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Abstract Background/Purpose: The preciseness of detecting periodontal bone loss is exam-
iners dependent, and this leads to low reliability. The need for automated assistance systems
on dental radiographic images has been increased. To the best of our knowledge, no studies
have quantitatively and automatically staged periodontitis using dental periapical radiographs.
The purpose of this study was to evaluate periodontal bone loss and periodontitis stage on
dental periapical radiographs using deep convolutional neural networks (CNNs).
Materials and methods: 336 periapical radiographic images (teeth: 390) between January 2017
and December 2019 were collected and de-identified. All periapical radiographic image data-
sets were divided into training dataset (n Z 82, teeth: 123) and test dataset (n Z 336, teeth:
390). For creating an optimal deep CNN algorithm model, the training datasets were directly
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used for the segmentation and individual tooth detection. To evaluate the diagnostic power,
we calculated the degree of alveolar bone loss deviation between our proposed method and
ground truth, the Pearson correlation coefficients (PCC), and the diagnostic accuracy of the
proposed method in the test datasets.
Results: The periodontal bone loss degree deviation between our proposed method and the
ground truth drawn by the three periodontists was 6.5 %. In addition, the overall PCC value
of our proposed system and the periodontists’ diagnoses was 0.828 (P < 0.01). The total diag-
nostic accuracy of our proposed method was 72.8 %. The diagnostic accuracy was highest for
stage III (97.0 %).
Conclusion: This tool helps with diagnosis and prevents omission, and this may be especially
helpful for inexperienced younger doctors and doctors in underdeveloped countries. It could
also dramatically reduce the workload of clinicians and timely access to periodontist care
for people requiring advanced periodontal treatment.
ª 2023 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

Periodontitis involves the progressive loss of the alveolar
bone, gingiva, and periodontal ligaments around the tooth.
Periodontitis is an inflammatory disease if it not diagnosed
and treated properly could lead to an ultimately loss of
teeth.1 Chronic systematic inflammation caused by peri-
odontal pathogens is a risk factor or risk indicator for dia-
betes mellitus, cardiovascular disease, osteoporosis,
obesity, cancer, and erectile dysfunction have shown in
many epidemiological and experimental studies.2,3 Thus,
for detecting the health and clinical outcome of peri-
odontal disease, early detection and management of peri-
odontal bone loss plays an important role.

Clinically, the diagnosis and staging periodontitis can be
established from probing pocket depths and gingival
recession, resulting in clinical attachment loss measure-
ments, or evaluating the patient’s radiographs to deter-
mine the amount of alveolar bone loss around the teeth.
Radiological examinations, including bitewing and peri-
apical films, have been widely used in clinical practice to
acquire valuable information for the diagnosis and treat-
ment of periodontal bone loss. In the last thirty years, the
emerging scientific proof has been modified by the classi-
fication of periodontitis again and again.4 A new classifi-
cation framework and definition for periodontitis was
developed based on a multidimensional staging and grading
system offered by the American Academy of Periodontology
and the European Federation of Periodontology in 2017.5

The staging is related to the severity and extent of peri-
odontitis at present. The grading allows the rate of pro-
gression to be calculated.5 Clinically, periodontal health
can be evaluated by measuring the clinical attachment loss
(CAL) by probing pocket depths and gingival recession.
However, the limits of this method’s reliability are related
to the probing force of each dentist, angulation, and tip
diameter.6e8 Hence, radiographic bone loss (RBL) can be
used as a reference tool if CAL is not available.5

The preciseness of detecting periodontal bone loss is
examiners dependent, and this leads to low reliability.9

This was demonstrated by an extensive range of studies.10
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Therefore, human inspection of such radiographs tends to
be subjective or inconsistent because some dentists may
not have enough specialized training or be loaded with too
much work to concentrate enough when interpreting the
radiographs. Hence, the need for automated assistance
systems on dental radiographic images has been
increased.11

Convolutional neural networks (CNNs) have been widely
studied since roughly 2010.12 Radiological and pathological
research has produced impressive results in terms of diag-
nosis and prediction in this rapidly growing region. Hence,
the most recently reported artificial intelligence perfor-
mance has been developed mainly for medical image clas-
sification. However, it is challenging for high precision
performance of the automated landmark detection. In
latest years, efforts have been made to develop comput-
erized dental X-ray image analysis systems for clinical use,
such as landmark identification,13 image segmentation, and
treatment.14e16

In the periodontal research literature, validating a
dental image analyzer tool to survey the alveolar bone loss
are available in two reports.17,18 However, in these two
reports,17,18 the critical points/positions for either hori-
zontal or vertical measurement are manually marked by
dentists. In another study,19 textures of periapical radio-
graphs were used as a tool for dental implant treatment
planning.

