
RESEARCH ARTICLE

Design, synthesis, anti-proliferative

evaluation, docking, and MD simulations

studies of new thiazolidine-2,4-diones

targeting VEGFR-2 and apoptosis pathway

Mohammed S. TaghourID
1, Hazem Elkady1, Wagdy M. EldehnaID

2, Nehal El-Deeb3,4,

Ahmed M. Kenawy5, Eslam B. ElkaeedID
6, Bshra A. Alsfouk7, Mohamed S. Alesawy1, Dalal

Z. HuseinID
8, Ahmed M. MetwalyID

4,9*, Ibrahim H. EissaID
1*

1 Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar

University, Cairo, Egypt, 2 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh

University, Kafrelsheikh, Egypt, 3 Biopharmaceutical Products Research Department, Genetic Engineering

and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-

City), Alexandria, Egypt, 4 Pharmaceutical and Fermentation Industries Development Center, City of

Scientific Research and Technological Applications (SRTA City), Alexandria, Egypt, 5 Nucleic Acids

Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific

Research and Technological Applications (SRTA-City), Alexandria, Egypt, 6 Department of Pharmaceutical

Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia, 7 Department of

Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh,

Saudi Arabia, 8 Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt,

9 Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo,

Egypt

* Ibrahimeissa@azhar.edu.eg (IHE); ametwaly@azhar.edu.eg (AMM)

Abstract

We report herein, the design and synthesis of thiazolidine-2,4-diones derivatives as new

inhibitors for VEGFR-2. The designed members were assessed for their in vitro anticancer

activity against four cancer cell lines; A549, Caco-2, HepG-2 and MDA-MB-231. Compound

14a showed the most potent effects against Caco-2, and HepG-2 cell lines (IC50 = of 1.5

and 31.5 μM, respectively). Next, the in vitro VEGFR-2 inhibitory activity, safety profiles and

selectivity indices were examined for all the synthesized members against the normal Vero

cell line. Compound 14a (the safest member against Caco-2 cell line) was further investi-

gated for its ability to inhibit Caco-2 cells migration and healing. Moreover, the apoptotic

induction of compound 14a against Caco-2 cell line was investigated by assessing against

four apoptotic genes (Bcl2, Bcl-xl, TGF, and Survivin). The results revealed that compound

14a can exert apoptosis through significant reduction of Bcl2, Survivin, and TGF gene

expression levels. Finally, deep computational studies including molecular docking,

ADMET, toxicity studies, and MD simulation were carried out. Also, the DFT calculations

were performed and discussed, and the results confirmed the inhibitory reactivity of 14a

against VEGFR-2. Compound 14a is expected to be used as a potential lead in the develop-

ment of new VEGFR-2 inhibitors with increased potency.
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1. Introduction

Tumor development and reproduction were linked to increased vascularity (angiogenesis) in

cancer cells, so the anti-angiogenesis mechanism was considered one of the potential strategies

to fight cancer [1]. Vascular endothelial growth factor (VEGF) pathway was identified as a key

regulator of angiogenesis. This fact was utilized in the discovery of outstanding numerous che-

motherapeutic agents [2, 3]. Vascular endothelial growth factor receptors (VEGFRs) is the

receptor of VEGF and include three subtypes (VEGFR-1, VEGFR-2, and VEGFR-3) [4].

The VEGFR-2 subtype is the most critical regulator of the angiogenesis process that plays a

substantial role in the dissolution, migration, and proliferation of endothelial cells of cancer

[5]. VEGFR-2 exerts its effect in cancer cells through binding to VEGF to boost the autopho-

sphorylation process resulting in the motivation of a downstream signaling cascade that is

essential for endothelial cell propagation and angiogenesis [6]. As a result, blocking the VEGF

/ VEGFR-2 system is a promising approach for the development of an anti-angiogenic therapy

for slowing cancer growth [7, 8]. Furthermore, the antitumor effect of VEGFR-2 inhibitors

have been enhanced by its ability to induce apoptosis [9–12].

Because of the nature of their large hydrophobic binding site, VEGFR-2 inhibitors have a

wide range of structures [7]. However, the crystal structures of the two illustrious VEGFR-2

inhibitors (sorafenib and sunitinib) reveal common key interaction features that are essential

for good fitting against VEGFR-2 (Fig 1). These features include primarily a flat heteroaro-

matic ring system for interaction with the hinge region including the focal amino acid Cys919

[8]. The second feature is a central linker to provide many π-π interactions with Phe1047,

Val916, Val848, and Cys1045 in the linker region [9]. The third feature includes a pharmaco-

phore moiety which forms many hydrogen-bonds with the two key amino acids (Glu885 and

Asp1046) in the DFG motif. The fourth feature includes hydrophobic moieties that extend to

occupy the back hydrophobic pocket [10]. Chemoinformatics (in silico techniques) was used

as an efficient approach in drug discovery with the advantage of saving time, effort, and costs

[11–13]. This includes molecular docking [14, 15], ADMET assessment [15] and MD simula-

tion techniques [14, 16].

