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Abstract

To understand the brain mechanisms of olfaction we must understand the rules that govern the link between odorant
structure and odorant perception. Natural odors are in fact mixtures made of many molecules, and there is currently no
method to look at the molecular structure of such odorant-mixtures and predict their smell. In three separate experiments,
we asked 139 subjects to rate the pairwise perceptual similarity of 64 odorant-mixtures ranging in size from 4 to 43 mono-
molecular components. We then tested alternative models to link odorant-mixture structure to odorant-mixture perceptual
similarity. Whereas a model that considered each mono-molecular component of a mixture separately provided a poor
prediction of mixture similarity, a model that represented the mixture as a single structural vector provided consistent
correlations between predicted and actual perceptual similarity (r$0.49, p,0.001). An optimized version of this model
yielded a correlation of r = 0.85 (p,0.001) between predicted and actual mixture similarity. In other words, we developed an
algorithm that can look at the molecular structure of two novel odorant-mixtures, and predict their ensuing perceptual
similarity. That this goal was attained using a model that considers the mixtures as a single vector is consistent with a
synthetic rather than analytical brain processing mechanism in olfaction.
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Introduction

One hundred years ago, Alexander Graham Bell asked: ‘‘Can

you measure the difference between one kind of smell and another.

It is very obvious that we have very many different kinds of smells,

all the way from the odor of violets and roses up to asafetida. But

until you can measure their likenesses and differences you can

have no science of odor.’’ [1]. Although the challenge posed by

Bell has been widely recognized in olfaction research [2,3], the

field has yet to gravitate to an agreed upon system for odor

measurement.

Early investigations into quantification of odor revolved around

an effort to identify odor primaries, similar to the notion of

primary colors in vision [4]. A major tool in this effort was the

quantification of specific anosmias [5]. Although specific anosmia

remains a powerful tool for linking odor perception to olfactory

neurobiology [6,7], this path did not generate a general method to

quantify olfactory perception. A conceptually similar approach

was an effort to identify specific odorant molecular features that

drove specific olfactory perceptual notes. This approach, referred

to as structure-odor-relationships or SOR [8], identified many

specific rules linking structure to odor (e.g., what structure

provides a ‘‘woody’’ note), but failed to produce a general

framework for measuring smell.

An alternative path to measuring smell was to identify general

perceptual primaries rather than individual odorant primaries

[9–12]. This approach, consisting of applying statistical dimen-

sionality reduction to many perceptual descriptors applied to many

odorants, repeatedly identified odorant pleasantness, namely an axis

ranging from very unpleasant to very pleasant, as the primary

dimension in human olfactory perception [13–18]. Initial efforts to

link such perceptual axes to odorant structural axes saw only

limited success because of the limited scope of physicochemical

features one could easily obtain for a given molecule [19].

However, the recent advent of software that provides thousands of

physicochemical descriptors for any molecule (e.g., Dragon

software, Talete, Milan, Italy) now allowed application of similar

dimensionality reduction to odorant structure as well. This process

revealed odorant structural dimensions that were modestly but

significantly predictive of odorant perception [17] and odorant-

induced neural activity across species [20–24].

Although the above studies combine to generate an initial form

of olfactory metrics, they all apply to mono-molecular odorants

alone. The real olfactory world, however, is not made of mono-

molecules, but rather of complex olfactory multi-molecular

mixtures. For example, roasted coffee [25], red wine [26], or rose

[27], each contain hundreds of different mono-molecular species,

many of them volatile. Thus, a useful metric for smell must apply

to such odorant-mixtures. Although an ultimate metric would

predict exactly how such mixtures smell in verbal descriptor terms,

an initial interim goal is to predict their perceptual similarity. With

this in mind, we collected perceptual similarity estimates from a
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large group of subjects rating a large group of odorant-mixtures of

known components. We then tested alternative models linking

odorant-mixture structure to odorant-mixture perceptual similar-

ity, and identified a model and algorithm that provided a

meaningful predictive framework. Using this algorithm we can

now look at two novel mono-molecular odorants, or multi-

component odorant-mixtures, and predict a significant portion of

their ensuing perceptual similarity.

Results

Selecting components for odorant-mixtures
Odorants can generally be described by a large number of

perceptual or structural descriptors. Dravnieks’ atlas of odor

character profiles includes 138 mono-molecules, each described by

146 verbal descriptors of perception. We call this the ‘perceptual

odor space’. Odorants can also be described by a large set of

structural and physicochemical descriptors. We selected 1358

odorants commonly used in olfaction research, and obtained 1433

such descriptors using Dragon software (v. 5.4, Talete, Milan,

Italy) (note that Dragon provides 1664 descriptors, but 231

descriptors were without values for the molecules we modeled).

