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ABSTRACT The open-pollinated (OP) family testing combines the simplest known progeny evaluation and
quantitative genetics analyses as candidates’ offspring are assumed to represent independent half-sib
families. The accuracy of genetic parameter estimates is often questioned as the assumption of “half-
sibling” in OP families may often be violated. We compared the pedigree- vs.marker-based genetic models
by analysing 22-yr height and 30-yr wood density for 214 white spruce [Picea glauca (Moench) Voss] OP
families represented by 1694 individuals growing on one site in Quebec, Canada. Assuming half-sibling, the
pedigree-based model was limited to estimating the additive genetic variances which, in turn, were grossly
overestimated as they were confounded by very minor dominance and major additive-by-additive epistatic
genetic variances. In contrast, the implemented genomic pairwise realized relationship models allowed the
disentanglement of additive from all nonadditive factors through genetic variance decomposition. The
marker-based models produced more realistic narrow-sense heritability estimates and, for the first time,
allowed estimating the dominance and epistatic genetic variances from OP testing. In addition, the geno-
mic models showed better prediction accuracies compared to pedigree models and were able to predict
individual breeding values for new individuals from untested families, which was not possible using the
pedigree-based model. Clearly, the use of marker-based relationship approach is effective in estimating the
quantitative genetic parameters of complex traits even under simple and shallow pedigree structure.
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Open-pollinated (OP) (also known as wind-pollinated) family testing is,
by far, the simplest andmost economicalmeans for screening, evaluating,
and ranking large numbers of candidate parent trees. Thus, OP testing
combines thesimplestknownfieldexperimentaldesign inpedigree testing
as candidate trees enter the test asmaternal parents and their offspring are
assumed to represent independent half-sib families. OP testing has been
widely implemented for several tree species throughout the world, e.g.,
radiata pine (Pinus radiata D. Don) (Burdon and Shelbourne 1971),
interior spruce [Picea glauca (Moench) Voss · P. engelmannii Parry
ex Engelm.] (Kiss and Yanchuk 1991), Douglas-fir [Pseudotsugamenziesii
(Mirb.) Franco] (El-Kassaby and Sziklai 1982; Johnson 1997), western
larch (Larix occidentalis Nutt.) (Ratcliffe et al. 2014), and Scots pine

(P. sylvestris L.) (Korecky et al. 2013), and it is often considered as a
prelude to full-pedigree testing (Jayawickrama and Carson 2000).

Genealogically speaking, OP testing (i.e., partial pedigree) is posi-
tioned between the “no pedigree” provenance testing (Callaham 1964)
and the “full-pedigree” mating design-based progeny testing that in-
cludes all higher levels of relatedness and connectivity among the cre-
ated families (Namkoong et al. 1988). Thus, the accuracy of all OP
testing-based estimated genetic parameters (e.g., additive genetic vari-
ance, heritability, breeding values, etc.) is superior to the former yet
somewhat limited compared to the latter (but also see, Hallingback and
Jansson 2013). In fact, doubts are often raised regarding the accuracy
of OP family testing-derived genetic parameters as the assumption of
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“half-sibling” is hardly fulfilled (Namkoong 1966; Squillace 1974;
Askew and El-Kassaby 1994).

Thepedigree-basedgenetic relationshipsamong individuals [basedon
the so-called A-matrix: average numerator relationship matrix (Wright
1922)] are often used to estimate the genetic variance components by
using the Restricted Maximum Likelihood (Gilmour et al. 1995) and
predict each individual’s breeding value using the Best Linear Unbiased
Prediction algorithms (Henderson 1975, 1976, 1984). However, while
effective, this method with its traditional pedigree-based approach does
not adjust for the Mendelian sampling term, that is, this method ignores
variation among family members of a half- or full-sib family around the
family’s average relatedness [as all sibs are not alike (Hill and Weir
2011)]. Furthermore, the utilization of theA-matrix, specifically, in the case
of the well-known “shallow” pedigree present within most forest tree
breeding and testing populations does not permit detecting hidden
coancestry and inbreeding. Consequently, individuals’ estimated breed-
ing values are inflated by the overestimation of the additive genetic variance.

With the affordability, scalability, and high-throughput nature of next
generation sequencing technologies, tens of thousands of single nucleo-
tide polymorphisms (SNPs) have become available for model and non-
model species (Baird et al. 2008; Elshire et al. 2011; Peterson et al. 2012;
Poland et al. 2012; Truong et al. 2012; Chen et al. 2013). This technical
advancement made it possible to ascertain, with a great level of accuracy,
the actual fraction of alleles shared between individuals, and the estimates
of the individuals’ pairwise realized relationship including potential in-
breeding can be easily determined (Santure et al. 2010). Therefore, ge-
nomic fingerprinting data permit the accurate estimation of the realized
relationships among any set of individuals, irrespective of their geneal-
ogy, to construct the realized genomic relationship matrix (G-matrix)
which can be used to substitute the A-matrix (VanRaden 2008). This
advancement represents a clear quantitative genetics watershed as the
complete dependency on known pedigree relationships (i.e., A-matrix)
for estimating genetic parameters can be circumvented in the so-called
“pedigree-free models” using the G-matrix. As already demonstrated in
earlier cases, the G-matrix can provide relatively accurate genetic vari-
ance components and breeding value estimates without the need for
elaborate mating designs (Thomas et al. 2002; Frentiu et al. 2008; Hayes
et al. 2009; El-Kassaby et al. 2012; Gay et al. 2013; Porth et al. 2013;
Zapata-Valenzuela et al. 2013; Kláp�stě et al. 2014; Muñoz et al. 2014).