In another study,20 they detected the periodontal bone
loss (PBL) on panoramic dental radiographs by applied deep
convolutional neural networks (CNNs). A deep feed-CNN
was trained and validated 10-times via repeated group
shuffling. The results showed that the accuracy of the CNN
and dentist were 0.81 and 0.76, respectively, but the CNN
was not statistically significantly superior compared to the
dentists. The proposed method by Krois et al.20 showed
some limitations: their deep convolutional neural networks
(DCNNs) are trained using manually cropped teeth patches,
the dataset used in their study was small (n Z 85), and
their DCNN architecture was shallow. In another study,21

transfer learning and lesion correlation from prior infor-
mation to detect the periodontal bone loss (PBL) in
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panoramic dental radiographs was developed. The study21

used 12,179 panoramic dental radiographs and the results
showed that the method achieved the F1 score of 0.75 on
the test set, whereas the average performance of dental
clinicians was 0.69. To detect the loss of periodontal bone,
it used panoramic dental radiographs in these two
studies.20,21 However, both results did not show that the
CNN was superior to the dentists. Panoramic dental radio-
graphs capture a wide field of view, which results in low
resolution for each individual tooth. This hinders the
detection of local morphological changes in PBL, and
consequently, the overall sensitivity performance of both
dental clinicians and deep convolutional neural networks
(CNNs) for PBL detection is limited. For diagnosing peri-
odontitis or periapical lesions such as abscesses or cysts, a
periapical radiograph is the best choice, as both types of
anomalies usually occur around tooth boundaries and can
only be significant enough to be detected in close-up
views.22 Hence, in this paper, we propose a CNN-based al-
gorithm to segment each tooth and evaluate the PBL on the
periapical radiographs.

Khan et al.23 used off-the-shelf networks (specifically U-
Net and DenseNet) to segment periapical radiographs and
identify their key features, one of which is the area of PBL.
Lin et al.11 used classical CAD and image processing
methods, and the bone loss measurement system first
adopted the methods TSLS22 and ABLifBm24 to extract tooth
contours and bone loss areas in periapical radiographs. The
proposed method is then applied to locate the positions of
the CEJ, alveolar crest (ALC), and apex of the tooth root
(APEX). This method11 solely measured horizontal PBL but
did not compare severity grades to clinical estimates, and
was only tested on 18 individual teeth from 12 periapical
radiographs, which is an extremely limited dataset. How-
ever, there is still room for improvement in the algorithms
of tooth segmentation and alveolar bone loss area locali-
zation for more accurate locations of APEX and ALC,
respectively. Tiulpin et al.25 successfully utilized deep
learning for localizing medical landmarks. Their work25

utilized a single hourglass network with hierarchical
multi-scale parallel (HMP) residual blocks, MixUp data
augmentation, and transfer learning from low-budget an-
notations for network training. The low-budget training can
establish the region-of-interest (ROI) within the radiograph
first, before the high-budget annotations fully process the
exact landmark localization, thereby contributing to
improved performance. Danks et al.26 proposed an end-to-
end system that includes a deep neural network with
hourglass architecture to predict dental landmarks in sin-
gle, double, and triple rooted teeth using periapical ra-
diographs. They also introduced a novel adaptation of the
MixUp data augmentation that improves landmark locali-
zation. The average PBL error was 10.69 %, with a severity
stage accuracy of 58 % compared to the clinicians’ visual
evaluations. However, some limitations of the study26

include the lack of labels allowing for assessment of PBL
between roots (hindering extreme PBL classification), and a
scarcity of diverse data.

To the best of our knowledge, no studies have quanti-
tatively and automatically staged periodontitis using dental
periapical radiographs. Hence, diagnosing periodontal bone
loss and periodontitis stage on dental periapical
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radiographs was the purpose of the current study, based on
the new criteria proposed at the 2017 World Workshop5 by
using deep convolutional neural networks (CNNs).