Since the different descriptors measure properties on differing

scales we normalized the Dragon data so that the values of each

descriptor ranged between 0 and 1. That is, for each descriptor d

we have a set of 1358 values ld (barring missing values). Each

values v in the list ld is normalized to the value vn by the equation

v{min(ld)

max(ld){min(ld)
ðEquation1Þ

We call this normalized data the ‘physicochemical odor space’

(Table S1 contains the odorants we modeled and their descriptor

values). To form odorant-mixtures, we obtained 86 mono-

molecular odorants that were well-distributed in both perceptual

Figure 1. Odorant selection and comparison. The odorants we used are plotted in red, presented within: (A) Perceptual space: 138 odorants
commonly used in olfaction research, projected onto a two-dimensional space of PC1 (30.8% of the variance) and PC2 (12% of the variance) of
perception. (B) Physicochemical space: 1358 odorants commonly modeled in olfaction research projected onto a two-dimensional space made of
PC1 (37.7% of the variance) and PC2 (12.5% of the variance) of structure. (C) A schematic reflecting mixture comparisons in Dataset #1 in Table S2.
Each mixture was compared to all other mixtures with zero overlap in component identity, and to itself. Note that this schematic reflects one quarter
of the data, as we had eight versions of each mixture size.
doi:10.1371/journal.pcbi.1003184.g001

Author Summary

One hundred years ago, Alexander Graham Bell asked:
‘‘Can you measure the difference between one kind of
smell and another? It is very obvious that we have very
many different kinds of smells, all the way from the odor of
violets and roses up to asafetida. But until you can
measure their likenesses and differences you can have no
science of odor.’’ Here we developed a computational
framework and algorithm that looks at the molecular
structure of two odors and predicts their ensuing
perceptual similarity. Importantly, the algorithm works
for odors that are each composed of a mixture containing
tens of different molecules, much like natural smells. The
algorithm that worked best was one that treats the odor-
mixture as a single value, rather than a bunch of values
reflecting each of its components. This is consistent with
the growing view of how the mammalian brain treats
odors: synthesizing a singular odor percept rather than
analytically extracting individual odorant features from the
odor-mixture. In conclusion, our algorithm’s performance
may contribute to the practice of the science of odor, and
our algorithm’s nature may contribute to the understand-
ing of brain mechanisms of smell.

Predicting Odor Similarity
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(Figure 1A) and physicochemical (Figure 1B) stimulus space

(Dataset #1 in Table S2). We then diluted each of these odorants

separately to a point of about equal perceived intensity as

estimated by an independent group of 24 subjects, and prepared

various odorant mixtures containing different numbers of such

equal-intensity odorant components. Importantly, to prevent

formation of novel compounds, odorant mixtures were not mixed

in the liquid phase, but rather each component was dripped onto a

common absorbing pad in a sniff-jar, such that their vapors alone

mixed in the jar headspace (the integrity of this method was later

verified in Dataset #2 in Table S2 using gas-chromatography

mass-spectrometry (GCMS), see Methods). We prepared several

different versions for each mixture size containing 1, 4, 10, 15, 20,

30, 40 or 43 components, such that half of the versions were well-

spread in perceptual space, and half of the versions were well-

spread in physicochemical space.

We conducted pairwise similarity tests, using a visual

analogue scale (VAS) (see Methods), of 191 mixture pairs, in

48 subjects (24 women, average of 14 subjects per comparison).

Each target mixture (1, 4, 10, 15, 20, 30, 40 or 43 components)

was compared to all other mixtures (1, 4, 10, 15, 20, 30, 40 or

43 components), and as a control, to itself. Other than

comparisons of a mixture to itself (44 comparisons), all

comparisons were non-overlapping (147 comparisons), i.e. each

pair of mixtures under comparison shared no components in

common (Figure 1C) (Table S2 contains all the similarity

estimates for the three datasets used in this study).

The pairwise distance model for odorant-mixture
similarity

One simple model for predicting the perceptual difference

between mixtures is to measure all pairwise Euclidean physico-

chemical distances between all individual mixture components,

and then average them. This approach treats each mixture

component individually (Figure 2A). To test this model, we

obtained the 1433 physicochemical descriptors for each of the 86

mono-molecular components we used. We found that the mean

pairwise Euclidean distance over all the descriptors of all mono-

molecular components comprising any two mixtures was a poor

predictor of perceptual similarity between the two mixtures. The

relationship between pairwise-distance and perceived similarity

did not fit any simple model, linear or other (Figure 3A).

Moreover, the distribution of this relationship was clearly skewed

by the similarity ratings given to the comparisons of a mixture to

itself, yet eliminating these comparisons revealed a significant

correlation in the opposite direction (r = 0.46, p,0.0001)

(Figure 3B). In other words, this model implied that odor-mixtures

identical in structure will be the furthest apart in perceptual

similarity. Given this clear failing-point of the model, we set out to

investigate an alternative model.