In view of the above-mentioned findings and through our trip in the discovery of novel

anticancer agents [17–20] especially VEGFR-2 inhibitors [21–28], our research group has paid

much attention to develop a new series of anti-angiogenic candidates possessing the main fea-

tures of sorafenib and sunitinib. Consequently, we used different bioisosteric moieties to

occupy the main four regions of VEGFR-2 active pocket. In detail, for the hinge region,

3-oxoindoline and 2-oxo-1,2-dihydroquinolin were used as heteroaromatic moieties. The

spacer (thiazolidine-2,4-dione) and pharmacophore (amide) moieties were targeted to occupy

the gatekeeper and the DFG-motif regions, respectively. At last, the allosteric pocket was tar-

geted by different aromatic structures (Fig 1). Moreover, all targeted products were subjected

to deep biological studies including in vitro cytotoxic activities and VEGFR-2 inhibitory activ-

ity. Furthermore, the most promising member was further investigated for its apoptotic induc-

tion by assessing the gene expression of four genes (Bcl2, Bcl-xl, TGF, and Survivin). Further

in silico studies including molecular docking, MD simulations, MM-PBSA, ADMET, and tox-

icity were conducted to correlate the affinity of our compounds against VEGFR-2.

2. Results and discussion

2.1. Chemistry

The target novel derivatives 10a-b and 14a-c were synthesized as depicted in Schemes 1 and 2.

The starting materials 2 was prepared using the Vilsmeier-Haack reaction in which acetanilide
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is converted into 2-chloroquinoline-3-carbaldehyde by the action of by Vilsmeier-Haack

reagent (DMF+POCl3) [29]. Next, compounds 3, and 6 were prepared in high yields according

to the literature procedures [30–34]. To prepare the key intermediate 7, Knoevenagel conden-

sation reaction was utilized [35]. In this reaction, quinoline 3 was condensed with thiazoli-

dine-2,4-dione 6 in the presence of piperidine which acts as organocatalyst. In compound 7,

there are two NH groups, the thiazolidine NH group has a very strong acidic proton flanked

by 2 carbonyl groups which stabilize the resulting anion produced after salt formation. There-

fore, the thiazolidine NH group is involved in the salt formation rather than the quinoline NH

group. Consequently, treatment of compounds 7 with dry K2CO3 in DMF with continuous

stirring afforded the corresponding in situ potassium salt 8. Subsequent heating of potassium

salt 8 with 2-chloro-N-substitutedacetamide derivatives 9a, b in dry DMF / KI mixture pro-

duced the corresponding desired compounds 10a, b, respectively (Scheme 1).

Fig 1. The design rationale of proposed VEGFR-2 inhibitors.

https://doi.org/10.1371/journal.pone.0272362.g001
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On the other hand, compound 12 was prepared via condensation of thiazolidine-2,4-dione

6 with isatin 11 in a dry toluene/piperidine mixture following the reported procedures [34]. In

compound 11, the amide carbonyl is less electrophilic as it is stabilized by the lone pair of elec-

trons of the nearby nitrogen atom. Therefore, the carbonyl in position 3 is more reactive and it

is involved in the c-c bond formation with compound 6. Treating compound 12 with dry

Scheme 1. Synthesis of compounds 10a-b.

https://doi.org/10.1371/journal.pone.0272362.g002
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K2CO3 in DMF with continuous stirring afforded the corresponding in situ potassium salt 13.

Heating a mixture of compound 13 with 2-chloro-N-substitutedacetamide derivatives 9a-c in

dry DMF / KI mixture yielded the desired products 14a-c, respectively (Scheme 2).

IR spectra of the target derivatives 10a-b and 14a-c confirmed their molecular structures by

the presence of C = O bands ranging from 1673 to 1753 cm-1 besides NH bands ranging from

3142 to 3449 cm-1. Concerning quinoline derivatives 10a-b, singlet signals corresponding to

the two amidic NHs were found in 1H NMR spectra around 10.65 and 10.24 ppm. With regard

to the indoline derivatives 14a-c, the structures of the obtained derivatives were supported by

the generated spectral data. The 1H NMR spectra of compounds displayed singlet signals

around 11.32 and 10.24 ppm for the NHs. Matching these findings. 13C NMR spectra displayed

the characteristic peaks at the fingerprint regions.

2.2. Biological evaluation

2.2.1. Assessment of in vitro anti-proliferative activity. The cytotoxicity effects of the

synthesized candidates were evaluated against A549, Caco-2, HepG2, and MDA-mb-231 cell

lines. MTT assay method was applied using the sub-IC50 concentrations of each compound as

the treatment dose. Doxorubicin was used as a reference molecule. The obtained results dem-

onstrated the anti-cancer effects of the tested compounds against all tested cell lines with dif-

ferent degrees (Table 1). Also, it was noticed that Caco-2 was the most sensitive cell line.

