9 (2–21) 7.7 ± 5.0 (1–21)

RF positivity, n (%) 12 (80) 12 (80) 24 (80)

Anti-CCP positivity, n (%) 13 (87) 11 (73) 24 (80)

DAS28 (baseline) (mean ± SD) 4.80 ± 0.69 5.29 ± 0.79 5.05 ± 0.77

BMI, body mass index; CCP, anti-cyclic citrullinated peptide; DAS28, 28-joint disease activity score; RF, rheumatoid factor; SD, standard deviation.

The study was approved by the Hungarian Scientific
Research Council Ethical Committee (approval No. 56953-
0/2015-EKL). Written informed consent was obtained from
each patient and assessments were carried out according to the
Declaration of Helsinki and its amendments.

Clinical assessment

First, a detailed medical history was taken. We inquired
about history of CVD, as well as current smoking, experience
of chest pain resembling angina pectoris, hypertension and
diabetes mellitus during the last 2 years prior to the start of this
study by a questionnaire (Table 1). Further clinical assessments
including physical examination were performed at baseline, and
after 3, 6 and 12 months of tofacitinib therapy.

Laboratory measurements and
assessment of disease activity

Blood samples were drawn from fasting patients in the
morning into ethylene-diamine-tetraacetate (EDTA)-treated
tubes and were immediately processed, aliquoted and stored at
–70◦C until use. Blood samples were taken at baseline, as well as
after 6 and 12 months of tofacitinib treatment.

Serum high sensitivity C reactive protein (hsCRP; normal:
≤5 mg/l) and IgM rheumatoid factor (RF; normal: ≤50 IU/ml)
were measured by quantitative nephelometry (Cobas Mira
Plus, Roche Diagnostics, Basel, Switzerland), using CRP and
RF reagents (both Dialab Ltd, Budapest, Hungary). ACPA
(CCP) autoantibodies were detected in serum samples using
a second generation Immunoscan-RA CCP2 ELISA test (Euro

Diagnostica, Malmö, Sweden; normal: ≤25 IU/ml). The assay
was performed according to the manufacturer’s instructions.

Disease activity of RA was calculated as DAS28-CRP (3
variables) (46).

Assessment of vascular physiology by
ultrasound

Brachial artery FMD was assessed as described before
(47). In brief, ultrasound examination was performed on the
right arm using 10 MHz linear array transducer (ultrasound
system: HP Sonos 5500, Hewlett Packard, Palo Alto, CA, USA)
by a single trained sonographer after 30 min resting in a
temperature-controlled room (basal value for FMD). A B-
mode longitudinal section was obtained of the brachial artery
above the antecubital fossa. In order to assess FMD, reactive
hyperemia was induced by release of a pneumatic cuff around
the forearm inflated to suprasystolic pressure for 4.5 min.
After deflation the maximal flow velocity and the arterial
diameter was continuously recorded for 90 s. Flow velocities, the
baseline diameter, as well as FMD were ECG gated and detected
offline. FMD values were expressed as% change from baseline
(resting) value.

The IMT measurements were carried out as described before
(47). Briefly, a duplex ultrasound system (HP Sonos 5500,
10 MHz linear array transducer) was used to assess the common
carotid arteries by a single observer. Longitudinal high-
resolution B-mode ultrasound scan were employed over both
right and left common carotid arteries and were R-synchronized
and recorded. The offline measurements were performed 1 cm
proximal to the carotid bulb in the far wall. IMT was defined as
the distance between the first and second echogenic lines from
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the lumen taking the average of 10 measurements on both sides.
IMT values were expressed in mm.

With respect to arterial stiffness, PWV was calculated
automatically by a TensioClinic arteriograph system
(Tensiomed Ltd, Budapest, Hungary) as the quotient of
the distance between the jugular fossa and symphysis as
described before (47). If an artery is elastic, PWV is low.
With decreased arterial elasticity, PWV rises. The arteriograph
assesses this parameter from the oscillometric data obtained
from the 35 mmHg suprasystolic pressure of the brachial artery.
In order to obtain reproducible results, the patient had to rest
in a supine position for at least 10 min before the assessment in
a quiet room. PWV is expressed in m/s. Reproducibility of the
three techniques expressed in intraclass correlation is included
in the Statistical analysis section.