Materials and methods

Dataset collection

The study was reviewed and approved by the ethics com-
mittee of Kaohsiung Medical University Hospital (KMUHIRB-
E(I)-20190,259). Three hundred and thirty-six periapical
radiographic images (teeth: 390) between January 2017 and
December 2019 were collected, and de-identified. All im-
ages were obtained from Kaohsiung Medical University
Chung-Ho Memorial Hospital in Kaohsiung, Taiwan. Peri-
apical radiographs of patients aged 12 years or younger, as
well as images with severe noise or haziness or showing
teeth that were partially present or severely distorted were
excluded. Teeth with more than four roots, those that had
undergone root resection surgery (e.g., hemi-section, sep-
aration, and root amputation), those who had undergone
apical surgery with root resection, those with caries, those
with a full restorative crown, and teeth with a shape that
deviated from normal anatomical structures were also
excluded.

Overview of processing methods

The processing steps of the proposed system are depicted
in Fig. 1. Part of the radiographs (82 periapical radiographs)
with dentist-annotated teeth masks and tissue types were
used to train two neural network models: a U-net27 based
model for pixel-level tissue type classification, and a Mask-
RCNN27 model for extracting the masks of the individual
teeth. We use the two models because Mask-RCNN facili-
tates the identification and separation of individual teeth,
while U-net provides more detailed information about tis-
sues shown in the radiographs. In addition, we can combine
the results for more accurate keypoint localization. The
details of these components are explained below.

U-net model and tissue type classification

U-net is a U-shaped deep convolutional network that has
been used for pixel-level semantic segmentation in
numerous medical imaging applications, including dental X-
ray images.27 The architecture consists of a series of down-
sampling operations followed by a series of up-sampling
operations until the output has the same size as the
input. Skip connections are used to connect the down- and
up-sampling stages of the same size to maintain local de-
tails, which are concatenated with information from lower-
resolution layers that provide context. Overall, these allow
multi-scale information to be fused together for classifi-
cation. Our U-net has four stages of down-sampling and up-
sampling. The final output layer consists of six channels,
which represent these six tissue types: enamel, dentin,
pulp, artificial substances, background, and bone. A pixel-
wise softmax operation across the six channels was used
to assign the tissue type of each pixel.



Figure 1 The block diagram of estimating bone-loss ratio from periapical radiographs. PBL: periodontal bone loss.
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To increase the variety of the training data, we applied
the following data augmentation approaches: random hor-
izontal flipping, random cropping and translation, random
intensity shift, random small-angle rotation (within 10�),
and random deformation.

Some example results of tissue segmentation are shown
in the second row of Fig. 2, whereas the top row contains
the original X-ray images. We can see that the results are
mostly accurate.

Mask-RCNN model and tooth mask segmentation

Mask-RCNN28 is an extension of the well-known Faster-
RCNN model.29 In addition to existing output branches for
object classification and bounding box regression, it adds
an output branch that predicts the object’s mask within the
bounding box. The training procedure is similar to that of
the original Mask-RCNN, except that the anchor box aspect
ratios were changed to 1.0, 1.5, and 2.0 to better fit the
vertical orientation of the teeth in the images.

We use test-time augmentation to obtain more robust
results with Mask-RCNN, given the limited size of the
training set. Specifically, for each input image, we applied
Mask-RCNN to five copies of the source image rotated in 15�

steps. The Hungarian algorithm was used to find the optimal
pairing between masks in any two copies, with an IoU
threshold of 0.75 to filter out mask pairs with insufficient
overlap. This step allows us to obtain multiple mask can-
didates for each actual tooth, and the mask with the
highest confidence score is retained. This procedure allows
us to obtain the mask of every tooth that is at least 50 %
visible in our dataset.

As there are often small gaps between the mask borders
and the boundaries of the tooth and non-tooth tissues in the
U-net output, we also apply a post-processing step of the
mask to make them more consistent. Specifically,
morphological reconstruction is applied to the extracted
masks while constrained by the tooth tissue region and
excluding regions occupied by adjacent teeth.
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Keypoint localization

We localize the three keypoints used in the bone loss ratio
estimation using the outputs of the U-net and Mask-RCNN
models (Fig. 3). The procedures are as follows.