The most potent cytotoxic member was compound 14a. It showed high cytotoxic effects

against Caco-2 (IC50 = 1.5μM) and HepG-2 (IC50 = 31.5 μM). Meanwhile, compound 10b

Scheme 2. Synthesis of compounds 14a-c.

https://doi.org/10.1371/journal.pone.0272362.g003

PLOS ONE Design, synthesis, and anti-proliferative evaluation of new thiazolidine-2,4-diones targeting VEGFR-2

PLOS ONE | https://doi.org/10.1371/journal.pone.0272362 September 23, 2022 5 / 32

https://0810157yh-1104-y-https-www-sciencedirect-com.mplbci.ekb.eg/topics/pharmacology-toxicology-and-pharmaceutical-science/doxorubicin
https://0810157yh-1104-y-https-www-sciencedirect-com.mplbci.ekb.eg/science/article/pii/S0045206821000456#t0010
https://doi.org/10.1371/journal.pone.0272362.g003
https://doi.org/10.1371/journal.pone.0272362


came in the second order as it showed moderate anticancer effect against MDA mb-231 cell

line (IC50 = 31.5 μM) and Caco-2 (IC50 = 62.5 μM). Regarding A549 cell line, compound 10a

displayed the most potent cytotoxic activity (IC50 = 85 μM).

2.2.2. Assessment of VEGFR-2 inhibition. Compounds 10a, b and 14a-c were evaluated

for their VEGFR-2inhibitory activity. Sorafenib (the reference drug) produced IC50 value of

53.65 nM (Table 2). The quinoline derivative 10a (IC50 = 65.16 nM) is the most active member

compared to sorafenib. Concerning the indoline derivatives 14a-c, it was found that different

hydrophobic tails gave valuable SAR. In detail, compound 14c (IC50 = 81.46 nM) incorporat-

ing phenethyl moiety as a hydrophobic tail was the most active indoline member. This revealed

that the terminal aliphatic moieties have the highest positive effect on VEGFR-2 inhibition.

Shifting the hydrophobic tail into aromatic moieties as in compounds 14a (incorporating

4-chlorophenyl moiety, IC50 = 91.51 nM) and 14b (incorporating 2,4-dichlorophenyl moiety,

IC50 = 85.85 nM) led to a slight decrease in the VEGFR-2 inhibitory activity.

2.2.3. Safety pattern of the tested compounds. In this work, the safety pattern of the syn-

thesized derivatives 10a, b and 14a-c was also evaluated by testing their in vitro cytotoxicity

against Vero non-cancer cell line using the MTT assay protocol. The obtained results showed

an IC50 range of 194–1580 μM presenting the safety profile of the examined hits against the

Vero normal cell line. Compounds 10b (IC50 = 1580 μM) and 14b (IC50 = 1270 μM) were the

safest members (Table 3).

2.2.4. Selectivity index (SI). To clinch the cyto-protective properties of the compounds,

the drug safety parameter for anticancer activity of the compounds was estimated by compar-

ing their cytotoxic effect against tumor cell lines and normal cell lines. The normal human

Vero cell line was used as a control in this study. Table 4 shows the calculated SI for the tested

compounds by scaling its IC50 value against various tumor cell lines and IC50 value against a

normal cell line (Vero cell line) [36]. When the SI value of a compound is�10 then it is con-

sidered a selective anticancer agent [37].

As previously stated in the former test, all the tested derivatives had lower potency against

Vero cell lines. These outcomes prompted us to investigate the selectivity profile of the

Table 2. Inhibitory effects of compounds 10a, b and 14a-c against VEGFR-2.

Comp. VEGFR-2 IC50 (nM)

10a 65.16 ± 5.5

10b 164.5 ± 15.3

14a 91.51 ± 8.2

14b 85.85 ± 7.6

14c 81.46 ± 7.3

Sorafenib ± 4.5

https://doi.org/10.1371/journal.pone.0272362.t002

Table 1. In vitro cytotoxicity against A549, Caco2, HepG2, and MDA-mb-231cell lines.

Comp. Anti-proliferative activity (IC50 μM)

A549 Caco2 HepG2 MDA-mb-231

10a 85.0 ± 7.5 82.5 ± 7.2 173.5 ± 16.3 131.5 ± 5.2

10b 92.5 ± 8.6 62.5 ± 5.4 71.0 ± 6.4 31.5 ± 2.5

14a 170.0 ± 14.5 1.5 ± 0.08 31.5 ± 2.5 84.0 ± 7.3

14b 292.5 ± 25.1 74.0 ± 6.5 42.5 ± 3.2 94.5 ± 8.4

14c 281.5 ± 27.3 192.5 ± 18.1 92.0 ± 8.1 484 ± 47.2

Doxorubicin 86.44 ± 7.1 3.5 ± 0.22 1.2 ± 0.07 0.98 ± 0.001

https://doi.org/10.1371/journal.pone.0272362.t001
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synthesized compounds by calculating selectivity index value for each compound against the

four cancer cells. The maximum selectivity index value was recorded for 14a (212.5) against

Caco-2 cell lines as displayed in Fig 2. Therefore, compound 14a was decided to be the safest

potent member of synthesized compounds and was nominated for further biological testing.

2.2.5. Effect of compound 14a on Caco-2 cells migration. The in vitro scratch assay[38]

was used to assess the prospective of compound 14a to inhibit the ability of Caco-2 cells to

migrate and heal. The basic idea behind this test is to create a scratch in a cancer cell line

monolayer, measure the diameter at the start time and at regular intervals to investigate the

potential of the cancer cell to migrate and heal. The findings of the treated cell line are then

compared to the untreated cell line. Fig 3 shows images of scratched areas at time points

0 and 24.