Assessment of metabolites in the urea
and methionine cycles

L-arginine, L-citrulline, L-NMMA, ADMA, SDMA,
cysteine, homocysteine, methionine and ornithine were
quantified using a validated HPLC-MS/MS assay (48, 49).
In brief, 50 µl of internal standard containing solution
(50 µM d7-ADMA, d7-arginine, d4-cysteine, d6-citrulline,
d8-homocystine, d3-methionine and d6-ornithine, all in HPLC
water) and 40 µl of 500 mM DTT solution were added to
100 µl serum. For protein precipitation, 400 µl of acetonitrile
containing 0.1% trifluoric acid was added to the sample. The
sample was vortexed for 5 min, centrifuged for 20 min at
16,000 g, and transferred into a HPLC vial. Ten µl of the
supernatant was injected onto a 4.6 × 12.5-mm guard column
(Eclipse XDB-C8, 5 µm, Agilent Technologies, Palo Alto, CA,
USA) in line with a 3.0 × 150-mm analytical column (RP-
Amide, 3.5 µm, Supelco, St. Louis, MO, USA). The API5000
mass spectrometer (AB Sciex, Concord, ON, Canada) was
run in the positive electrospray ionization mode (ESI) using
multiple reaction monitoring (MRM) (48, 49).

Measurement of human inducible
nitric oxide synthase

Inducible nitric oxide synthase (iNOS) was measured in
human plasma by sandwich-enzyme-linked immunosorbent
assay (ELISA) according to the manufacturer’s instructions
(Novus Biologicals, CO, USA). The micro ELISA plate provided
in the kit had been pre-coated with an antibody specific to
human iNOS. Fifty micro liter of standard (serially diluted from
1000 to 15.6 pg/ml) or test sample was added to the plate wells
and incubated for 2 h. This was followed by addition of 100 µl
biotinylated detection antibody specific for human iNOS for 1 h

and 100 µl of avidin-horseradish peroxidase (HRP) conjugate
for 0.5 h. The substrate solution (90 µl) was added to each
well for 20 min. The enzyme-substrate reaction was terminated
by the addition of stop solution. Optical density (OD) was
measured at a wavelength of 450 nm, Concentration of iNOS in
the samples was calculated by comparing the OD of the samples
to the standard curve. All incubations were done on a shaker
at room temperature and plates were washed with wash buffer
between incubation periods.

Statistical analysis

Statistical analysis was performed using SPSS version
22.0 (IBM, Armonk, NY, USA) software. Data are expressed
as the mean ± SD for continuous variables and percentages
for categorical variables. The distribution of continuous
variables was evaluated by Kolmogorov-Smirnov test.
Continuous variables were evaluated by paired two-tailed
t-test and Wilcoxon test. Nominal variables were compared
between groups using the chi-squared or Fisher’s exact test,
as appropriate. Correlations were determined by Pearson’s
analysis. Univariate and multivariate regression analysis using
the stepwise method were applied to investigate independent
associations between metabolites of the urea or methionine
cycle (dependent variables) and clinical (disease activity),
laboratory (CRP, ESR) or vascular physiology parameters
(independent variables). The β standardized linear coefficients
showing linear correlations between two parameters were
determined. The B (+95% CI) regression coefficient indicated
independent associations between dependent and independent
variables during changes. General linear model (GLM) repeated
measures analysis of variance (RM-ANOVA) was performed in
order to determine the additional effects of multiple parameters
including therapy on 6- or 12-month changes of metabolite
levels. In this analysis, partial η2 is given as indicator of effect
size, with values of 0.01 suggesting small, 0.06 medium and 0.14
large effects. The power was estimated using the G∗-Power 3
software (50). P < 0.05 were considered significant.

The reliability of the vascular ultrasound measurements was
tested by inter-item correlation and intraclass correlation (ICC).
With respect to the FMD, IMT and PWV tests, ICC = 0.470;
F-test value: 1.887; p = 0.001. The power was estimated using the
G∗-Power software (50). P < 0.05 were considered significant.

Results

Characteristics of patients

Patient characteristics are seen in Table 1. Altogether 6
patients (3-3 on each arm) had a positive CV history. All
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these patients had coronary artery disease, which was properly
treated and stable. A total of 14 patients had hypertension, 2
had diabetes mellitus and 7 had been current smokers at the
time of inclusion. Hypertension and diabetes mellitus were also
well-controlled in those patients (Table 1).