The angle distance model for odorant-mixture similarity
An alternative model is to consider the mixture as a whole

rather than a set of constituents (Figure 2B). To test this, we used

the same 1433 physicochemical descriptors for each mono-

molecular mixture component, but this time we created a single

vector representing the whole mixture by summing the vectors of

its components. To eliminate the effect of the number of

components in a mixture on the size of the mixture vector, we

divided it by its norm. Thus, each mixture was now represented by

a vector made of 1433 descriptors. We then defined the distance

between the vector of mixture U and the vector of mixture V, as

the angle between the two vectors, given by:

h(~UU ,~VV )~ arccos
~UU :~VV

D~UU DD~VV D

 !
ðEquation2Þ

where U?V is the dot product between the vectors, and |U|,|V|

are the norms of the vectors. We found that this angle distance was

strongly predictive of perceived mixture similarity (r = 20.76,

p,0.0001) (Figure 3C). Omitting comparisons of mixtures to

themselves resulted in a correlation of r = 20.49, p,0.0001

(Figure 3D). Unlike the pairwise distance model, this model did

not predict that physically identical mixtures would in fact smell

dissimilar. Therefore, we set out to optimize this model.

Optimizing the angle distance model
In order to optimize the model, we first set out to collect an

independent dataset (Dataset #2 in Table S2). To address the

possibility that the performance of our model was somehow

influenced by the nature of our mixtures, whose components were

selected to span olfactory space, the components for Dataset #2 in

Table S2 mixtures were selected randomly. We randomly selected

43 molecules out of the 86 equated-intensity molecules, and made

13 mixtures of 4–10 randomly selected components. Thus, unlike

in Dataset #1 in Table S2, and more like odors in the real world,

here there was some overlap in components across mixtures.

Twenty-four subjects (13 women) conducted pairwise similarity

tests of all 91 possible pairs plus 4 comparisons of identical

mixtures for a total of 95 comparisons (each such comparison was

repeated twice). Subjects conducted the similarity tests within four

sessions on four consecutive days (,48 comparisons per day).

Comparisons were counter-balanced for order.

Model optimization: Selecting chemical descriptors
through simulation

We set out to extract the most relevant chemical descriptors for

predicting perceptual similarity using the angle distance model. In

order to do so, we needed to compare the quality of predictions

based on different combinations of descriptors. However, because

our data includes 1433 different descriptors, it was impossible to

compare all possible selections of descriptors in order to pick the

best performing selection (21433 possibilities). With this in mind, we

first set out to model the total number of descriptors our model

would rely on.

Step 1: Selecting the number of descriptors
The first step in our optimizing method was to decide on the

number of features (descriptors) we were going to look for. To do

this we used a random half of Dataset #2 in Table S2 as a

training-set (47 comparisons) and ran a simulation on it. In the

simulation we ran through each number of features from 1 to 100.

For each number of features n we selected 20,000 random samples

of descriptors sized n and calculated the root mean square error

(RMSE) for the prediction on the training set comparisons based

on these descriptors. For each n we then calculated the mean

RMSE and the standard deviation and plotted the result

(Figure 4A). At n = 20 the value of the mean RMSE minus the

standard deviation was the lowest (Figure 4A, the trend continues

to increase for n.100). This told us that at around 20 descriptors,

we should expect the selections that would produce the lowest

RMSE. Since our feature selection method includes the possibility

of selecting a feature twice we searched for slightly larger size sets

of features so that at the end of the process we would have about

20 descriptors.

Predicting Odor Similarity
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Step 2: Evaluating individual descriptors
Although we could have compared the performance of a

selection of descriptors, we wanted to estimate the relevance of

individual descriptors. If we selected 25 descriptors at random out

of the 1433 and based our predictive model on them, we were

likely to obtain a prediction that correlated to an RMSE of about

11 (Figure 4A). However in order to optimize our model we

wanted to distinguish those descriptors which give rise to more

accurate predictions from those that do not. In order to evaluate a

descriptor d in terms of how much it contributes to accurate

predictions we ran a simulation for each descriptor. In the

simulation for descriptor d we tested the predictive performance of

a large number of randomly selected sets of descriptors to which

we added descriptor d. We used 2000 random selections of 25

descriptors together with d and tested their predictive performance

on the same training and testing set from before. For each

selection we calculated the RMSE, and then calculated the mean

RMSE across the 2000 selections. This mean is the number

assigned to descriptor d (Figure 4B), giving us an indication of how

relevant the descriptor d is to making similarity predictions: the

lower the mean RMSE, the more relevant d is. Figure 4B is a plot

of these averages calculated for each one of the 1433 descriptors.

Figure 2. Modeling odorant mixtures as singular objects rather than component amalgamations. The top panels represent one mixture
(Y) made of 3 mono-molecular components and the bottom panels represent a different mixture (X) made of 2 mono-molecular components. The
distance between X and Y can be calculated as (A) The mean of all pairwise distances between all the components of X and Y. (B) Alternatively, one
can represent both X and Y as single vectors reflecting the sum of their components, and define the distance between them as the angle between
these two vectors within a physicochemical space of n dimensions.
doi:10.1371/journal.pcbi.1003184.g002

Predicting Odor Similarity
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As apparent in the figure, for most descriptors the average

performance for random selections that include them is about the

same. However, some descriptors stand out.