The use of the G-matrix in OP family testing has several implica-
tions and is expected to: (1) overcome the drawback of the average
numerator relationshipmatrix (A-matrix) as genomic data will unravel
any undetectable hidden relatedness such as full-sibs, self-sibs, and self-
halfs that inflates the estimated additive genetic variance (Namkoong
1966; Squillace 1974; Askew and El-Kassaby 1994) (Figure 1), (2) pro-

vide more accurate genetic covariances among relatives, thus account-
ing for the Mendelian sampling term (Visscher et al. 2006), and (3)
provide higher flexibility in capturing the allele frequency segregation
in quantitative trait loci (QTL) (present vs. absent QTL) (Lippert et al.
2013). Additionally, we hypothesize that also for OP families the use of
genomic markers will create an opportunity to effectively decompose
the genetic variance components, thus separating the additive and non-
additive genetic components through the definition of realized genomic
relationship matrix related to specific variance components, a so far
unattainable feat for OP family testing.

Here, we used 214 white spruce OP families grown on one site
[Mastigouche Arboretum, Quebec, Canada (Lat. 46� 38’ N, Long.
73� 13’ W, Elev. 230 m)] in a randomized complete block design,
replicated over six blocks (replications) with each OP family repre-
sented by five-tree row plots within each of the six blocks [for complete
details, see Beaulieu et al. 2014)].We compared the genetic variance
estimates generated from both the average numerator relationship
matrix (the expected relationships) and the realized genomic relation-
ship matrix (the observed relationships) to demonstrate the genomic
markers’ utility in partitioning the genetic variance components into
additive and nonadditive effects. To our knowledge, this study provides
the first attempt of such an analysis approach in OP families.

MATERIALS AND METHODS

White spruce open-pollinated progeny test, phenotype
data, and genotyping
The white spruce [P. glauca (Moench) Voss] phenotypic and genotypic
data used are available online from the Dryad Digital Repository:
doi:10.5061/dryad.6rd6f (Beaulieu et al. 2014). Briefly, the study site
is part of a larger, three-site white spruce provenance-progeny test
established in 1979 by the Canadian Forest Service in Quebec, Canada.
Each site was planted as a randomized complete block design with six
blocks and five-tree row plots at 1.2 and 2.4 m spacing within and
between rows, respectively. The present study is based on a subset of
the provenance-progeny test that includes eight individuals for eachOP
family from 214 families representing a total of 1694 individuals; the
average family representation per block was 1.32 trees since not all
families were present in all blocks. It is noteworthy to state that the
214 OP families were selected from 43 provenances throughout Que-
bec, thus a population effect might be present. Beaulieu et al. (2014),
using principal component analysis, reported the presence of weak
population structure with no defined geographical pattern. In fact,
Beaulieu et al. (2014) estimated that 1.3% of the total variance was
explained by the first two principal component analysis eigenvectors
and indicated that their lack of population structure is concordant with
previous studies using the same populations, thus population structure
was not considered in the present study.Wood density was determined
using X-ray densitometry from 12mm increment cores collected 1.3 m
from the ground (see Beaulieu et al. 2011, for details). Trees were
genotyped for 7338 SNP loci from 2814 genes using Illumina Infinium
HD iSelect bead chip PgAS1 (Illumina, San Diego, CA) (for details see
Rigault et al. 2011). The data used are available from the Dryad Digital
Repository: doi: 10.5061/ dryad.6rd6f (Beaulieu et al. 2014).

Relationship matrices
The additive relationship matrix was estimated as follows:

Gadd ¼ ZZ9

2
P​

pið12 piÞ
[1]
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where Z is the rescaled genotype matrix following M 2 P, M is the
genotype matrix containing genotypes coded as 0, 1, and 2 according
to the number of alternative alleles, and P is a vector of twice the allelic
frequency, p (VanRaden 2008). The dominance genetic variance was
fitted by including a marker-based dominance relationship matrix as
follows:

Gdom ¼ WW9

ð2pqÞ2 [2]

where W is the matrix containing 22q2 for the alternative homozy-
gote, 2pq for the heterozygote, and 22p2 for the reference allele
homozygote (Vitezica et al. 2013). Similarly, epistatic variance was
fitted by including several relationship matrices capturing first-order
additive · additive, dominance · dominance, and additive · domi-
nance interaction. The relationship matrices were constructed as the
Hadamard product of the relationship matrices defined above:
Gadd#Gadd, Gdom#Gdom, and Gadd#Gdom (Su et al. 2012; Muñoz
et al. 2014).