Clinical response to tofacitinib therapy

Eventually a total of 4 patients, 2-2 each treatment arms,
dropped out after 6 months of treatment but before the end
of the study. Out of the 4 patients, 2 had inefficacy, one had
significantly elevated transaminases and one moved abroad.
Thus, 13-13 patients on each arm completed the study and were
eligible for further data analysis (Table 1).

Tofacitinib treatment significantly decreased DAS28 after
6 months (3.31 ± 0.91; p < 0.001) and 12 months of treatment
(3.32 ± 1.12; p< 0.001) compared to baseline (5.05 ± 0.77). CRP
decreased from 14.8 ± 14.9 mg/l at baseline to 5.3 ± 5.3 mg/l
after 6 months (p < 0.001) and 7.4 ± 7.7 mg/l after 12 months
(p = 0.001). Similar observations were made in the 5 mg bid and
10 mg bid subsets (data not shown).

Effects of tofacitinib on vascular
pathophysiology

Carotid IMT significantly increased after 6 months
(0.56 ± 0.12 mm; p = 0.05) and 12 months (0.59 ± 0.14 mm;
p = 0.002) compared to baseline (0.53 ± 0.11 mm) in the full
cohort. In the 5mg bid subset, there was no difference in IMT
between 6 months and baseline. However, after 12 months, IMT
significantly increased vs. baseline (p = 0.007). In the 10 mg bid
subset, there were no significant differences in IMT after 6 or
12 months compared to baseline (Figure 3). In the total cohort,
as well as in the 5 mg bid and 10 mg bid subsets, neither FMD
nor PWV showed any significant changes over time (Figure 3).

Effects of tofacitinib therapy on
l-arginine metabolism

In the full cohort, tofacitinib significantly increased
L-arginine levels by 6 (p = 0.004) and 12 months (p = 0.043).
Similar pattern was observed in the 10 mg bid subset (p = 0.004
and p = 0.013, respectively) but not in the 5 mg bid subset
(Figure 4A).

L-citrulline levels showed a transient increase in the full
cohort. L-citrulline increased after 6 months vs. baseline
(p = 0.006) but significantly decreased after 12 months
compared to 6 months (p = 0.023). Tofacitinib 10 mg bid also

transiently increased L-citrulline after 6 months (p = 0.018). No
change was observed in the 5 mg bid subset (Figure 4B).

In the full cohort, L-ornithine also increased after 6 months
vs. baseline (p = 0.025). Then, L-ornithine levels showed a
tendency to remain higher after 12 months (p = 0.119). There
was no significant difference between L-ornithine levels after
6 and 12 months. In the 10 mg bid subset, L-ornithine levels
were significantly higher after both 6 (p = 0.018) and 12 months
(p = 0.020) vs. baseline. Again, L-ornithine production did not
change over time in the 5 mg bid subset (Figure 4C).

We also determined L-arginine/L-citrulline and
L-arginine/L-ornithine ratios at 6 and 12 months. These
ratios reflect the above described balances between pro- and
anti-inflammatory mechanisms that may, at least in part, lead
to clinical improvement upon tofacitinib treatment. Both
L-arginine/L-citrulline (p = 0.007) and L-arginine/L-ornithine
ratio (p = 0.035) significantly but transiently decreased after
6 months. Both ratios returned to the baseline level after
12 months (data not shown).

Inducible nitric oxide synthase (iNOS) levels after
12 months were significantly higher compared to both
baseline (p = 0.045) and 6 months (p = 0.020) in the full
cohort. There was no difference between 6 months and baseline.
Similar pattern was observed in the 10 mg bid subset (p = 0.047
and p = 0.043, respectively), but not in the 5 mg bid subset
(Figure 4D).

Tofacitinib treatment did not change ADMA (Figure 4E) or
SDMA levels (Figure 4F) over time. No changes were seen in the
full cohort, 5 mg or 10 mg bid subsets.

Finally, L-NMMA levels also showed a transient increase
upon tofacitinib therapy. In the full cohort, L-NMMA was
significantly increased after 6 months (p = 0.008), but then levels
dropped after 12 months compared to 6 months (p = 0.048).
Similar pattern was observed in the 10 mg bid subset (p = 0.044
and p = 0.047, respectively). There was no change in L-NMMA
in the 5 mg bid subset (Figure 4G).