For a given tooth in the radiograph, we used its mask
from Mask-RCNN to identify the tissue segmentation of the
tooth. We determined the major axis of the tooth using
principal component analysis (PCA) of the pixels within the
mask.

1. Keypoint C (cemento-enamel junction (CEJ)) was iden-
tified as the lowest point of the enamel region along the
tooth boundary. This was done for both sides of the
tooth.

2. Keypoint D (the alveolar bone crest (ALC)) is identified as
the location where the regions of these three tissue
segmentation types: dentin, bone, and background,
intersect.

3. At times, Keypoint D cannot be determined with the
previous step, most likely because the tooth is so close
to its adjacent tooth that no background pixels appear
between them. In such cases, we take the mirror posi-
tion of Keypoint D at the other side of the tooth with
respect to the major axis, and find its closest point along
the tooth boundary as the estimated Keypoint D. This
location is constrained to be below Keypoint C.

4. The first Keypoint A (APEX) of a tooth is given by the
lowest point of the mask. From this point, we drew two
lines, one on each side, at 45� upward. The second
Keypoint A is given by the pixel in the mask that has the
largest vertical distance below the lines.
Length-based alveolar bone loss degree
measurement

The normal alveolar bone crest was located at a distance of
1e2 mm from the CEJ towards the apex. If there was bone



Figure 2 Example results of tissue segmentation and tooth masks. Top row: Original X-ray images. Bottom row: Tissue seg-
mentation results (meaning of the different colors: yellow: dentin; green: enamel; red: pulp; orange: artificial substance; light
purple: bone; black: background). (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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loss, the alveolar bone crest was located 2 mm apical to the
CEJ. The bone crest level was defined as the point along the
root where an intact lamina was found.

Based on the new criteria proposed at the 2017 World
Workshop on the Classification of Periodontal and Peri-
Implant Diseases and Conditions,5 the length-based alveolar
bone loss degree (ABLD) can be measured using two met-
rics: BL and TR, where BL is the distance between the po-
sitions of 2 mm below the cemento-enamel junction (CEJ)
and alveolar bone crest (ALC), and TR is the distance be-
tween the CEJ and apex of the tooth (APEX). The formulae
are as follows:

ABLD Z (BL/TR) � 100% Z (kCEJ � ALC � 2 mmk/
kCEJ�APEX� 2 mmk) � 100%

The classification criteria for staging the periodontitis
based on the ABLD of the tooth were as follows: [1] stage I:
ABLD was <15 % (in the coronal third of the root); [2] stage
II: the ABLD was between 15 % and 33.3 % (in the coronal
third of the root); and [3] stage III: the ABLD was >33.3 %
(extending to the middle third of the root and beyond).5
Figure 3 Example of keypoint localization (A, C, D) results (A: a
annotations (three per keypoint), and the blue circles are predic
significant deviations between annotated and predicted locations e
legend, the reader is referred to the Web version of this article.)
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The reference test measured radiographic periodontal
bone loss (in % of the root length), quantified by three in-
dependent calibrated board-certified periodontists. First,
the three independent calibrated board-certified peri-
odontists locate the positions of the CEJ, alveolar bone
crest (ALC), and apex of the tooth root (APEX). Finally, the
system computes the ratio of the distance between the
positions of the CEJ and ALC to the distance between the
positions of the CEJ and apex as the degree of bone loss for
that tooth. Using the percentage rate, we were able to
stage the periodontitis of a single tooth.

Statistical analysis

The data were summarized as mean � standard deviation,
and the between-group differences were tested by inde-
pendent t-test. Percentages are summarized as categorical
variables. Differences between groups were compared
using the chi-square test for categorical variables. The
training datasets were directly used for the segmentation
of dental x-ray images and individual tooth detection, and
then to create optimal model for a deep CNN algorithm. To
pex, C:CEJ, D: alveolar bone level). The red crosses are expert
ted locations. The two right images are examples that show
xist. (For interpretation of the references to color in this figure
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evaluate the diagnostic power, we calculated the sensi-
tivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), receiver operating characteristic
(ROC) curve, area under the ROC curve (AUROC), and
confusion matrix in the test datasets. We also calculated
Pearson correlation coefficients (PCC) and intraclass cor-
relation coefficients (ICC) between the CNN-based algo-
rithm and periodontists using MATLAB (MathWorks Inc.,
Natick, Massachusetts, USA). A tooth was assessed as posi-
tive or negative according to two cut-off values (0.15 and
0.33). The statistical significance was set at P < 0.05.