The variance components from pedigree-based analysis (ABLUP)
were obtained by solving the following mixed model:

y ¼ Xbþ Ziuþ Zjr þ Zkrxf þ e [3]

where y is the vector of phenotypic measurements, b is the vector of
fixed effects (overall mean), u is the vector of random additive genetic
effects following u � N(0, As2

a), where A is the average numerator
relationship matrix and s2

a is the additive genetic variance, r is the
vector of random replication effect following r� N(0, Is2

r ), where s
2
r

is the replication variance, rxf is the vector of random replication ·
family interaction effects following rxf � N(0, Is2

rxf ), where s
2
rxf is

the replication · family interaction variance, and e is a vector of the
random residual effects following e � N(0, Is2

e ), where s2
e is the

residual error variance, X, Zi, Zj, and Zk are incidence matrices re-
lating fixed and random effects to measurements in vector y.

The variance components from the analysis using themarker-based
additive relationshipmatrix (GBLUP-A)were obtained from themodel
described above but the average numerator relationship matrix A is
substituted by the marker-based relationship matrix Gadd. The ex-
tended model for the dominance terms are performed as follows:

y ¼ Xbþ Ziuþ Zld þ Zjr þ Zkrxf þ e [4]

where d is the vector of the random dominance effect following d�N
(0, Gdoms2

d
) where s2

d is the dominance variance. Additional model
extension for epistatic terms is performed as follows:

y ¼ Xbþ Ziuþ Zld þ Zmaxaþ Zndxd þ Zpaxd þ Zjr

þ Zkrxf þ e [5]

where axa is the vector of random additive · additive epistatic in-
teraction effects following axa � N(0, Gadd#adds2

axa
), where s2

axa is
the additive · additive epistatic interaction variance, dxd is the vector
of random dominance · dominance epistatic interaction effects fol-
lowing dxd� N(0, Gdom#doms2

dxd
), where s2

dxd is dominance · dom-
inance epistatic interaction variance, and axd is the vector of random
additive · dominance epistatic interaction effects following axd � N
(0, Gadd#doms2

axd
), where s2

axd is the additive · dominance epistatic
interaction variance.

Narrow-sense heritability was estimated as ĥ
2 ¼ ŝ2

a=ŝ
2
p, where ŝ

2
a

represents the estimate of the additive variance and ŝ2
p equals the sum

of ŝ2
e and all randommodel effect variance component estimates such

as additive, dominance, additive · additive, additive · dominance, and
dominance · dominance interactions following that of the ABLUP and
GBLUPs (GBLUP-A, GBLUP-AD, and GBLUP-ADE) models, respec-
tively (Table 1). The analyses and the derived genetic and environmen-
tal parameters and their SEs for the ABLUP and GBLUPs were
estimated using ASReml v. 3.0 software (Gilmour et al., 2009).

Models were compared using the Akaike Information Criterion
(AIC) estimates obtained from each analysis (Gilmour et al. 2009)
and the precision of the estimated variance components and their de-
pendence was assessed by investigation of accumulated eigenvalues
of the asymptotic sampling correlation matrix of variance component
estimates F, where F = L-1/2VL-1/2 using the asymptotic variance–
covariance matrix of estimates of variance components V and its di-
agonal matrix L (Muñoz et al. 2014).

A 10-fold cross-validation scenario with five replications was used
to assess prediction accuracy and consistency within and between the
various models, respectively. Folding of the training population was
either random, block restricted, or family restricted. The latter scenario

Figure 1 Representative histograms of the genomic
pairwise relationship coefficients within (right panel)
and among (left panel) members of the 214 white
spruce OP families showing relationships clustering
around the expected 0.25 with deviations from 0.25
as indicative of imperfect half-sib family (right panel)
and clustering around 0.00 as indicative of no re-
lationship (left panel).
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removes the genetic relatedness between the training and validation
populations according to the pedigree information. That is, all individ-
uals belonging to a single OP family were strictly assigned to either the
training or validation population. Block restricted folding was per-
formed as a leave one block out scenario. That is, all individuals
belonging to a single block were assigned as the validation population,
while the individuals belonging to the remaining five experimental
blocks were randomly divided into 10 folds as the training population.
Random folding had no prior restriction when assigning the folds.

Prediction accuracy within and consistency between models was
evaluated using themean Pearson correlation from the five replications.
Specifically, the correlationvalues for eachreplicationwere calculatedas:

rEBVl ;PBVmn ¼
covðEBVl; PBVmnÞ

sEBVlsPBVmn

[6]

where EBV refers to the individual additive breeding value of the
validation population obtained using the entire data set (1694 individ-
uals) for the lthmodel (ABLUP,GBLUP-A,GBLUP-AD,GBLUP-ADE),
PBV is the individual additive breeding value of the validation popula-
tion obtained using the mth model (ABLUP, GBLUP-A, GBLUP-AD,
GBLUP-ADE) and nth cross-validation scenario (random, block, fam-
ily), cov is the covariance, and s is the standard deviation. SEM for the
correlations was computed using the following equation:

SE ¼ s
ffiffiffi
n

p [7]

where s is the standard deviation of the Pearson correlations and n is
the number of replicates.