Effect of tofacitinib on metabolites in
the methionine cycle

In the full cohort, cysteine showed a “late” increase after
12 months compared to baseline (p = 0.028) and 6 months
(p = 0.005). There was no difference between baseline and
6 months. This increase was not observed in the 5 mg bid or
10 mg bid subset (Figure 5A).

Homocysteine levels did not change between 6 months
and baseline, however, later significant decreases were observed
between 6 and 12 months in the full cohort (p = 0.047), as well as
in the 10 mg bid subset (p = 0.049). No changes in homocysteine
levels were seen in the 5 mg bid subset (Figure 5B).
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FIGURE 3

Effects of one-year tofacitinib therapy on (A) flow-mediated vasodilation (FMD). (B) carotid intima-media thickness (IMT) and (C) arterial
pulse-wave velocity (PWV). In the full cohort and in the 5 mg bid group there was a progression in IMT after 12 months. In contrast, 10 mg bid
tofacitinib was able to halt IMT progression. Both doses of tofacitinib slowed down FMD and PWV progression.

Finally, methionine levels increased after 6 months versus
baseline in the full cohort (p = 0.005) and in the 10 mg bid
subset (p< 0.001). In addition, methionine levels increased after
12 months compared to baseline in the full cohort (p < 0.001),
as well as in the 5 mg bid (p = 0.002) and the 10 mg bid arms
(p < 0.001) (Figure 5C).

Correlations between levels of
metabolites with each other and with
other parameters

Table 2 shows uni- and multivariate regression analysis of
metabolites as dependent variables. In general, the univariate
analysis suggests that baseline and 12-month L-arginine,
L-citrulline, L-NMMA, ADMA, homocysteine and methionine
levels variably correlate with disease activity/inflammation
(DAS28, CRP, ESR) or seropositivity (RF, CCP). The correlations
with DAS28 are positive, while those with CRP, ESR and
CCP are negative. RF positively correlated with L-arginine
and L-citrulline, but negatively with ADMA, L-NMMA and
homocysteine. Baseline disease duration may also determine
L-NMMA after 12 months.

There were sporadic correlations between vascular
parameters and arginine or methionine metabolites. FMD
negatively correlated with arginine and methionine at baseline.
IMT positively correlated with ADMA and L-NMMA at

6 months. PWV positively correlated with homocysteine at
baseline and methionine at 12 months.

The multivariate analysis confirmed variable correlations of
L-arginine, L-citrulline, ADMA, L-NMMA, homocysteine and
methionine after one-year treatment with DAS28, CRP, ESR
and RF, but not with anti-CCP. Interestingly, most correlations,
except for two, were observed regarding 12-month levels of the
urea and methionine cycle metabolites. With respect to vascular
pathophysiology, only PWV and methionine after 12 months
correlated with each other (Table 2).

Repeated measures analysis of variance (RM-ANOVA) was
performed in order to determine the effects of tofacitinib
treatment in combination with other parameters on changes in
the levels of metabolites over time. Six-month change (increase)
in L-citrulline levels was significantly determined by tofacitinib
treatment together with either lower ESR or higher RF at
baseline. After 6 months, L-citrulline decreased to the level of
baseline. Moreover, 12-month changes in homocysteine levels
correlated with treatment in combination with lower ESR at
baseline (Table 3).

Discussion

Rheumatoid arthritis (RA) is characterized by systemic
inflammation and high risk for CVD. In the present study, we
have followed endothelial function (FMD), vascular stiffness
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FIGURE 4

Effects of one-year tofacitinib therapy on metabolites in the urea cycle. (A) L-arginine levels increased in the full cohort and in the 10 mg bid
subset after 6 and 12 months. (B) L-citrulline production transiently increased in the full cohort and the 10 mg bid subset after 6 months.
(C) L-ornithine levels increased overtime in the full cohort and in the 10 mg bid subset after 6 and 12 months. (D) iNOS release increased in the
full cohort and in the 10 mg bid subset after 12 months. (E) ADMA and (F) SDMA levels did not change overtime. (G) L-NMMA production
transiently increased in the full cohort and the 10 mg bid subset after 6 months.

(PWV) and intima-media thickness (IMT) during one-
year treatment with tofacitinib. We applied a metabolomic
approach in order to evaluate the dose dependent effect of
tofacitinib treatment on arginine and methionine metabolism
in association with the level of inflammation and vascular
pathology. The two amino acids are interacting with each other
as methionine is the source of methylation of arginine on
proteins and alters homocysteine and cysteine synthesis (51–53).