Step 3: Searching for the best selection of descriptors
The next step in our descriptor selection process was a second

simulation where we selected 4000 samples of 25 descriptor sets

based on the performance of the individual descriptors in the

second step of the selection process. We gave each of our

descriptors a non-negative score based on its mean RMSE

calculated in the first part of the process. The score was calculated

as

score~ max (0,{zscore(mean RMSE)) ðEquation3Þ

so that only descriptors with an RMSE value lower than the

average RMSE value (i.e. good-performing descriptors) were

associated with a score greater than zero. Then we proceeded to

select random samples according to the scores we just calculated.

That is, in the third step of the process, those descriptors that

performed better in the second step were more likely to be

included in the (semi) random sample. Using this method we

selected 4000 samples of 25 descriptors and picked the ones that

performed best, i.e. the selection that produced the lowest RMSE

in the training set predictions. We removed repeated descriptors

from our best performing selection of 25 descriptors and obtained

a selection of 21 descriptors that performed even better (Table 1).

The performance of the descriptors selected according to this two-

step training process was tested on the testing set and the resultant

correlation between predicted odorant-mixture similarity and

actual odorant-mixture similarity was RMSE = 6.98, r = 20.85,

p,0.001 (Figure 5). Whereas the above random selection of

descriptors may give rise to different descriptor subsets in recurring

simulations, a deterministic selection of descriptors did not

generate better results (Text S1 Section 1).

The model predicted similarity in separate datasets
One might ask how well our model performs under different

conditions. Recall that so far we had optimized our model on

Dataset #2 in Table S2 consisting of mixtures ranging in size from

4 to 10 components. We now set out to test the performance of our

model and selected descriptors on Dataset #1 in Table S2. This

set not only includes larger mixtures but also includes 43

additional molecules not included in Experiment 2. Using this

Figure 3. Performance of the pairwise distance and angle distance models. Each dot reflects a comparison between two odorant mixtures.
(A) The pairwise distance model was not predictive of mixture similarity. (B) Removing comparisons of a mixture to itself, the pairwise distance model
implies a non-logical point from which increases in structural similarity drive decreases in perceived similarity. (C) The angle distance model provides
a strong prediction of perceived similarity. (D) The angle distance model continues to provide logical results after removing comparisons of mixtures
to themselves.
doi:10.1371/journal.pcbi.1003184.g003

Predicting Odor Similarity
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set we obtained a correlation of r = 20.78, p,0.0001 for all

comparisons (Figure 6A), and r = 20.52, p,0.0001 for non-

overlapping comparisons alone (Figure 6B). To further get a sense

of how well this selection of descriptors performs on this data, we

compared its performance to that of 4000 randomly selected sets

of 21 descriptors. We measured the performance in terms of

RMSE on Dataset #1 in Table S2. The selected set of 21

descriptors predicted similarity with an RMSE of 10.66. Com-

pared to randomly selected sets of descriptors, the optimized set

performed better than 95.30% of the sets (Figure 6C). Perfor-

mance was tested using only the 147 comparisons between non-

overlapping mixtures.

The model predicted similarity in mono-molecules
One may ask how the model optimized and tested in odorant-

mixtures performs with mono-molecules. To obtain similarity

ratings for mono-molecules we pooled three experiments to form

Dataset #3 in Table S2. The first experiment included similarity

ratings by 21 subjects (11 female) between 14 pairs of mono-

molecules; the second included similarity ratings by 17 subjects (9

female) between 20 pairs of mono-molecules, and the third

included 19 subjects (6 female) rating 40 pairs of mono-molecules

for similarity. In total, 49 mono-molecules were included in this

experiment. The pool of molecules is included in the original pool

of 86 molecules in Experiment #1 and includes 42 of the 43 in the

pool of Experiment #2. In total, 74 comparisons were conducted

amongst the 49 molecules. Out of these comparisons, 65% (48

comparisons) included at least one molecule that was not used in

Experiment #2. Each comparison was repeated twice.

We applied our selected set of descriptors to Dataset #3 in

Table S2. As before, we measured the RMSE of the prediction

made based on the descriptors we selected. We obtained an

RMSE of 13.825 and r = 20.5, p,0.0001 (Figure 6D). In

comparison, using all descriptors gave r = 20.39, p,0.0001.

Thus, the set of descriptors optimized on Dataset #2 in Table S2

improved the predictive performance of our model on Dataset #3

in Table S2. Notably, Dataset #3 in Table S2 consists of 7

additional molecules that were not included in Dataset #2 in

Table S2 which was used to optimize the model. Moreover, as

previously noted, 65% of these comparisons include at least one

molecule that was not used in Experiment #2. This renders the

test on Dataset #3 in Table S2 fairly unrelated to the set of

molecules used to optimize the model.