Data availability
The data used are available from the Dryad Digital Repository: doi:
10.5061/ dryad.6rd6f (Beaulieu et al. 2014).

RESULTS
As expected, replication and family · replication interaction produced
constant variance components across the four studied models for both
height (4.7 and 22%) and wood density (1 and 2–5%), leaving most of
the within-replication effects residing within the residual terms (Table
1). The greatest observed difference between the pedigree-based
(ABLUP) and the marker-based (GBLUP-A) models was the substan-
tial discrepancy of the additive genetic variance estimates’ magnitude
(Table 1). The additive genetic variances estimated from GBLUP-A
were 64.4 and 46.9% of those from the ABLUP for height and wood
density, respectively (Table 1). Naturally, this change is reflected in
the residual terms as they increased to 110.1 and 168.4% of that of
the ABLUP and subsequently resulting in substantial reduction of
narrow-sense heritability estimates (ĥ

2
: from 0.25 down to 0.16 for

height and from 0.61 down to 0.30 for wood density comparingABLUP
vs. GBLUP-A, respectively). Overall, narrow-sense heritability was re-
duced by 65% for height and 50% for wood density when the genomic
relationship matrix GBLUP-A was employed (Figure 1), highlighting
known caveats of OP progeny testing. Also, the inflation of additive
genetic variance observed in ABLUP and the subsequent impact on
heritability estimates were expected, thus it is more reasonable to use
the results from the GBLUP-A as the basis for comparing the extended
analyses that included dominance (GBLUP-AD), and epistasis and
dominance (additive · additive, dominance · dominance, and additive
· dominance first-order interaction) (GBLUP-ADE).

The GBLUP-AD analysis produced identical results to that of the
GBLUP-A confirming the existence of minuscule and nonsignificantn
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dominance variance estimates, accounting for 1.13 and 2.84% of the
total phenotypic variance for height and wood density, respectively
(Table 1). This is not surprising considering the small sample size of the
studied OP families (�8 individuals/family) or simply the fact that
these traits do not possess dominance genetic variance (seeDiscussion).
Including dominance variance in the models increased the AIC values
for the models, indicating that GBLUP-AD models were overfitted
compared to GBLUP-A models (Table 1), and that the simpler
GBLUP-A models should be preferred.

The GBLUP-ADE analysis produced the most striking results with
further reduction as to the additive genetic and the residual variances
compared to the ABLUP and GBLUP-ADmodels for height and wood
density, respectively (Table 1). This observed reduction in the additive
genetic and residual variances was caused by the presence of significant
additive · additive genetic variance within the total phenotypic vari-
ance (Table 1). This observed additive · additive genetic variance in
turn resulted in further reduction of the narrow-sense heritability esti-
mates; from 0.16 to 0.13 and from 0.30 to 0.18 in GBLUP-AD com-
pared to GBLUP-ADE for height and wood density, respectively.
Again, the GBLUP-ADE analysis did not cause any change to the
dominance variances (Table 1). Small and not significant dominance
· dominance and additive · dominance first-order interactions were
observed for height and wood density in the GBLUP-ADE (Table 1).
The AIC statistics for this model produced the best fit with values lower
than that observed for all tested models for wood density (29,726.65),
supporting the inclusion of the additional epistasis terms in the model,
specifically that of the additive · additive (Table 1). Unexpectedly, the

AIC for GBLUP-A (17,465.80) produced the best fit for height (Table
1).

Comparing the SEs for the predictions (SEPs) of breeding values
(BV) between the ABLUP and GBLUP-A models, all of the SEPs for
height and wood density BVs were smaller for GBLUP-A compared to
ABLUP as all SEPs were below the 45� reference lines, clearly indicating
the superiority of the GBLUP-A model (Figure 2). GBLUP-A and
GBLUP-AD models produced identical results owing to the lack of
significant dominance effects and all SEPs for height and wood density
BVs resided on the diagonal 45� reference lines. Additionally, SEPs for
height and wood density BVs from the GBLUP-ADE model were
smaller than the corresponding SEPs produced by theGBLUP-Amodel
indicating the effectiveness of the GBLUP-ADE model (Figure 2).
When we compared the pedigree- and the marker-based models using
the cumulative proportion of variance that was explained by eigen-
values of the sampling variance–covariance matrix of variance compo-
nent estimates, we found that the GBLUP-A outperformed the
pedigree-based (ABLUP) models as indicated by the closeness of their
respective lines to the ideal scenario (straight line) where the variance
components are completely independent (Figure 3). Finally, since the
GBLUP-ADE model does not have a corresponding model in the ped-
igree method, GBLUP-ADE was plotted only against the 45� diagonal
for reference (Figure 3).