One-year tofacitinib treatment decreased CRP, ESR and
DAS28 showing significant antiinflammatory effects and
improving functional status.

Tofacitinib has significantly increased arginine and
methionine levels during the one-year treatment. Inflammation
with increased Il-6 level decreases muscle protein synthesis and
increases amino-acid uptake of other organs decreasing the
amino-acid level (54). As tofacitinib, among other cytokines,
suppresses IL-6 production it might potentially reverse the
effect described above, promoting an increase in plasma
level of amino acids.

Citrulline and ornithine level may represent the balance
between inflammatory and anti-inflammatory macrophages
or other cell types. Citrulline and ornithine levels increased

significantly at 6 months and returned to baseline in the
whole group. The increasing citrulline may represent flaring
inflammation with producing destructive NO production by M1
type macrophages or other inflammatory cells. The decrease of
CRP, ESR and DAS28 at 6 months represented inhibition of
inflammation, thus the increased NO production most likely
belonged to endothelial cells. The increased ornithine level,
however, may represent increased arginase activity in M2 type
macrophages in parallel with the anti-inflammatory effect of
tofacitinib. We do not have enough data to explain why
citrulline and ornithine levels returned to baseline at 12 months
and what is the clinical significance of the significantly higher
level of ornithine in the 10mg BID tofacitinib group at
12 months. There has been only one cross-sectional study
assessing metabolites of arginine in RA (27). In that study,
decreased levels of plasma arginine and citrulline, elevated levels
of L-ornithine and elevated arginase activity was found in RA
patients compared to controls. In that patient group the CRP
and ESR levels were almost normal so those patients represented
marked anti-inflammatory macrophage activity with increased
arginase level. In our patient group the CRP and ESR values were
high even after tofacitinib treatment, which might explain we
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FIGURE 5

Effects of one-year tofacitinib therapy on metabolites in the methionine cycle. (A) Cysteine levels increased overtime in the full cohort after
12 months. (B) Homocysteine production decreased in the full cohort and the 10 mg bid subset after 12 months. (C) Methionine levels increased
overtime in the full cohort and in the 10 mg bid subset after 6 and 12 months and also in the 5 mg bid subset after 12 months.

did not see decreasing arginine and major shift in the ornithine
and citrulline ratio.

Inducible nitric oxide synthase (iNOS) level was
significantly higher at 12 months in the whole ant the 10mg
BID groups. In an in vitro observation of the effect of tofacitinib
on human dendritic cells and macrophages, tofacitinib induced
M1 macrophage phenotypes with iNOS expression and IL-12
and IL-23 production (55). However, it should be considered
that tofacitinib was combined with methotrexate in our study.
Methotrexate inhibits M1 and promotes M2 macrophage
differentiation through adenosine receptors. At the same time
it is JAK1/JAK2 inhibitor also (56). Our study suggests that
the interaction between methotrexate and tofacitinib might
shift to M2 macrophage activity with slight increase in arginase
activity and ornithine level and inhibition of the cells with iNOS
expression especially at higher dose of tofacitinib.

Similarly to arginine, methionine level significantly
increased at 6 and 12 months. Methionine, as an essential
amino acid, is highly involved in the methylation of different
proteins and nucleic acid (32). Methylations could modulate
T cell functions, impairing Th1/Th2 cytokines release, and
decreasing T cell proliferation and activation. Furthermore,
epigenetic regulations play a significant role in gene expression
affecting immunocyte function and signaling pathways (32).
Global DNA hypomethylation in RA synovial fibroblasts
contributes to their intrinsic activation (57). In our study the
increased methionine availability during tofacitinib treatment

may provide at least appropriate methylation status mediating
anti-inflammatory effects. However, homocysteine level did
not change significantly from the baseline level with increasing
methionine indicating the same level of methylation reactions.
Following methionine and homocysteine levels are not
conclusive to describe the change in inflammation during
tofacitinib treatment. There was an increase in cysteine and a
decrease in homocysteine synthesis at 12 months. Increased
cysteine synthesis initiates more glutathione production, which
enhance cellular protection against oxidative stress (58).