The model predicted similarity in mono-molecules
studied independently

If our model is to be helpful to researchers in the field, it must be

applicable to data collected by others. Most published studies on

olfactory mixtures looked only at simple mixtures of 2 to 4

components, and moreover, most all did not post their raw

similarity matrices. The lack of posted raw data holds true for most

studies of mono-molecular perceptual similarity as well, with one

notable exception that we are aware of: Wright and Michels (1964)

[28] printed a large table containing the pairwise similarity ratings

given by 84 subjects to a matrix of odorants that included 33

odorants not in our experiments or model building. We applied

our model to their data. The angle-distance model, whether using

the non-optimized or optimized descriptor set, yielded a significant

correlation between predicted and actual pairwise odorant

similarity (non-optimized: r = 20.60, p,0.0001 (Figure 6E);

optimized: r = 20.49, p,0.0001 (Figure 6F); difference between

r values: z = 21.34, p = 0.18). Thus, whereas Wright and Michels

failed to predict perceptual similarity in their data [28], our model

was a significant predictor of similarity in this data collected half a

century ago. The statistically equal performance across the

optimized and non-optimized descriptors when applied to this

dataset may have resulted from several factors, including that the

odorant selection criteria may have reflected the theory they were

testing, that the molecules were not first diluted to equated

intensity, and that these were indeed mono-molecules whereas our

optimization was for the prediction of mixtures. However, the

most likely explanation for this relates to their testing procedure:

they compared similarity of all odorants to five anchor odorants.

The five anchor odorants, by definition, are a skewed represen-

tation of olfactory space. Therefore, we take this as a reminder that

researchers who set out to use the current model should consider

Figure 4. Optimizing the angle distance model. (A) Mean RMSE
for varying number of features. Plotted in grey are the standard error
values for each number of features. The lowest value was obtained at
about 20. (B) Mean RMSE per descriptor. For each of the 1433
descriptors, the mean RMSE was calculated between the similarity
ratings of mixture pairs and the angle distance model based on 2,000
selections of 25 random descriptors, one of which is the fixed descriptor
in question. A score was given to each descriptor based on this mean
RMSE for the next step.
doi:10.1371/journal.pcbi.1003184.g004
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both its optimized and non-optimized versions, especially in cases

where the data may be skewed in olfactory space.

Descriptors that predict neural activity were poorer
predictors of perceptual similarity

Based on measures of neural activity and receptor responses,

primarily in rodents, but also in humans, two independent studies

obtained two alternative sets of optimal physicochemical odor

descriptors [20,23]. We set out to compare the performance of

these sets of descriptors versus the current descriptors in predicting

perceptual similarity. Application of the Haddad descriptor set

(containing 32 descriptors) [20] and the Saito descriptor set

(containing 20 descriptors) [23] to the testing set of Dataset #2 in

Table S2 yielded RMSE = 12.4049, r = 20.3608, p = 0.01 and

RMSE = 11.2255, r = 20.5364, p,0.0001, respectively. Although

significant, these predictions are significantly weaker than those

obtained with the optimized angle distance model (difference

between r values, both z.3.16, both p,0.005).

Discussion

In this manuscript we identify a model that allows predicting

odorant-mixture perceptual similarity from odorant-mixture

structure. In this, we take an initial modest step towards generating

a measure for smell. The immediate impact of this result will be in

the design of olfaction experiments probing both perception and

neural activity, which can now be linked within a measurable

predictive framework to the structure of odorant-mixtures. For

example, one prediction of the model pertaining to mixtures that

span olfactory space (e.g., Dataset #1 in Table S2), was that as the

number of independent mono-molecular components in each of

two mixtures increases, the two mixtures should gain in similarity,

despite containing no components in common. In fact, the model

predicted that at around 30 mono-molecular equally-spaced

components, all mixtures should start smelling about the same

(Text S1 Section 2, Figure S1). We recently verified this

prediction, which culminated in the odor Olfactory White [29].

Table 1. List of 21 descriptors for optimized mixture similarity prediction.

No.
Index out of 1433
descriptors Abbreviation Description

1 19 nCIR Number of circuits (constitutional descriptors).

2 44 ZM1 First Zagreb index M1 (topological descriptors).

3 51 GNar Narumi geometric topological index (topological descriptors).

4 96 S1K 1-path Kier alpha-modified shape index (topological descriptors).

5 175 piPC08 Molecular multiple path count of order 08 (walk and path counts).

6 289 MATS1v Moran autocorrelation – lag 1/weighted by atomic van der Waals volumes (2D
autocorrelations).

7 295 MATS7v Moran autocorrelation – lag 7/weighted by atomic van der Waals volumes (2D
autocorrelations).