The obtained findings revealed that the scratch of the untreated cells was completely closed

within 24 h (Fig 3B). On the other hand, the width of the scratch in Caco-2 cell lines that were

treated with 14a (1 μM) slightly decreased from the control cells’ scratch width at 0 hr (0.356

to 0.293 mm) as displayed in Fig 3A and 3C. These findings confirmed that even at a low con-

centration of 1 μM, compound 14a can inhibit the migration and healing of Caco-2 cells in a

significant manner. Also, at the end of the 24-hour incubation period, compound 14a was able

to make a significant phenotypic change in cancer cell morphology which might be linked to

the occurrence of apoptosis.

2.2.6. Alternation of cancer cells gene expression after Caco-2 treatment with 14a using

RT-qPCR. The apoptosis process (programmed cell death) is mediated by different gene

families such as caspases, tumor necrosis factor (TNF) receptor gene superfamily, or B cell

lymphoma (Bcl)-2 family. Survivin is a pro-survival protein that is overexpressed in many can-

cer cells in the G2-M phase. This protein has been linked to tumor progression control and

resistance to cancer chemotherapeutics. Furthermore, the transforming growth factor (TGF)

Table 3. IC50 results of 10a, b and 14a-c against Vero cell line.

Compound No. Cytotoxicity against Vero (IC50 μM)

10a 194 ± 18.2

10b 1580 ± 155.1

14a 290 ± 28.3

14b 1270 ± 126.5

14c 1. ± 96.6

https://doi.org/10.1371/journal.pone.0272362.t003

Table 4. Selectivity indices of the synthesized compounds.

Compounds (A549) a (Caco-2)b (HepG2)c (MDA-MB-231)d

10a 2.280 2.352 1.118 1.460

10b 17.080 25.290 22.250 51.333

14a 1.704 212.500 9.196 3.375

14b 4.340 17.150 29.917 13.555

14c 3.463 5.0654 10.601 2.020

a SI = Cytotoxicity against Vero cells / Cytotoxicity against A549 cell line.
b SI = Cytotoxicity against Vero cells / Cytotoxicity against Caco-2 cell line.
c SI = Cytotoxicity against Vero cells / Cytotoxicity against HepG2 cell line.
d SI = Cytotoxicity against Vero cells / Cytotoxicity against MDA-MB-231 cell line.

https://doi.org/10.1371/journal.pone.0272362.t004
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is a key protein that can promote the development of normal cells and participate in the sup-

pression mechanism of tumor cells [39]. Dysregulation of TGF-β activation and signaling may

result in apoptosis. Moreover, overexpression of the Bcl2 gene can inhibit apoptosis. Mean-

while, overexpression of Bcl-xL enhances autophagic cell death [40].

In this study, the Caco-2 cell line was treated with 1.5 μM (IC50 value) of compound 14a.

The results showed noticeable variations in the expression levels of the four cancer correlated

genes (Bcl-2, Bcl-xl, TGF, and Survivin). In detail, compared to control cells, compound 14a

caused significant down-regulation of Bcl-2, and Survivin and TGF gene expression levels.

Meanwhile, the gene expression level of Bcl-xl showed non-detectable change. These findings

indicate the efficiency of compound 14a in the induction of apoptosis (Fig 4).

2.3. In silico studies

2.3.1. Molecular docking. The docking studies can give a good insight about the binding

modes of many active molecules [41–43]. These studies aimed to determine the binding

modes and orientation of the designed VEGFR2 kinase inhibitors. In the present work, the

crystal structure of VEGFR2 (PDB code 4ASD) was retrieved from the protein data bank. The

docking protocol was initially validated by re-docking of the co-crystallized ligand (sorafenib)

into the active site of VEGFR 2. The respective validation criteria in this study showed an

RMSD value = 1.15 Å, and a docking score = -11.25 kcal/mole.

As presented in Fig 5, the docking pose of sorafenib involved three H-bonding with

Cys919, Glu885, and Asp1046. Also, it interacted with the hydrophobic pocket formed by

Leu889, Leu1019, and Ile892 via several hydrophobic interactions.

Compound 10a occupied the hinge region via its 2-oxoquinoline moiety. It formed a

hydrogen bond with Cys919 and eight hydrophobic interactions with Cys919, Leu840,

Leu1035, Ala866, and Phe918. Next, the thiazolidine-2,4-dione moiety was incorporated in the

linker region via the formation of five pi-pi interactions with Val916, Val848, Val899, Ala866,

Fig 2. Selectivity indices of the synthesized compounds.

https://doi.org/10.1371/journal.pone.0272362.g004
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and Lys868. In addition, it formed one hydrogen bond with Asp1046. As well, the amide moi-

ety was buried in the DFG motif region to form two H bonds with Asp1046 and Glu885.

Lastly, the p-chlorophenyl group achieved one hydrophobic interaction with Leu889 in the

hydrophobic back pocket (Fig 6).