Tofacitinib therapy did not alter endothelial function and
vascular stiffness measured by FMD and PWV, respectively. In
most studies, impairment of FMD (19, 20, 31, 47, 59, 60) and
increasing PWV (31, 47, 61–63) were observed in RA. Our study
suggests that one year tofacitinib therapy was able to prevent
further worsening of endothelial function and arterial stiffness,
respectively. In contrast, carotid atherosclerosis (IMT) further
deteriorated overtime despite tofacitinib therapy. In numerous
studies, IMT was between 0.63 and 0.73 mm in RA compared
to 0.54-0.62 mm in healthy controls (19, 20, 31, 64–66). In
our present study, the mean baseline IMT was only 0.53 mm
(range: 0.40–0.66 mm), which is similar to healthy subjects
in other studies. Although, IMT progressed despite tofacitinib
treatment, it does not mean that tofacitinib would promote
atherosclerosis. One year of tofacitinib treatment may not be
long enough to suppress atherosclerosis. Very recently, in the
ORAL Surveillance study, tofacitinib treatment in comparison
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TABLE 2 Univariable and multivariable analysis of determinants of metabolites as dependent variables.

Dependent
variable

Independent
variable

Univariable regression analysis Multivariable regression analysis

β p B 95% CI β p B 95% CI

L-arginine-0 CRP-0 –0.386 0.041 –0.441 –0.886 – 0.003

L-arginine-12 CRP-0 –0.386 0.041 –0.441 –0.886 – 0.003

CRP-12 –0.392 0.047 –0.888 –1.766 to –0.011 –0.522 0.004 –1.182 –1.943 to –0.421

RF-12 0.413 0.036 0.044 0.003 – 0.084 0.539 0.003 0.057 0.021 – 0.093

L-citrulline-0 CRP-0 –0.421 0.032 –0.296 –0.564 to –0.027

ESR-0 –0.432 0.027 –0.226 –0.426 to –0.027 –0.432 0.027 –0.226 –0.426 to –0.027

L-citrulline-12 RF-0 0.585 0.002 0.024 0.010 – 0.038 0.585 0.002 0.024 0.010 – 0.038

RF-12 0.441 0.024 0.022 0.003 – 0.042

L-ornithine-0 –

L-ornithine-12 DAS28-12 –0.430 0.028 –3.968 –7.477 to –0.458

iNOS-0 –

iNOS-12 –

ADMA-0 CRP-0 –0.563 0.003 –0.006 –0.010 to –0.002 –0.563 0.003 –0.006 –0.010 to –0.002

ESR-0 –0.496 0.010 –0.004 –0.007 to –0.001

aCCP-0 –0.456 0.019 0 0 – 0

RF-0 –0.467 0.016 0 –0.001 – 0

ADMA-12 DAS28-12 0.465 0.017 0.099 0.020 – 0.178 0.544 <0.001 0.116 0.061 – 0.171

CRP-0 –0.594 0.001 –0.007 –0.012 to –0.003 –0.659 <0.001 –0.008 –0.012 - -0.005

CRP-12 –0.421 0.032 –0.010 –0.020 to –0.001

ESR-0 –0.379 0.046 –0.004 –0.007 – 0

aCCP-0 –0.488 0.011 0 0 – 0

aCCP-12 –0.508 0.008 0 0 – 0

SDMA-0 –

SDMA-12 –

L-NMAA-0 ESR-0 –0.406 0.040 –0.003 –0.006 – 0

RF-0 –0.465 0.017 0 –0.001 – 0

L-NMAA-12 disease duration 0.462 0.017 0.016 0.003 – 0.029 0.383 0.028 0.014 0.002 – 0.025

CRP-12 –0.517 0.007 –0.011 –0.019 to –0.003 –0.449 0.011 –0.010 –0.017 - -0.002

Cysteine-0 –

Cysteine-12 –

Homocysteine-0 ESR-0 –0.517 0.007 –0.105 –0.178 to –0.032

Homocysteine-12 CRP-0 –0.428 0.029 –0.074 –0.140 to –0.008

aCCP-0 –0.386 0.042 –0.001 –0.002 – 0

aCCP-12 –0.439 0.025 –0.001 –0.002 – 0

RF-12 –0.449 0.021 –0.003 –0.013 to –0.001 –0.449 0.021 –0.003 –0.013 - -0.001

Methionine-0 CRP-0 –0.412 0.037 –0.105 –0.193 to –0.007

Methionine-12 DAS28-0 –0.417 0.034 –2.739 –5.252 to –0.225 –0.433 0.012 –2.844 –4.345 – -0.334