Cross-validation prediction accuracies (Table 2; diagonals) indi-
cated that the ABLUP model was associated with the lowest values
among all tested models for both random and block restricted folding
(range: 0.45120.475 and 0.43920.449 for height and wood density,

Figure 2 SEPs of BVs from the ABLUP (x-axis)
against that from the GBLUP-A (y-axis) for
height (left panel) and wood density (right
panel) and that from the GBLUP-A against
those from the GBLUP-AD and GBLUP-ADE.
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respectively), while the GBLUP models produced greater prediction
accuracies under the same two folding scenarios (range: 0.73520.772
and 0.74820.783, for height and wood density, respectively). Predic-
tion accuracies were lowest under the family restricted scenario for the
GBLUP models (range: 0.68320.698 and 0.65120.658, for height and
wood density, respectively), with random folding producing the great-
est prediction accuracies. Comparison of prediction accuracies among
the GBLUP models using random folding showed that differences be-
tween GBLUP-A and GBLUP-AD were not significant (based on SEs);
however the two were significantly greater than GBLUP-ADE for both
height and wood density. The family and random folding scenarios
both produced no significant differences in prediction accuracy among
the GBLUP models.

Pairwise model comparisons (Table 2; off-diagonals) showed high
consistency between all GBLUP models within the individual folding
scenarios. It is also noteworthy tomention that under the family folding
scenario, the ability of ABLUP to produce across family prediction
challenges the assumption of zero expected relatedness among OP
families, thus predictions of individual additive BVs here would simply
be equal to the overall mean.

DISCUSSION
Traditionally, the pedigree-based average numerator relationship ma-
trix (A-matrix) is used to estimate the genetic variance components for
forest tree progeny test populations. The estimated genetic variance
components (e.g., additive and dominance genetic variances, etc.) often
aremating design-dependent and themating scheme determines which
component can be obtained. Inmost cases, this approach is incapable of
disentangling thewithin-family genetic fromwithin-family coenvironment

effects. This is evenmore problematic in OP family screening as separating
additive from nonadditive genetic variances is limited by shallow pedigrees
and lack of connectedness among the tested families; furthermore, as
shown in Table 1, the estimated additive genetic variance is inflated as
the half-sib assumption is hardly fulfilled (Namkoong 1966; Squillace 1974;
Askew and El-Kassaby 1994). In fact, the estimated genomic pairwise
relationships of the 214 OP families studied showed deviation from the
expected 0.25 coefficient of relatedness for half-siblings, confirming causes
for additive genetic variance overestimation, while the relationships among
members of unrelated families clustered around the expected 0.0 (Figure 1).
The availability of dense genomic marker panels made it possible to geno-
type individuals for a large number of SNPs and obtain the realized geno-
mic relationship matrix (G-matrix) among these individuals. In turn, the
G-matrix can be used as a substitute to the A-matrices to estimate more
accurate and precise genetic variance components as the G-matrix repre-
sents the realized pedigree as well as having the capacity to exploit the
Mendelian sampling/segregation within families (VanRaden 2008; Hayes
et al. 2009). It is worthwhile to note that some of the recently reported gain
increase in animal breeding programs is mainly due to exploiting the
Mendelian sampling term (Avendano et al. 2004).

The utility of the G-matrix in generating improved estimates of the
genetic variance parameters from experimental populations of forest trees
(e.g., full-sib families) has recently been explored (Zapata-Valenzuela
et al. 2013; Kláp�stě et al. 2014; Muñoz et al. 2014). The present study,
to our knowledge, represents the first attempt to implement theG-matrix
in OP family testing, thus not only overcoming the common bias asso-
ciated with the unfulfilled half-sib assumption, but also separating the
additive from the nonadditive genetic variance components. It is well
known that separating the additive from the nonadditive (dominance

Figure 3 Cumulative proportion
of the variance explained by ei-
genvalues for ABLUP vs. GBLUP-
A (top panel) and GBLUP-ADE
(bottom panel) for height (left)
and wood density (right). Diago-
nal line represents an orthogonal
correlation matrix.
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and epistatic variances) genetic components requires elaborate mating
designs with large numbers of interconnected full-sib families coupled
with the inclusion of replicated clonal material (Foster and Shaw 1988;
Bradshaw and Foster 1992; Costa et al. 2009). Our study accomplished a
mixed-model approach for variance decomposition, providing realized
estimates of the additive, dominance, and epistatic genetic variances
without the need for mating designs to generate interconnected full-sib
families or vegetative propagation for the production of replicated clonal
material.