Results

We tested 390 teeth images segmented from 336 periapical
radiographs. All periapical radiographic image datasets
were divided into a training dataset (n Z 82, teeth: 123), a
validation dataset (n Z 20), and a test dataset (n Z 336,
teeth: 390).

Alveolar bone loss degree measurement

Table 1 lists the alveolar bone loss degree deviation be-
tween the CNN-based algorithm and the ground truth which
is calculated based on the positions drawn by three peri-
odontists and the average deviation between the proposed
method and ground truth is 6.5 %. Otherwise, the average
deviation of three periodontists were 2.9 %, 4.2 %, and
4.2 %, respectively.

Classification performance of correlations between
the CNN-based algorithm and the three
periodontists

The Pearson correlation coefficients (PCC) between the
CNN-based algorithm and the three periodontists’ di-
agnoses were 0.838 (P < 0.001), 0.795 (P < 0.001), and
0.85(P < 0.001), respectively (Table 2). The PCC between
the CNN-based algorithm and the three periodontists’ di-
agnoses showed the highest correlation. In addition, the
overall PCC value of the CNN-based algorithm and the
periodontists’ diagnoses was 0.828. This PCC showed a
strong correlation between the periodontists and CNN-
based algorithm diagnoses. There was also a strong
correlation between the three periodontists (PCCZ 0.834).
The intraclass correlation coefficient (ICC) values of the
Table 1 The alveolar bone loss degree deviation between
the proposed system and ground truth calculated based on
the positions drawn by the three periodontists.

The alveolar
bone
loss degree
deviation (%)

periodontist 1 e annotation consensus 2.9
periodontist 2 e annotation consensus 4.2
periodontist 3 e annotation consensus 4.2
automated output e annotation consensus 6.5
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CNN-based algorithm and the three periodontists’ di-
agnoses were 0.805 (P Z 0.000), 0.658 (P Z 0.000), and
0.832 (P Z 0.000), respectively (Table 3). The overall ICC
between the CNN-based algorithm and the three peri-
odontists’ diagnoses was 0.765, which showed a high cor-
relation. This ICC value also indicates the excellent
reliability of the CNN-based algorithm for the detection of
periodontal bone loss and staging periodontitis.

Assessment of the diagnostic accuracy

As shown in Fig. 4, the confusion matrix displays the results,
where the diagonal elements are the numbers where the
predicted diagnosis was the same as the periodontists’ di-
agnoses, while the CNN-based algorithm misinterpreted the
non-diagonal elements. The higher the classification value
and the darker the shade of blue, the more accurate the
diagnosis. The overall periodontists’ performance was
calculated by three periodontists’ decisions (classification
of the target tooth by the radiographic alveolar bone loss
degree) on the target tooth with the majority voting among
three periodontists, which served as the ground truth. The
total diagnostic accuracy was 72.8 %. Otherwise, the diag-
nostic accuracy was the highest for stage III (94.0 %), and
the diagnostic accuracies of stage I and stage II were 64.2 %
and 74.3 %, respectively.

Evaluation of detection and classification
performance

The performance of the CNN-based algorithm and three
periodontists in periodontal bone loss detection on the test
dataset are summarized in Table 3, and the receiver
operating characteristic (ROC) curves are shown in Fig. 5.
The selected cut-off values (threshold) of radiographic
bone loss degree in ground tooth were 0.15, and 0.33. The
stage of the target tooth was classified according to the
degree of radiographic alveolar bone loss, which was
calculated by three periodontists’ annotations on the
target tooth, and the stage of each target tooth with the
majority voting among the three periodontists served as the
ground truth. Otherwise, we measured the area under the
receiver operating characteristics curve (AUROC), F1 score,
sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) at the cut-off values
(threshold) of 0.15 and 0.33.

Comparing the accuracy of diagnosing between stage I
and stage II & III (cut-off point (threshold) Z 0.15 alveolar
bone loss degree), the average performance of CNN-based
algorithm were 0.841, 0.97, 0.638, 0.742, and 0.952 in the
F1 score, sensitivity, specificity, in PPV, and NPV,
respectively. With the cut-off value of stage three peri-
odontitis (cut-off point (threshold)Z 0.33 alveolar bone loss
degree), the diagnostic performance of the CNN-based al-
gorithm for the diagnosis of stage I & II periodontitis and
stage III were 0.764, 0.952, 0.896, 0.636, and 0.990 for F1
score, sensitivity, specificity, PPV, and NPV, respectively.