CRP-12 –0.398 0.044 –0.241 –0.476 to –0.007

PWV-12 0.486 0.012 1.472 0.352 – 2.598 0.498 0.005 1.515 0.517 – 2.512

aCCP, anti-cyclic citrullinated peptide; ADMA, asymmetric dimethylarginine; CI, confidence interval; CRP, C-reactive protein; DAS28, 28-joint disease activity score; ESR, erythrocyte
sedimentation rate; FMD, flow-mediated vasodilation; iNOS, inducible nitric oxide synthase; L-NMMA, L-N-monomethyl arginine; PWV, pulse-wave velocity; RF, rheumatoid factor;
SDMA, symmetric dimethylarginine.

to anti-TNF therapy was associated with increase risk of major
cardiovascular events (67). That study, on contrast to ours,
included RA patients with at least one cardiovascular risk
at baseline and the average age of that patient group was
10-year older, than ours. The latest integrated safety analysis

did not find increased cardiovascular risk upon tofacitinib
therapy (68).

One-year tofacitinib treatment decreased CRP, ESR and
DAS28 showing significant antinflammatory effects but it did
not show major effect on vascular function. There has been

Frontiers in Medicine 11 frontiersin.org

https://doi.org/10.3389/fmed.2022.1011734
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1011734 November 4, 2022 Time: 15:47 # 12

Soós et al. 10.3389/fmed.2022.1011734

TABLE 3 Significant results of general linear model (GLM) repeated measures analysis of variance (RM-ANOVA) test determining the effects of
treatment and other independent variables on 12-month changes in the levels of metabolites as dependent variables.

Dependent variable Effect F p Partial η2

L-citrulline 0-6 treatment * lower ESR-0
treatment * higher RF-0

8.855
22.578

0.007
<0.001

0.270
0.485

Homocysteine 0-12 treatment * lower ESR-0 5.273 0.031 0.180

ESR, erythrocyte sedimentation rate; RF, rheumatoid factor.

only one study where IMT did not significantly change during
one year tofacitinib treatment (10mg/day) in a methotrexate
resistant patient group. In this study cardio-ankle vascular index
and augmentation index decreased significantly after one-year
treatment (45). The notable difference between their study
and ours, that the CRP level was twice higher in our study
at 1 year. This might explain why only 20mg/day tofacitinib
were effective in our study to inhibit significant increase in
IMT. We did not find any other studies where tofacitinib or
any other JAK inhibitors were studied in relation to FMD or
PWV. Other investigators also did not find association between
vascular function or morphology and ADMA or SDMA in RA
(69, 70).

Arginine, citrulline, ornithine and global arginine
bioavailability ratio (GABR) [arginine/(citrulline + ornithine)]
were measured in patients with and without coronary artery
disease (CAD). The prevalence of CAD and risk of death or
major adverse cardiovascular events (MACE) were evaluated
at 3 years with decreasing quartiles of arginine and GABR
and increasing quartiles of citrulline and ornithine. The best
predictor for CAD, MACE and death was GABR and >1.46
characterized the smallest risk. This study suggested that
arginine availability is an important predictor in vascular
pathology (71). In our study, the calculated GABR was
1.47 ± 0.41, 1.31 ± 0.36, 1.49 ± 0.38 at 0, 6, and 12 months,
respectively. These numbers put our patient group in low-
risk categories for CAD, death and MACE. The individual
concentrations of arginine, citrulline and ornithine represented
low risk categories also during tofacitinib treatment. This
may explain that tofacitinib has not altered endothelial
function (FMD) and vascular stiffness (PWV) during one-
year treatment. At higher concentration tofacitinib inhibited
carotid atherosclerosis maybe because that patient group had
the highest arginine bioavailability. We could not find any
correlation between the vascular parameters and arginine or
methionine metabolism, most likely because the measured
parameters were in the normal range. This study was not
controlled, however, as a historical control, previous studies
indicated that impaired FMD and increased IMT and PWV
have been associated with RA (17, 18, 31, 39, 47, 72) and
biologics including TNF blockers and others may, at least
transiently, improve endothelial function, atherosclerosis and
arterial stiffness or at least slow down the progression of these
parameters [reviewed in Szekanecz et al. (39)].