It is interesting to note that the estimated additive genetic variances
for the three realized genomic relationship matrix-based analyses
(GBLUP-A, GBLUP-AD, and GBLUP-ADE) were lower than those
of the average numerator relationship matrix (ABLUP) (Table 1), an
observation already reported for mice (Lee et al. 2010), loblolly pine
(Muñoz et al. 2014), and Brown Swiss cattle populations (Loberg et al.
2015). The improved performance of the GBLUP-A compared to that
of the ABLUP indicates that the former model took full advantage
of: (1) the within-family variation (i.e., Mendelian sampling term),
(2) discerning whether full-sibs, self-sibs, and self-halfs existed within
the studied 214 OP families, (3) the ability to estimate among-family
relationships (even if they were as small as those seen in Figure 1 and
Figure 4) identifying pedigree errors if present, as shown in Figure 1
(i.e., some individuals have a coefficient of relationship of 0.0 within
the same OP family). The observed reduction in the additive genetic
variance between the two models (ABLUP vs. GBLUP-A) resulted in
concomitant increase in the residual error terms and hence consider-
ably reduced narrow-sense heritability estimates for height (0.25 vs.
0.16) and also for wood density (0.61 vs. 0.30) along with improvement
in the model fit based on improved AIC values (Table 1). Additionally,
GBLUP-A produced greater precision for its estimated breeding value
(EBV) as indicated by the EBV’s smaller SEs compared to the ABLUP
(Figure 2; ABLUP vs. GBLUP-A).

It is noteworthy to mention that the present study is based on data
collected from one site, thus there is a chance that the estimated genetic
parameters could be upwards biaseddue to the genotype· environment
confounding effects specific to this particular site or year. However,

results from similar analyses for the same species and attributes for a
set of 25 OP families planted in replicated trials over three sites in
British Columbia were consistent with those reported here with the
added benefit of estimating the additive and dominance · site (envi-
ronment) interactions (O. Gamal El-Dien, unpublished data).

The observed overall trend in genetic variance decomposition
persisted when the dominance genetic variance was estimated using
the alternative genotypic approach proposed by Su et al. (2012) and
discussed by Vitezica et al. (2013); however, the dominance genetic
variance of wood density showed a slight increase (Supporting Infor-
mation, Table S1).

Additionally, estimating the dominance genetic variance is only
feasible when full-sib families are available (Zapata-Valenzuela et al.
2013; Kláp�stě et al. 2014; Muñoz et al. 2014). This scenario is easily
resolved when pedigree- and marker-based models are compared for
mating design accommodating full-sib families (Muñoz et al. 2014).
However, the utility of the GBLUP-AD model in OP family testing is
still worth exploring to discern the dominance genetic variance – if
existing – as well as separating the genetic variances from the con-
founding environment effects. It should be noted that the goodness-
of-fit statistics (AIC) for the GBLUP-AD clearly indicated that adding
the dominance genetic variance resulted in model over fit and
this is expected due to the extremely small and nonsignificant domi-
nance genetic variance (1.1 and 2.8% for height and wood density,
respectively).

The model that included the additive, dominance, and epistatic
variances (GBLUP-ADE) offered better partitioning of the variance
complements, as the additive · additive epistatic variance became ex-
tremely pronounced and accounted for 11 and 52% of the total variance
for height and wood density, respectively (Table 1 and Table S1).When
we removed the dominance genetic variance from the GBLUP-ADE
model, the revised models (GBLUP-AE) produced better model
fit for height (17,466.9 vs. 14,472.9) and wood density (29,732.6
vs.29,726.6), confirming that dominance variance was negligible
(Table 1). Interestingly, both models (GBLUP-ADE and GBLUP-AE)
produced similar variance components apportionment and heritability

n Table 2 Correlations for height (HT) and wood density (WD) between estimated individual additive breeding values (EBVs) and
predicted individual additive breeding values (PBVs) produced by 10-fold cross-validation for the four models (ABLUP, GBLUP-A,
GBLUP-AD, and GBLUP-ADE) using random, block, and family based folding

EBV – Full data

HT WD

PBV – Cross-
Validation ABLUP GBLUP-A GBLUP-AD GBLUP-ADE ABLUP GBLUP-A GBLUP-AD GBLUP-ADE

Random folding
ABLUP 0.475 (0.003) 0.407 (0.003) 0.407 (0.003) 0.401 (0.003) 0.449 (0.004) 0.554 (0.004) 0.554 (0.004) 0.523 (0.004)
GBLUP-A 0.331 (0.004) 0.771 (0.003) 0.770 (0.003) 0.772 (0.003) 0.402 (0.002) 0.781 (0.001) 0.781 (0.001) 0.773 (0.001)
GBLUP-AD 0.334 (0.003) 0.773 (0.002) 0.772 (0.002) 0.774 (0.002) 0.405 (0.004) 0.783 (0.003) 0.783 (0.003) 0.775 (0.003)
GBLUP-ADE 0.322 (0.004) 0.762 (0.003) 0.761 (0.003) 0.765 (0.003) 0.385 (0.002) 0.765 (0.002) 0.765 (0.002) 0.773 (0.002)