The docking findings of compound 14a, the most promising member in this study, revealed

similar binding pattern with sorafenib. The 2-oxoindolin moiety was oriented toward the

hinge region forming one H bond interaction with Glu917 residue and seven hydrophobic

interactions with, Leu840, Leu1035, Ala866, Phe918, and the key amino acid Cys919. Mean-

while, the thiazolidine-2,4-dione moiety was accommodated in the linker region to form five

hydrophobic interactions with Val916, Val848, Ala866, Phe1047, and Cys1045. Similarly, com-

pound 14a interacted via one H-bond with Glu885 (1.80 Å) and another one with Asp1046

(2.02 Å) of the conserved DFG motif region. Finally, one hydrophobic interaction was

observed between compound 14a and hydrophobic side chains of Leu899 in the hydrophobic

back pocket of VEGFR-2 (Fig 7). The binding modes of compounds were presented in S.2.1.1

and S2.1.2. Sections in S1 File.

The docked pose of compound 14b was depicted in Fig 8. The amide group formed two

hydrogen bonds with Glu885 (COO-, 1.65 Å) and Asp1046 (NH, 2.04 Å). Moreover, it formed

Fig 3. Effect of compound 14a on cells migration and healing efficacy of Caco-2 cells.

https://doi.org/10.1371/journal.pone.0272362.g005
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four hydrophobic interactions in the linker region with Val916, Val848, Phe1047, and Cys1045

via its thiazolidine-2,4-dione moiety. As well, the 2-oxoindolin moiety was buried in the hinge

region forming one H bond interaction with Glu917 besides several hydrophobic interactions

with Leu840, Leu1035, Ala866, Val848, and Cys919. Moreover, the 2,5-dichlorophenyl moiety

formed four hydrophobic interactions with Leu899, Ile1044, Leu1019, and Val898 in the allo-

steric hydrophobic pocket.

2.3.2. Flexible alignment study. In this test, 3D- flexible alignment of compound 14a (the

most promising member) with sorafenib was carried out. The results revealed a general good

overlap of compound 14a with sorafenib with the same spatial orientation. In details, 2-oxoin-

dolin, thiazolidine-2,4-dione, amide, and 4-chlorophenyl moieties of compound 14a showed

the same orientation of the N-methylpicolinamide, phenoxy, urea, and 4-chloro-3-(trifluoro-

methyl)phenyl) moieties of sorafenib, respectively (Fig 9A and 9B). This study revealed that

compound 14a has the same basic pharmacophoric features of sorafenib and can occupy the

VEGFR-2 kinas active pocket with the same orientation of sorafenib as displayed in (Fig 9C).

2.3.3. ADMET profiling study. The pharmacokinetic properties were determined com-

putationally for compounds 10a, b and 14a-c using Discovery studio 4.0 (Fig 10). Sorafenib

and sunitinib were used as references.

As shown in Table 5, compounds 10a-b and 14a-c achieved good absorption levels upon

oral administration. Moreover, the titled compounds could exhibit acceptable BBB penetration

levels. Finally, all compounds showed a theoretical non-inhibitory effect against CYP2D6 with

plasma protein binding ability than 90%.

2.3.4. In silico toxicity studies. Toxicity profiles were computed for the tested derivatives

10a-b and 14a-c against references (sorafenib and sunitinib) based on seven constructed toxic-

ity models created in Discovery studio software [44, 45] as presented in Table 6.

All the tested molecules were predicted as non-carcinogenic. In addition, all members

except 10b and 14b had carcinogenic potency TD50 values ranging from 14.284 to 121.482

mg/kg body weight/day, which were higher than that of sorafenib and sunitinib (14.244, 4.134

mg/kg body weight/day, respectively). In addition, all members had rat maximum tolerated

doses lower than that of sorafenib and sunitinib. For the rat oral LD50 model, compounds 10a,

14a and 12c displayed oral LD50 values of 0.936, 1.667 and 1.933 mg/kg body weight/day. Such

Fig 4. Relative gene expression levels of 4 different genes (Bcl-2, Bcl-xl, Survivin, and TGF) in Caco-2 cell line treated with 14a using RT-

qPCR.

https://doi.org/10.1371/journal.pone.0272362.g006
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values are far more than that of sorafenib (0.823 mg/kg body weight/day). Also, all compounds

except 10a and 10b showed rat chronic LOAEL values ranging from 0.030 to 0.069 which were

higher than that of sorafenib (0.005). Finally, all candidates showed mild irritancy against eye

with non-irritancy against skin.

2.3.5. Molecular dynamics simulations. The application of Molecular dynamics (MD)

simulations is closely to be a regular in silico method in the area of drug development and dis-

covery [46]. The main benefit of these types of work is the extreme accuracy in the analysis of

every structural and entropic variation in the considered compound-protein system. More-

over, this experiment occurred at a very accurate atomic resolution through a given time [47].