8 321 GATS1v Geary autocorrelation – lag 1/weighted by atomic van der Waals volumes (2D
autocorrelations).

9 351 EEig05x Eigenvalue 05 from edge adj. matrix weighted by edge degrees (edge adjacency
indices).

10 407 ESpm02x Spectral moment 02 from edge adj. matrix weighted by edge degrees (edge
adjacency indices).

11 423 ESpm03d Spectral moment 03 from edge adj. matrix weighted by dipole moments (edge
adjacency indices).

12 430 ESpm10d Spectral moment 10 from edge adj. matrix weighted by dipole moments (edge
adjacency indices).

13 433 ESpm13d Spectral moment 13 from edge adj. matrix weighted by dipole moments (edge
adjacency indices).

14 477 BELv3 Lowest eigenvalue n. 3 of Burden matrix/weighted by atomic van der Waals volumes
(Burden eigenvalues).

15 733 RDF035v Radial Distribution Function – 3.5/weighted by atomic van der Waals volumes (RDF
descriptors).

16 994 G1m 1st component symmetry directional WHIM index/weighted by atomic masses (WHIM
descriptors).

17 1005 G1v 1st component symmetry directional WHIM index/weighted by atomic van der Waals
volumes (WHIM descriptors)

18 1016 G1e 1st component symmetry directional WHIM index/weighted by Sanderson
electronegativities (WHIM descriptors)

19 1040 G3s 3rd component symmetry directional WHIM index/weighted by atomic
electropological states (WHIM descriptors)

20 1200 R8u+ R maximal autocorrelation of lag 8/unweighted (GETAWAY descriptors)

21 1295 nRCOSR Number of thioesters (aliphatic) (Functional group counts)

Listed are the names, indices and a brief definition of the 21 descriptors selected as the optimized set in our angle distance model for odorant mixture similarity
prediction.
doi:10.1371/journal.pcbi.1003184.t001
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Why the angle distance model
One may argue that there are countless potential paths to model

the contribution of the various physicochemical descriptors to the

perception of similarity, and therefore ask why angle distance

model was selected. Here we will describe the evolution of this

model in our efforts: The simplest and most naı̈ve initial solution to

the problem we addressed was the pairwise distance model, and

our initial efforts centered on its optimization. Although the details

of this effort are beyond the scope of a single manuscript, we will

note that the main weakness of the pairwise distance model is, as

previously noted, its implication that the more common molecules

two mixtures share, the more different they will smell. This is not a

problem in the lab, where one can select non-overlapping mixtures

(e.g., Dataset #1 in Table S2). In the real world, however, many

different mixtures will typically share many common components

(e.g., Dataset #2 in Table S2). We initially tackled this by adding a

parameter that assigned a variable weight to the distance between

components of one mixture that were ‘close’ to components of the

second mixture. We then added a second parameter that defined

the threshold for being considered a ‘close’ point. We optimized

the added parameters but the performance of the model did not

improve and the inconsistencies remained. In an attempt to

further generalize our model we tried replacing the Euclidean

distance that defines the pairwise distance with other typical

functions. Amongst the functions we tested was dot product. When

we did so, the other parameters that were selected in the

optimization process pointed to a unified weight for all compo-

nents in the mixtures. That is equivalent to a dot product of the

sum of vectors. That is, the data pointed to the dot product of

sums of vectors as a good model. Once we were led to a dot

product of a sum of vectors we also normalized by the size of the

vectors to eliminate the effect of the sheer number of components

in a mixture. At this point we were already very close to an angle

distance metric, after all, the cosine of the angle is the normalized

dot product. When we finally arrived at an angle distance model

the results were consistent with the comparisons of identical

mixtures and the correlation was much stronger even without any

added parameters.

Consistency with behavior and neurobiology
In simple terms, the superior performance of the angle-distance

model over the pairwise-distance model suggests a system that

does not consider each mixture component alone, but rather a

system that, through some configurational process, represents the

mixture as a whole. This is in fact highly consistent with olfactory

behavior and neural representation. In behavior, humans are very

poor at identifying components in a mixture, even when they are

highly familiar with the components alone [30]. The typical

maximum number of equated-intensity components humans can

identify in a mixture is four, this number is independent of odorant

type [31], and does not change even with explicit training [32].