Block folding
ABLUP 0.451 (0.001) 0.381 (0.001) 0.381 (0.001) 0.374 (0.001) 0.439 (0.000) 0.549 (0.000) 0.549 (0.000) 0.518 (0.000)
GBLUP-A 0.329 (0.000) 0.735 (0.001) 0.735 (0.001) 0.736 (0.001) 0.383 (0.000) 0.748 (0.000) 0.748 (0.000) 0.739 (0.000)
GBLUP-AD 0.328 (0.001) 0.734 (0.001) 0.735 (0.001) 0.736 (0.001) 0.383 (0.000) 0.748 (0.001) 0.748 (0.000) 0.740 (0.000)
GBLUP-ADE 0.313 (0.001) 0.711 (0.001) 0.712 (0.001) 0.715 (0.001) 0.366 (0.000) 0.728 (0.001) 0.728 (0.001) 0.733 (0.001)

Family folding
ABLUP NAa NA NA NA NA NA NA NA
GBLUP-A 0.178 (0.011) 0.683 (0.010) 0.682 (0.010) 0.691 (0.009) 0.249 (0.006) 0.651 (0.005) 0.651 (0.005) 0.663 (0.005)
GBLUP-AD 0.188 (0.005) 0.692 (0.005) 0.691 (0.005) 0.699 (0.005) 0.254 (0.003) 0.656 (0.002) 0.656 (0.002) 0.668 (0.002)
GBLUP-ADE 0.190 (0.006) 0.691 (0.006) 0.689 (0.006) 0.698 (0.006) 0.228 (0.007) 0.627 (0.007) 0.627 (0.007) 0.658 (0.006)

Prediction accuracies are represented by bold diagonals and pairwise model correlations on the off-diagonals (SEs in parentheses).
a

NA; predicted individual additive breeding value is equal to the overall mean of the model.
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estimates (Table 1, Figure S1, Figure S2, and Figure S3). Similar mag-
nitude of the additive · additive epistatic variance to that of the additive
variance, per se, was also observed in loblolly pine (Muñoz et al. 2014), a
situationmeeting theoretical expectations where the additive · additive
epistatic variance is commonly absorbed by both the additive and the
residual variances (Lynch and Walsh 1998; Jannink 2007; Mackay
2014). The power of the GBLUP-ADE and/or GBLUP-AE models in
identifying and separating the additive · additive epistasis from the
additive genetic variance lies in the genetic background of the tested
families for providing a range of options to demonstrate all established
interactions between the alleles at the various loci that are affecting the
studied traits. The magnitude of the epistatic additive · additive genetic
variance observed for height and wood density along with the AIC
values produced from the tested models require some reflection. The
observed AIC values support GBLUP-A and GBLUP-AE to be the best
model for height and wood density, respectively (Table 1). However, in
wood density where the additive · additive is �3 times that of the
additive variance, the prediction accuracy of the GBLUP-AE and
GBLUP-A models were almost similar (Table 1 and Table 2). This
indicates that the additive · additive and additive relationship matrices
are in a “tug-of-war” state over the same variance. In fact, we estimated
the correlation between these two relationshipmatrices and it was close
to perfect correlation (r = 0.988), confirming our notion and makes us
believe that while we observed exceedingly large epistatic additive ·
additive genetic variance, the impact on predicting the BVs between
GBLUP-A and GBLUP-AE is similar (Figure S4).

The subject of genetic epistasis is controversial as all variance
components, including epistasis, are dependent on the allele frequencies
in the studied population. Thus, epistasis could have an allusive and
unique effect across different scenarios (Hill et al. 2008; Mackay 2014).
The role of epistasis on the genetic architecture of quantitative traits is
still not clearly determined due to several discrepancies between statis-
tical and functional definition of epistasis. The statistical approach
considers the epistatic variance orthogonal to the additive genetic var-
iance and assumes a clear determination (separation) of both compo-
nents by the implementation of independent terms in the model.
Moreover, the epistatic effects are transient and disappear by breaking
of linkage disequilibrium (LD) (Hill et al. 2008; Crow 2008, 2010). The

functional approach assumes that the allelic substitution effect depends
on the genetic background. Hill et al. (2008) based their empirical
evidence on an exhaustive review across a wide range of species. This
includes comparisons between narrow- and broad-sense heritability
estimates, concluding that complex traits are mainly controlled by
additive genetic variance as most studied cases supported the notion
that the majority of the genetic variance appeared to be additive (Crow
2010). However, in the present study, if we utilized the heritability
estimates derived from the GBLUP-A or GBLUP-AD models alone
(without the application of the GBLUP-ADE and/or GBLUP-AEmod-
els), then the part of the genetic variance attributable to additive ·
additive interaction would have been excluded from the calculations,
and thus our conclusion would have been mainly based on inflated
additive genetic variance. Clearly, the utilization of the marker-based
relationship method enabled disentangling the additive from the non-
additive genetic component, while effectively accounting for the proper
environment variance through the removal of possible confounding
effects. Such methodology provides muchmore realistic breeding value
estimations for an individual.