Respectively, MD simulations can precisely calculate the resulted variations after the com-

pound-protein binding in thermodynamic as well as kinetic levels [48]. These advantages

Fig 5. The docked pose of sorafenib against VEGFR-2.

https://doi.org/10.1371/journal.pone.0272362.g007
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presented the MD as a successful tool to explain the structure-functional changes of the con-

sidered compound-protein complex. It reveals essential features such as stability, binding

energy, and the kinetics of the examined complex [49].

To identify the conformational alterations that transpired in the VEGFR-2-14a complex

because of binding, RMSD values were measured before and after 14a binding with the

VEGFR-2. Fig 11A illustrates that VEGFR-2, 14a, and the VEGFR-2-14a complex had low

RMSD values and didn’t reveal major fluctuations during the MD time (100ns). These results

Fig 6. The docked pose of 10a against VEGFR-2.

https://doi.org/10.1371/journal.pone.0272362.g008

PLOS ONE Design, synthesis, and anti-proliferative evaluation of new thiazolidine-2,4-diones targeting VEGFR-2

PLOS ONE | https://doi.org/10.1371/journal.pone.0272362 September 23, 2022 12 / 32

https://doi.org/10.1371/journal.pone.0272362.g008
https://doi.org/10.1371/journal.pone.0272362


declare a high stability. The flexibility of VEGFR-2 enzyme after binding was checked in terms

of RMSF to identify the fluctuated regions during 100 ns of simulation. Fortunately, 14a didn’t

make the VEGFR-2 flexible (Fig 11B) after binding comparing the apo state of VEGFR-2 (Fig

12A). The radius of gyration (Rg) of the enzyme VEGFR-2 was computed to explore the com-

pactness of the examined VEGFR-2-14a system. Interestingly, the Rg of the VEGFR-2-14a

complex remained stable till the end of the experiment (Fig 11C) and was not very distict to

that of VEGFR-2 apo state (Fig 12B). VEGFR-2-14a complex interaction against the solvents

in the surrounding media was examined by solvent accessible surface area (SASA) over a

period of 100 ns. Excitingly, VEGFR-2 enzyme didn’t exhibit a noticeable expansion nor

reduction of the surface area revealing nearly similar SASA values from 0 till 100 ns (Fig 11D).

Fig 7. The docked pose of 14a against VEGFR-2.

https://doi.org/10.1371/journal.pone.0272362.g009
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The obtained values were near to that of VEGFR-2 apo state (Fig 12C) indicating that there is

no major conformational alternations occurred in VEGFR-2 enzyme due to 14a binding. Also,

hydrogen bonding in the VEGFR-2-14a complex was computed and the maximum incorpo-

rated H-bonds number was found to be three (Fig 11E).

To understand the conformational changes that was reported in the RMSD study, the con-

formational change analysis of the 14a-VEGFR-2 complex was analyzed during the 1, and 100

ns of the MD production run as illustrated in Fig 13. The conformational changes in VEGFR-

2 were indicated. Most importantly, the binding stability as well as the integrity of the 14a-

VEGFR-2 complex was confirmed.

Fig 8. The docked pose of 14b against VEGFR-2.

https://doi.org/10.1371/journal.pone.0272362.g010
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Fig 9. Orientation compound 14a and sorafenib inside the active sites of VEGFR-2.

https://doi.org/10.1371/journal.pone.0272362.g011
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2.3.5.1. MM/PBSA studies. The binding free energy of 14a-VEGFR-2 system was computed

the last 20 ns of the obtained MD production with a 100 ps interval from the MD trajectories

using. Compound 14a exhibited a binding free energy of -75 KJ/mol with VEGFR-2 enzyme

(Fig 14A). Moreover, the participation of each individual residue in the binding free energy of

14a-VEGFR-2 system were disclosed. The total binding free energy of the 14a-VEGFR-2 sys-

tem was disintegrated into per individual residue energy. The output of this experiment sheds

a light into the pivotal amino acid residues that contributed remarkably to the binding of 14a

Fig 10. Theoretical ADMET characters.

https://doi.org/10.1371/journal.pone.0272362.g012

Table 5. Different theoretical ADMET characters of the tested compounds.

Comp. BBBa Solubilityb Absorptionc CYP2D6d PPBe

10a ■■■■ ■■ ⌦ ⌦
p

10b ■■■■ ■■ ■ ⌦
p

14a ■■■ ■■ ⌦ ⌦
p

14b ■■■■ ■■ ⌦ ⌦
p

14c ■■■ ■■ ⌦ ⌦
p

Sorafenib ■■■■ ■ ⌦ ⌦
p

Sunitinib ■■ ■■ ⌦ ⌦ ⌦

aBBB level, blood brain barrier level,⌦ = very high, ■ = high, ■■ = medium, ■■■ = low, ■■■■ = very low.
bSolubility level, ■ = very low, ■■ = low, ■■■ = good, ■■■ = optimal.
cAbsorption level,⌦ = good, ■ = moderate, ■■ = poor, ■■■ = very poor.
dCYP2D6, cytochrome P2D6,

p
= inhibitor,⌦ = non inhibitor.

ePBB, plasma protein binding,⌦means less than 90%,
p

means more than 90%

https://doi.org/10.1371/journal.pone.0272362.t005
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and VEGFR-2. The following amino acids: VAL-848, LEU-889, LEU-1035 and CYS-1045 of

VEGFR-2 shared more than -5 KJ/mol binding energy and considered as hotspots in the bind-

ing with 14a (Fig 14B).