Moreover, perceptual features associated with a mono-molecule

will sometimes make their way into a mixture containing that

molecule, but sometimes not, and the rules for this remain

Figure 5. Performance of the optimized angle distance model. Each dot represents a comparison between two mixtures. The optimized
model provided a strong prediction of mixture perceptual similarity from mixture structure alone.
doi:10.1371/journal.pcbi.1003184.g005
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Figure 6. Performance of the optimized angle distance model on independent data. (A) Performance of the optimized model on complete
Dataset #1 in Table S2. Each dot reflects a comparison between two mixtures. (B) The same as in panel A after omitting comparisons of mixtures to
themselves. (C) RMSE histogram reflecting the performance of random selections of 21 descriptors. The optimized selection was at an RMSE of 10.66,
which is better than 95.30% of the randomly selected sets. (D) Performance of the optimized angle distance model on mono-molecules (Dataset #3
in Table S2). (E) Performance of the angle distance model on mono-molecules tested 50 years ago independently by others [28]. (F) Performance of
the optimized angle distance model on the data in panel E. Each dot reflects a comparison between two mono-molecules.
doi:10.1371/journal.pcbi.1003184.g006
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unknown [33]. In other words, like our algorithm, human

perception groups many mono-molecular components into

singular unified percepts. This pattern, referred to as either

associative, synthetic, or configural, is in contrast to the alternative

of retaining individual mixture component identity, referred to as

dissociative, analytical, or elemental. Although these patterns are

not mutually exclusive, evidence from perception points to a

primarily configural process in olfaction. Mixture synthesis may

begin with a balance of agonistic and antagonistic interactions

between mono-molecules at olfactory receptors in the epithelium

[34,35] or at glomeruli in the olfactory bulb [36,37]. Thus, when

components compete for common receptors, they may be harder

to pick out of the mixture [38]. The configural mechanisms in

epithelium and bulb are further reflected in cortex where patterns

of neural activity induced by a mixture are unique, and not a

combination of neural activity induced by the mixtures’ compo-

nents alone [39–43]. In other words, like our algorithm, also at the

neural level, the olfactory system treats odorant-mixtures as

unitary synthetic objects, and not as an analytical combination of

components [42–49].

Limitations of the model
Although the model performed well, it has three notable

limitations. The first is that the mixtures we studied were made of

components that were first individually diluted to a point of equal

perceived intensity. Intensity influences olfactory perception in

complex ways [50–53], and some odorants, such as indole, can

sharply shift in percept with changing intensity [54]. Moreover,

whereas some odorants can increase the overall intensity of a

mixture they are added to, other odorants can reduce overall

mixture intensity [55]. Given this complexity, one may assume

that when one of two mixtures under comparison contains

intensity-sensitive molecules such as indole, the power of our

model may diminish. Notably, the independent test of our model

(Figure 6E, 6F) implied that perceived intensity equation may not

be a condition for the model to apply in the case of mono-

molecular odorants. That said, the model will likely break down in

mixtures whose components were not at all equated for perceived

intensity. With this in mind, future iterations of our model should

try to incorporate recently developed models for the prediction of

odorant detection threshold (as a proxy for intensity) [56–58].

These models may provide an intensity coefficient that would allow

applying our model to mixtures made of components that were not

first equated for intensity.

A second limitation is related to the odorants used for model

building and testing. If the odorants represent only a limited

portion of olfactory perceptual space, then our model may apply to

this portion of olfactory space alone. To protect against this, we

used the largest datasets we could find in order to build the model,

and tested our model against subsets of the data not included in

model building. Nevertheless, because the full extent of olfactory

perceptual space remains poorly defined, this remains a potential

limitation.

Finally, a similar limitation is in the selection of physicochemical

features we modeled. Again, the more features one incorporates

into a model, the smaller the risk of not capturing the relevant

sources of variance, and we modeled more than a thousand

features. That said, due to our dependence on such tools as

Dragon software, we model a large set of structural features, but

lack in physical features. Specifically, features such as boiling

point, vapor pressure, diffusion, etc., which undoubtedly have a

strong relation to olfactory perception, remain unrepresented.

In conclusion, despite the above-noted limitations, we provide

an algorithm that allows predicting odorant-mixture perceptual

similarity from odorant-mixture structure. The synthetic nature of

the algorithm is consistent with the synthetic nature of olfactory

perception and neural representation. This algorithm can now

serve as a framework for theory-based selection of components for

odorant-mixtures in studies of olfactory processing.

Methods

Subjects
We tested 139 normosmic and generally healthy subjects (63

women, between the ages of 21 and 45) who provided written

informed consent to procedures approved by the Weizmann

Institute Ethics Committee, and the Helsinki Committee.

General procedures
The experiments were conducted in stainless-steel-coated rooms

with HEPA and carbon filtration designed to minimize olfactory

contamination. All interactions with subjects during experiments

were by computer, and subjects provided their responses through a

computer keyboard or mouse. Odorant mixtures were sniffed from

jars marked arbitrarily, and presentation order was counterbal-

anced across subjects. In order to minimize olfactory adaptation, a

,40 second inter-trial interval was maintained between presen-

tations.

Equated-intensity odorants
All odorants were purchased from Aldrich Chemicals (St. Louis,

MO) in the highest available purity. All odorants were diluted with

either mineral oil, 1,2-propanediol or deionized distilled water to a

point of approximately equally perceived intensity. This perceived-

intensity equation was conducted according to previously

published methods [29]. In brief, we identified the odorant with

lowest perceived intensity, and first diluted all others to equal

perceived intensity as estimated by experienced lab members.