As shown in Fig. 5, the selected cut-off values
(threshold) of radiographic bone loss degree in ground
tooth were 0.15, and 0.33, respectively. With a cut-off
value of 0.15, the area under the receiver operating



Table 2 The Pearson correlation coefficient (PCC) and the intraclass correlation coefficient (ICC) between stages were ob-
tained using the automatic method and those diagnosed by the periodontists. (*P < 0.001).

The Pearson correlation coefficients (PCC) Automatic output Periodontist 1 Periodontist 2 Periodontist 3

Automatic output 1 0.838* 0.795* 0.85*
Periodontist 1 0.838* 1 0.813* 0.887*
Periodontist 2 0.795* 0.813* 1 0.801*
Periodontist 3 0.85* 0.887* 0.801* 1

The intraclass correlation coefficient (ICC) Automatic output Periodontist 1 Periodontist 2 Periodontist 3

Automatic output 1 0.805* 0.658* 0.832*
Periodontist 1 0.805* 1 0.774* 0.865*
Periodontist 2 0.658* 0.774* 1 0.700*
Periodontist 3 0.832* 0.865* 0.700* 1

Table 3 Performance comparison of the CNN-based algorithm and three periodontists on the test dataset. AUROC is the area
under the receiver operating characteristic curve, PPV is the positive predictive value, and NPV is the negative predictive value.

Threshold Z 0.15 AUROC F1 score Sensitivity Specificity PPV NPV

Periodontist 1 0.966 0.915 0.936 0.883 0.896 0.927
Periodontist 2 0.945 0.825 0.723 0.968 0.961 0.765
Periodontist 3 0.980 0.932 0.98 0.867 0.888 0.976

Periodontists average 0.964 0.891 0.88 0.906 0.915 0.889
CNN-based algorithm 0.946 0.841 0.97 0.638 0.742 0.952

Threshold[0.33 AUROC F1 score Sensitivity Specificity PPV NPV

Periodontist 1 0.992 0.902 0.952 0.969 0.857 0.991
Periodontist 2 0.971 0.778 0.667 0.991 o.933 0.939
Periodontist 3 0.992 0.803 1 0.905 0.67 1

Periodontists average 0.985 0.828 0.873 0.955 0.82 0.977
CNN-based algorithm 0.968 0.764 0.952 0.896 0.638 0.990
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characteristic (AUROC) was 0.946 for the CNN-based algo-
rithm, 0.966 for Periodontist 1, 0.945 for Periodontist 2,
and 0.980 for Periodontist 3. With a cut-off value of 0.33,
the AUROC was 0.968 for the CNN-based algorithm, 0.992
for periodontitis 1, 0.971 for periodontitis 2, and 0.992 for
periodontitis 3.

Evaluation of classification performance

A pairwise comparison between the predicted diagnosis and
periodontists’ diagnoses for classification is summarized in
Table 4. Compared to Periodontist 1, the number of the
classification made by the CNN-based algorithm which is
more severe than the periodontists’ diagnoses were 91
teeth, which is more than the number of under-estimation;
compared to Periodontist 2, the number of the classifica-
tion made by the CNN-based algorithm which is more severe
than the periodontists’ diagnoses were 155 teeth, which is
more than the number of under-estimation; and compared
to Periodontist 3, the number of the classification made by
the CNN-based algorithm which is more severe than the
periodontists’ diagnoses were 73 teeth, which is also more
than the number of under-estimation. Therefore, the
classification made by the CNN-based algorithm is usually
more severe than the periodontists’ diagnoses.
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Discussion