2.3.6. Density Function Theory (DFT) calculations. The enzymatic inhibitory activity of

targeted compounds against VEGFR-2 showed that the indoline derivative 14a was the most

active compound as incorporating 4-chlorophenyl moiety raised the IC50 to 91.51 nM,

Table 2. As discussed before, the 14a derivative was produced from the reaction of 9a with 13.

The reactivity and stability of formed 14a will be highlighted from the point of view of DFT

calculations. The Molecular electrostatic potential map (MEP) will be discussed as well. The

DFT (B3LYP) method with 6-311G++(d,p) basis set to optimize organic structure compounds.

Both TDOS and MEP were performed at the same level of theory.

The full optimized structure of 14a, 9a and 13 are shown in Fig 15. The obtained total

energy of 14a system was -55925.2 eV which is higher than those of free systems 13 and 9a,

-47778.3 and -36986.6 eV, respectively. The dipole moment for the 14a was found to be 8.11

Debye (higher than those of free components, 13; 7.6Debye; and 9a; 2.91 Debye). The dipole

moment reflects the polarity of the molecule which increases with the increase in electronega-

tivity of atoms. Also, it is related to the electronic distribution in a molecule and the chemical

reactivity usually increases with the increase in the dipole moment as the interaction with

other systems occurred. The recorded binding energy was 1059.84 eV.

The energy of the lowest occupied molecular orbital (EHOMO); the energy of the highest

unoccupied molecular orbital (ELUMO) and energy gab, ΔE (the gap between the HOMO and

LUMO energy levels) and absolute hardness (η) were calculated and represented in Fig 16.

The absolute hardness; η ((ELUMO-EHOMO)/2) measures the molecular stability and reactivity.

A hard molecular has a large energy gap while a soft molecule has a small energy gap [50]. The

soft molecule is reactive and easily offers electrons to an acceptor. 14a recorded η value of 1.4

eV as shown in Fig 16. In addition, ΔE was found to be 2.835 eV smaller than those recorded

for 9 and 13a. This small ΔE value of 14a explains its reactivity side by side with proper hard-

ness value which increases its tendency to be a good inhibitor towards VEGFR-2. As demon-

strated in Fig 16, the electron density in HOMO is localized on 4-chlorophenyl acetamide

moiety while in LUMO, the density is centered over the 5-(2-oxoindolin-3-ylidene)thiazoli-

dine-2,4-dione moiety. The total density state confirmed the previous findings as the small

energy gap of 14a was noticed in the same value as presented in Fig 17. As the LUMO-HUMO

energy gap decreases, the interactions between the reactants species, 13 and 9a become stron-

ger which results in a stable inhibitor structure.

Table 6. In silico toxicity studies.

Comp. Carcinogenicity a Carcinogenic Potency TD50

(mg/kg body weight/day)

Rat Maximum Tolerated

Dose (g/kg body weight)

Rat Oral LD50 (g/

kg body weight)

Rat Chronic LOAEL

(g/kg body weight)

Ocular

Irritancyb
Skin

Irritancyb

10a ⌦ 15.044 0.026 0.936 0.002
p

⌦
10b ⌦ 13.611 0.021 0.316 0.002

p
⌦

14a ⌦ 14.284 0.059 1.667 0.030
p

⌦
14b ⌦ 13.040 0.048 0.707 0.028

p
⌦

14c ⌦ 121.482 0.042 1.933 0.069
p

⌦
Sorafenib ⌦ 14.244 0.089 0.823 0.005

p
⌦

Sunitinib ⌦ 4.134 0.178 2.876 0.040
p

⌦

a Carcinogenicity:⌦ = non-carcinogenic,
p

= carcinogenic
b skin and ocular irritancy =⌦ = non-irritant,

p
= irritant

https://doi.org/10.1371/journal.pone.0272362.t006
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Molecular electrostatic potential (MEP) illustrates the electronic charge distributions of

molecules three dimensionally. MEP maps visualize variably charged zones of a molecule.

Knowledge of the electron charge distributions can be used to explain how molecules interact

with one another. The strength of the electrostatic potentials is well represented by the MEP

surface in Fig 18. where red and blue regions mention the most electronegative electropositive

zones, respectively. As shown in Fig 18, the oxygenated groups in all compounds have red

color because these groups have negative electrostatic potential. For 14a, oxygen atoms will

behave as nucleophiles while blue regions at hydrogen atoms, mostly, behave as electrophiles

[51].