Next, 24 naı̈ve subjects (10 females) smelled the odorants, and

rated their intensity. We then further diluted any odorant that was

2 or more standard deviations away from the mean intensity of the

series, and repeated the process until we had no outliers. This

process is suboptimal, but considering the natural variability in

intensity perception, together with naı̈ve subjects’ bias to identify

‘‘a difference’’, and the iterative nature of this procedure, any

stricter criteria would generate an endless process.

GCMS verification
To verify that our method of odorant-mixture preparation and

delivery did not generate novel compounds, we submitted one set

of mixtures (Dataset #2 in Table S2) to analysis with GCMS. In

brief, we left the samples to sit in closed vials for several hours,

then incubated over night at 50uC. This was done to accelerate the

kinetics of any potential reactions that may have occurred. All the

individual components (mono-molecules) of the mixtures were run

separately, to ascertain their purity. The single peak retention

times and corresponding spectrum identifications were noted and

verified using Wiley Registry 9th Edition/NIST 2008 combined

mass spectral library (Wiley, New York, NY). The mixture samples

were then subjected to the same GCMS method as the single

components, and Total Ion Chromatogram peaks were validated

to contain only the expected peaks of their constituting single

components. Peaks with wide or abnormal shapes were subjected

to further spectrum deconvolution using AMDIS software (NIST,

Gaithersburg, MD), to assess potentially overlapping peaks. All

analyses was made using an Agilent 7890 Gas Chromtograph

coupled to Agilent 5975 Mass Spectrometer (Santa Clara, CA),

integrated with a Gerstel headspace sampler (Mülheim an der
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Ruhr, Germany). Prior to injection samples were incubated in the

Gerstel agitator for 5 minutes under 35uC and 250 rpm agitation.

One ml of vial headspace gas was drawn into a heated syringe and

injected to a split/splitless inlet that was kept at 250uC and a Split

ratio of 5:1. The GC method used a HP-5 MS column

(30 m60.25 mm60.25 mm) and Helium as a carrier gas with

1.5 ml/min constant flow. Temperature program was 50uC for

3 minutes, 15uC/min ramp up to 250uC for 3 minutes. MS scans

were conducted in Electron Impact mode (70 eV) from m/z 40 to

550, 2.86 scans/sec. MS source and Quad temperature were

230uC and 150uC, respectively.

Pairwise similarity tests
In each trial, each subject was presented with two mixtures and

was asked to rate their similarity on a VAS. The question at the

top of the VAS was ‘‘To what extent are these two odors similar’’

(in Hebrew), and the VAS scale ranged from ‘‘not at all’’ to

‘‘highly’’. In Dataset #1 the VAS was also numerated from 1 (‘‘not

at all’’) to 9 (‘‘very’’), and in the remaining datasets it was not

numerated. In both cases, the ratings were normalized within

subjects to a scale of 0% to 100%. Each subject repeated the

experiment on two different days to assess test-retest reliability. We

applied an arbitrary cutoff whereby if the difference between 2

repetitions of the same comparison was greater than 70%, this

rating was excluded. This amounted to 109 out of 2070 ratings

(,5%) in Dataset #1 in Table S2, and no deletions in Datasets #2

and #3 in Table S2. The ratings by subjects whose similarity

ratings for identical mixtures were poorer by at least 2 standard

deviations from the mean were discarded. This amounted to 3

subjects. The average rated similarities were calculated across

subjects.

Supporting Information

Figure S1 Predicting olfactory white. The mean angle

between a theoretical mega-mixture made of 679 monomolecular

components, and other non-overlapping mixtures made of

increasing numbers of components (5000 randomly selected

mixtures for each number of components from 2 to 80). Error

bars are STD. In brown is the p value for a t-test between

consecutive mixtures (running average of 5 comparisons), which is

significant (Bonferroni corrected for 79 comparisons = 0.0006, red

dashed line) constantly up to 25 vs. 26 components, yet only rarely

beyond 36 components.

(TIF)

Table S1 Odorants and their physicochemical descrip-
tors. The table contains 1433 descriptors for each of 1358

odorants we modeled. Odorants are identified by their CID code,

and descriptors identified by their Dragon short name. Note that

the values were truncated to the second decimal point in order to

meet the PLoS Comp. Biol. supplementary file-size limitations.

We did not check how such truncation influences the final results.

Those interested in an non-truncated version can contact us

directly.

(CSV)

Table S2 Similarity ratings by dataset. The table contains

the average normalized similarity rating applied to each

comparison, by dataset. Note that Dataset #1 is the same used

in reference #29 of the manuscript, and Datasets #2 and #3 were

collected for this study alone. The fourth list of CID numbers is

from Wright and Michels (1964).

(PDF)

Text S1 A text detailing an alternative deterministic
selection of descriptors, and the computational steps to
uncovering olfactory white.

(PDF)
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