Observing the results of the periodontal bone loss degree
deviation between our proposed method and the ground
truth is 6.5 %. In comparison with another study,11 it shows
that the average deviation is 9.5 %. In another study,26 the
average PBL error was 10.69 %. Thus, our results achieved
better outcome. Furthermore, the accuracy of this pre-
dicted model may be further improved when additional
imagery data (e.g., cone-beam computerized tomography)
or data sources (clinical records [e.g., clinical attachment
level], systematic diseases [e.g., diabetes mellitus],
smoking habits) are integrated into the analytic pipeline.
Further assessment of the periodontal bone loss
morphology (horizontal or vertical bone loss), rate of
periodontal loss (% bone loss/age), and other radiographi-
cally assessable items (root morphology and furcation
involvement) may be helpful. The integration of these data
could provide more information to dentists in clinical
diagnoses.30

The overall Pearson correlation coefficient (PCC) be-
tween the CNN-based algorithm and periodontists was
0.828. The overall intra-class correlation coefficient (ICC)
was 0.765. Thus, the automatic classification of periodontal
bone loss for staging periodontitis in the CNN-based



Figure 4 Multi-class classification confusion matrix among
teeth in the test dataset. In the confusion matrix, each column
of the matrix represents the instances of a predicted class,
while each row represents the instances of the ground truth
class. The averaged diagonal of a confusion matrix represents
the success classification rate. The diagonal elements are the
numbers where the predicted diagnosis was the same as the
periodontists’ diagnoses. The higher the diagonal value and the
darker the shade of blue, the more accurate the diagnosis
between estimation and ground truth. (For interpretation of
the references to color in this figure legend, the reader is
referred to the Web version of this article.)

Figure 5 The performance of the CNN-based algorithm and thr
positive rate (TPR) against the false positive rate (FPR) at the cut-
based algorithm (X, green curve) and three periodontists (A: Perio
odontist 3, purple curve) are shown, and the area under the receive
(a) With a cut-off value of 0.15; (b) with a cut-off value of 0.33. (Fo
the reader is referred to the Web version of this article.)
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algorithm has high accuracy and excellent diagnostic reli-
ability. Some studies have explored factors associated with
the CNN modelperformance. When the datasets for training
the CNN are insufficient, the CNN model learns statistical
regularity that is specific to the training set, and shows low
accuracy for a new dataset.31 Thus, a larger dataset with
exact annotated by specialists in medical images may be
helpful for improving the detection performance of the CNN
model.

In comparison with another study,32 the diagnostic ac-
curacy for periodontally compromised teeth was 81.0 % for
premolars and 76.7 % for molars. Using 64 premolars and
64 M that were clinically diagnosed as severe periodontally
compromised teeth, the accuracy of predicting extraction
was 82.8 % (95 % CI, 70.1%e91.2 %) for premolars and 73.4 %
(95 % CI, 59.9%e84.0 %) for molars.32 In comparison with
another study,26 the accuracy of a severity stage was 58 %
when compared to clinicians’ visual evaluations of full ra-
diographs. In the present study, the total diagnostic accu-
racy of staging periodontitis was 72.8 %; otherwise, the
diagnostic accuracy was the highest for stage III periodon-
titis (97.0 %), and the diagnostic accuracy of stage I and
stage II were 64.2 % and 74.3 %, respectively (Fig. 4). The
present study had a higher diagnostic accuracy for identi-
fying stage III periodontitis than stage I and stage II. The
periodontal bone loss of the proposed method tended to be
more severe than that in periodontists (Table 4). Therefore,
in judging teeth with poor or questionable prognosis, the
accuracy was better in our study. If applied to the routine
clinical practice, this trained deep CNN algorithm can serve
as a valuable tool for dentists in periodontitis detection,
especially for teeth with advanced bone destruction
ee periodontists in the staging periodontitis, showing the true
off values (threshold) of 0.15 and 0.33. ROC curves of the CNN-
dontist 1, orange curve, B: Periodontist 2, pink curve, C: Peri-
r operating characteristic (AUROC) is listed within parentheses.
r interpretation of the references to color in this figure legend,



Table 4 The number of the pairwise comparison between
the predicted diagnosis and the diagnosis of the three
periodontists.

Number(n) More severe
in Predicted
diagnosis

The same
classification

More severe
in True
diagnosis

Periodontist 1 91 282 17
Periodontist 2 155 230 5
Periodontist 3 73 286 31

I.-H. Chen, C.-H. Lin, M.-K. Lee et al.
(>33.3 % periodontal bone loss), irrespective of their indi-
vidual level of experience and training. In other words, if a
patient had advanced periodontitis and was detected by
the CNN-based algorithm in a local dental clinic, the dentist
can refer the patient to a specialist for further treatment
and prevent medical negligence. Otherwise, this trained
deep CNN algorithm can also assess the status of alveolar
bone following various types of nonsurgical and surgical
therapies. The application of this trained deep CNN algo-
rithm seems promising for assisting dentists with dental
imagery diagnostics.