Methylated arginine derivatives are enriched in the
plasma after proteolysis (73–75) and the DDAH enzyme
transforms ADMA and L-NMMA to L-citrulline (73). Increased
circulating ADMA levels have been associated with RA and
spondyloarthritides (28, 29). Similarly to increasing citrulline
and ornithine, increasing ADMA level increased the risk
for MACE in a patient groups of peripheral artery disease
or in CAD (30, 76, 77). In patients with peripheral artery
disease ADMA level < 0.68 µmol/l represented the lowest
quartile for hazard ratio for MACE. In our study the ADMA
level was between 0.6 and 0.64 µmol/l range representing a
normal level and low risk for MACE. This ADMA level did
not change significantly during the study period. The effects
of targeted therapies on ADMA may be controversial (24, 78).
TNF-α inhibits ADMA degradation by inhibition of DDAH
and thus increases ADMA levels (78). Anti-TNF therapy
decreased ADMA levels in a few (78) but, similarly to ours,
not in most studies (79–81). The L-arginine/ADMA ratio is
important for modulation of NOS activity and it is a risk factor
for atherosclerosis (82, 83). TNF-α inhibitors may increase
L-arginine/ADMA ratios at 3 and 12 months of treatment (84).
We observed a similar pattern in our present study applying
tofacitinib therapy. Although the L-arginine/ADMA ratio did
not change significantly in our study, the higher L-arginine
levels along with unchanged levels of ADMA might contribute
to the inhibition of carotid wall thickening at the higher dose of
tofacitinib therapy. We have recently reported that tofacitinib
attenuated vascular inflammation as determined by PET/CT
(44). Based on our study the increased arginine level, high
arginine availability for NO synthesis and high arginine/ADMA
ratio may explain the attenuation of vascular inflammation
during tofacitinib treatment.

Although, methionine showed a negative correlation with
FMD at baseline, increased methionine level at 6 and 12 months
did not change FMD significantly. The effect of chronic
elevation of methionine on FMD is different from the results of
previous studies where methionine load increased homocysteine
level and decreased FMD in healthy individuals and patients
with various diseases (34–36). Elevated homocysteine and
cysteine levels were associated with decreased FMD across
menopausal stages in healthy women. In this study methionine
showed a positive correlation with FMD (49). Homocysteine
level is higher in RA compared to normal population (85).
In our longitudinal study homocysteine level was higher
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than normal and there was no significant difference between
baseline and 12-month values although the methionine level
increased significantly. In conclusion, tofacitinib treatment
increase methionine level without altering homocysteine level
and endothelial function. There was a positive correlation
between methionine and PWV at 12 month in our study.
On the other hand, there was no significant change in PWV
at 12 months compared to baseline values. In comparison
with FMD, PWV is not changing with methionine load
(37). However, multiple studies showed association between
homocysteine and PWV in various diseases (86–88). One year
tofacitinib treatment did not alter PWV significantly in the
presence of high homocysteine and methionine level suggesting
not progressing vascular stiffness in our patient population.

Arginine, citrulline, ADMA, L-NMMA, homocysteine and
methionine variably correlated with DAS28, CRP and ESR.
Interestingly, these metabolites showed inverse correlations with
CRP, a marker of systemic inflammation suggesting that the
levels of some of these metabolites increase in parallel with
attenuation of CRP levels by JAK inhibition. Some reports also
found low levels of arginine and citrulline in severe infectious
and inflammatory states associated with elevated CRP release
(89, 90).

Our study has certain advantages and limitations. There
have been no similar prospective studies assessing metabolites
of the urea and methionine cycle in association with
disease activity, autoantibodies and vascular pathophysiology
in RA patients undergoing any targeted treatments. Possible
limitations may include the relatively low number of RA patients
and the lack of control group due to the fact that this is a
self-controlled prospective study.

In conclusion, we propose that in our RA cohort, tofacitinib
treatment, in parallel with its anti-inflammatory action,
normalized the balance of amino acid metabolism and
protected vascular function at least for one year. Although
we did not assess M1 and M2 macrophages our results
suggested that tofacitinib might shift the arginine metabolism
to anti-inflammatory direction. The higher methionine
level might also contribute to anti-inflammatory immune
modulation. Endothelial function and arterial stiffness have
not changed in one-year tofacitinib treatment partly due to
the high arginine availability and not increasing ADMA level.
Increasing methionine level did not associated with higher
homocysteine level and did not alter FMD and PWV. The
mechanism of increasing IMT during tofacitinib treatment
needs further investigation.
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