Habier et al. (2007, 2010, 2013) indicated that the realized genomic
relationships do not only capture relatedness among individuals but
also the LD between SNPs and QTL, the deviation from indepen-
dent segregation of alleles on the same gamete if the loci are linked
(cosegregation or classical linkage), as well as the additive genetic
relationship. Habier et al. (2013) demonstrated that these types of
information collectively have different effects on the accuracy of the
EBV. As a result, it is safe to state that there is more to the realized
genomic relationship than the straightforward accounting for the
Mendelian sampling term, hence resulting in the superior decom-
position of the genetic variance components and BV estimation.

When ABLUP is used to estimate the genetic variance components
from either half- or full-sib families, the above factors are barely
considered, except those that were captured through common ancestry.
As indicted above, the OP/half-sib structure is incapable of estimating
the dominance and the epistatic genetic variances. This situation was
clearly demonstrated in the study by Muñoz et al. (2014), as more
accurate breeding value estimates and effective partitioning of variance
components were obtained from their single site, full-sib, and clonally

Figure 4 Ranking plots for the
top 50 performing white spruce
individuals for height (left) and
wood density (right), respectively,
comparing results of ABLUP vs.
GBLUP-ADE assessments (note
the number of highly ranked
individuals in the ABLUP that
dropped from the top 50 in
the GBLUP-ADE).
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replicated loblolly pine experiment. The present study, on the other
hand, demonstrated the power of the realized genomic relationship in
quantitative genetic analyses using a more challenging structure (OP
families). As proof-of-concept we compared the rank order among the
top 50 performing individuals based on the conventional ABLUP vs.
the GBLUP-ADE/GBLUP-AE (see details in the interaction plots of
Figure 4). Only 23 and 33 of the top 50 individuals persisted from
ABLUP to GBLUP-ADE/GBLUP-AE for height and wood density,
respectively, and overall, the individuals’ ranking among the top 50
trees dramatically changed from ABLUP to GBLUP-AE. Interestingly,
for the 10 best performing trees, only 2 and 4 individuals persisted for
height and wood density, respectively (Figure 4). The true EBV of an
individual is commonly determined from experiments with deep ped-
igree with ample connectedness; however, when the ABLUP approach
is used in forestry progeny testing experiments that are characterized by
shallow and inadequate connectedness, then the obtained breeding
value is expected to greatly deviate from its true value as the assumption
of mixed models of error-free covariance matrices is not met (Mrode
2014). The greatest difference between the GBLUP and ABLUPmodels
is the ability of the former to more precisely define the genetic relation-
ship between any two individuals as compared to the latter (Figure 1).
Our model’s cross-validation supports this notion as the prediction
accuracy for the GBLUP models was greater than those produced by
ABLUP, regardless of the folding scenario (Table 2; diagonals). This
difference is due to the quantity of realized pairwise genetic relationship
information used for prediction, where in ABLUP only the information
from the pedigreed OP family is used to predict the breeding value.
Conversely in GBLUP all information from related individuals are used
regardless of family assignment; this can be seen in the family folding
scenario (Table 2). Thus, we believe that the EBVs produced by the
GBLUPmodels are closer to the true value asmore information is used.

We feel that our results have important and immediate implications
for tree improvement programs in forestry as most programs are long-
term and resource-dependent (El-Kassaby 1993). The conventional
genetic improvement in forestry follows the classical recurrent selection
scheme with repeated cycles of selection, breeding, and testing over
time and space (Gamal El-Dien et al. 2015; Ratcliffe et al. 2015). These
programs often include: (1) phenotypic selection of untested candidate
parents from natural or managed forests, (2) propagation of the se-
lected parents as grafts followed by a period of inactivity until sexual
maturity, (3) the sexual production of structure pedigreed offspring
from the selected parents using a specific mating design, (4) field testing
over vast geographical areas for a reasonable period to attain meaning-
ful data for target traits, (5) estimation of genetic parameters and rank-
ing of individuals based on their BVs, and (6) genotypic selection of
superior individuals for the second round of breeding and/or seed
production from seed orchard populations. Obviously, the completion
of a single breeding–testing–selection cycle is a protracted endeavor due
to several uncontrollable biological factors; namely, the time needed for
reaching sexual maturity for structured pedigree production and re-
productive phenology and fertility variation that hinder the mating
design completion (El-Kassaby et al. 1984, 1989; El-Kassaby and
Barclay 1992). Therefore, the use ofOP family testing, as demonstrated
in the present study, allows immediate testing and the evaluation of a
large number of individuals using their naturally produced offspring
through wind pollination without the need for structured pedigree. The
present study also demonstrated the utility of the realized genomic
relationship approach in providing a simple and extremely efficient
method for generating accurate genetic parameters from a simple OP
testing that is characterized by shallow genealogy that is typical of most
forest tree testing populations. It is noteworthy to mention that the use

of the realized genomic relationship also allowed the generation of
genetic parameters comparable to those generated only from elaborate
mating designs coupled with cloning approaches. In conclusion, the
utility of the realized genomic relationship in a simple, yet extremely
efficient testingmethod, such as OP families, cannot be overlooked and
calls for the re-evaluation of present-day conventional elaborate testing
methods that are incapable of providing the genetic information pro-
duced in the present study.
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