As shown in Table 3, the selected cut-off values of
radiographic bone loss to predict patients with periodonti-
tis were 0.15 and 0.33, respectively. The negative pre-
dicted values (NPVs) of the CNN-based algorithm were
95.2 % and 99 %, respectively. The positive predicted values
(PPVs) of the CNN-based algorithm were 74.2 % and 63.8 %,
respectively. The sensitivities of the CNN-based algorithm
were 97 % and 95.2 %, respectively. The results showed high
sensitivity and negative predictive value (NPV), regardless
of the cut-off definition of periodontal bone loss. This
means that the CNN-based algorithm has high accuracy in
diagnosing subjects that truly do not have periodontitis,
and the probability of misdiagnosis is low.

As shown in Fig. 5, the AUROC of the CNN-based algo-
rithm was similar to that of the three periodontists.
Compared to another study by Kim et al.,21 the deep neural
transfer network achieved the AUROC of 0.95 in the
panoramic dental radiographs. In another study,20 the
mean (SD) sensitivity and specificity of the CNN were 0.81
(0.04) and 0.81 (0.05), respectively. The mean (SD) sensi-
tivity and specificity of the dentists were 0.92 (0.02) and
0.63 (0.14), respectively. The study20 showed lower
sensitivity than individual examiners, especially when a
higher cut-off definition for periodontal bone loss was
used. In our study, the CNN-based algorithm on radio-
graphic periapical images showed a similar discrimination
ability as dentists for assessing periodontal bone loss.
Thus, the application of this trained deep CNN algorithm
seems promising for assisting dentists in dental imagery
diagnostics.

With the help of this AI imaging diagnostic tools, it may
improve the convenience of learning resources to stu-
dents’ strengths and needs. Inexperienced dentist or stu-
dents can study online at any time they need and are not
restricted to having a teacher present. Otherwise, AI could
provide university teachers greater support and enable
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achieving educational priorities in better ways, at scale,
and with lower costs. During clinical consultation, it can
also provide timely assistance to inexperienced doctors,
helping to diagnose periodontal disease earlier and pre-
vent misdiagnosis.

The limitation of this study was that relatively few im-
ages of the full segmentation of dental X-ray images into
the classes: enamel, dentin, pulp, crown, and restoration
by calibrated board-certified periodontists were used. To
achieve superior artificial intelligence performance with
deep learning, the design of the deep CNN algorithm itself
is important, but it is also important to have a high-quality
annotated dataset. For example, 130,000 fundus photo-
graphs annotated by 54 ophthalmologists were used in the
study for the detection of diabetic retinopathy.33 In addi-
tion, anatomic structures (e.g., zygomatic arch, tuberosity,
or neuro-vascular canal) can distract from key features.
However, if a CNN is trained on a large enough cohort, it
may learn to deal with potential artifacts. Nonetheless,
unbiased lesion selection and recent advances in three-
dimensional (3D) imaging would invariably improve the
accuracy of the algorithm performance.34

Another limitation of this study is that it is impossible to
make a complete diagnosis of periodontitis using only 2-
dimensional periapical radiographs. For a more accurate
diagnosis and prediction of periodontal bone loss, a
comprehensively review over the radiographic and clinical
data, such as the patient’s medical history, clinical probing
depth, clinical attachment level, bleeding on probing,
mobility, percussion, electric pulp test, and the progression
rate of periodontitis was essential. In the future, a deep CNN
algorithm based on 3D image will be even more helpful for
comprehensive and effective diagnosis. Lately, several
studies based on artificial intelligence have investigated the
potential usefulness of clinical photographs, computed to-
mography (CT), magnetic resonance imaging (MRI), and
positron emission tomography scans (PET) for interpreting
medical images. In particular, the deep CNN algorithm has
found widespread use and has yielded promising
results.33,35,36

In conclusion, the proposed method can help dentists
diagnose and monitor periodontitis progress on periapical
radiographs. Hence, dentists with different levels of
training and experience may benefit from the use of CNN’s
image classification.
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