Fig 11. M D simulations experiments: A) RMSD values of 14a-VEGFR-2 system before and after binding, B) RMSF of 14a-VEGFR-2 system C) Rg

of 14a-VEGFR-2 system D) SASA of 14a-VEGFR-2 system E) H- bonding between 14a-VEGFR-2 system.

https://doi.org/10.1371/journal.pone.0272362.g013

PLOS ONE Design, synthesis, and anti-proliferative evaluation of new thiazolidine-2,4-diones targeting VEGFR-2

PLOS ONE | https://doi.org/10.1371/journal.pone.0272362 September 23, 2022 18 / 32

https://doi.org/10.1371/journal.pone.0272362.g013
https://doi.org/10.1371/journal.pone.0272362


Fig 12. A) RMSF B) Rg C) SASA of VEGFR-2 enzyme in apo state.

https://doi.org/10.1371/journal.pone.0272362.g014
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3. Conclusion

A new series of thiazolidine-2,4-diones derivatives were designed and synthesized as potential

anticancer agents targeting VEGFR-2. These derivatives were tested for their anticancer effi-

cacy against A549, Caco-2, HepG-2, and MDA-MB-231 cell lines. The most active antiproli-

ferative member was found to be compound 14a (IC50 = 1.5 and 31.5 μM) against Caco-2 and

HepG2 cell lines, respectively. In addition, when compared to the reference drug, sorafenib,

kinase inhibition assay results revealed that all compounds had good inhibitory activity against

VEGFR-2. Further, because of its high selectivity index, derivative 14a was chosen for further

testing of its effect on Caco-2 cell migration and alternation of Caco-2 cells gene expression.

Compound 14a significantly inhibited the ability of cancer cells to migrate and heal, according

to a cell migration assay. Additionally, the ability of 14a to downregulate Bcl-2, Survivin, and

TGF expression levels was discovered in a subsequent biological assay. The ability of 14a to

recognize the ATP binding pocket of VEGFR-2 and elicit significant interactions with its key

amino acids was demonstrated using molecular docking as well as several MD simulations

studies. Also, the DFT calculations have been performed for 14a inhibitor and free individual

components, 13 and 9a at B3LYB/6-311++G(d,p) level of theory. The results conducted that

14a showed large stabilization due to the strong interaction forces within the molecule and

small absolute hardness.

4. Experimental

4.1. Chemistry

4.1.1. General. The used chemical agents and devices in the synthesis procedures were

described in S.3 Section in S1 File. Compounds 10a, b and 14a-c were furnished following the

reported procedures [30, 31, 33, 34]. In Table 7, the colors, yields, and meting points of the

new compounds were presented. The 1H NMR and 13C NMR analyses were carried out at 400

and 100 MHz, respectively in DMSO-d6 as a solvent. the chemical shifts were presented

as ppm. The infra-red analyses were carried out using KBr disc and the results were presented

as cm-1.

Fig 13. 14a-VEGFR-2 structure at (A) 1 ns, (B) 100 ns.

https://doi.org/10.1371/journal.pone.0272362.g015
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4.1.2. General synthesis pathway compounds 10a,b. Compound 7 (0.001 mol) was

heated with K2CO3 in a dry DMF for 30 min. till formation of the corresponding in situ potas-

sium salt 8. Then, the appropriate 2-chloro-N-substituted acetamide derivatives 9a, b (0.001

mol), and KI (0.001 mol) in DMF (10 ml) was added to the previous mixture with reflux on a

water bath for 6 h. The reaction mixture was poured on crushed ice. The precipitate was fil-

tered, dried, and crystallized from ethanol to give the corresponding target compounds 10a, b

(Figs 19 & 20).

4.1.2.1. (Z)-N- (4-Chlorophenyl) -2- (5-((6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl) methy-
lene) -2,4-dioxothiazolidin-3-yl)acetamide (10a). IR: 3449, 3265 (NH), 3005 (CH aromatic)

Fig 14. MM-PBSA experiments.

https://doi.org/10.1371/journal.pone.0272362.g016
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2932 (CH aliphatic), 1724, 1673 (C = O); 1H NMR: 10.79 (s, 1H), 10.24 (s, 1H), 8.45 (s, 1H),

8.21 (s, 1H), 8.00 (d, J = 14.0 Hz, 2H), 7.62 (d, J = 8.9 Hz, 2H), 7.43 (m, 2H), 7.39 (d, J = 2.3 Hz,

1H), 4.54 (s, 2H), 3.81 (s, 3H); 13C NMR: 171.63, 161.56, 160.73, 157.08, 155.01, 154.98, 142.25,

137.60, 136.51, 130.14, 130.08, 129.64, 127.02, 126.19, 124.16, 120.06, 119.61, 119.16, 117.30,

111.56, 56.03, 21.16. C22H16ClN3O5S (469.90).

4.1.2.2. (Z)-N-(2,5-Dichlorophenyl)-2-(5-((6-methoxy-2-oxo-1,2-dihydroquinolin-3-yl) meth-
ylene)-2,4-dioxothiazolidin-3-yl)acetamide (10b). IR: 3264 (NH), 3098 (CH aromatic) 2997,

2931 (CH aliphatic), 1753, 1688 (C = O); 1H NMR: 10.67 (s, 1H), 10.26 (s, 1H), 8.55 (s, 1H),

8.40 (s, 1H), 7.95 (d, J = 8 Hz, 2H), 7.71 (m, 2H), 7.49 (d, J = 8.2 Hz, 1H), 7.29–7.20 (m, 1H),

4.54 (s, 2H), 3.81 (s, 3H). C22H15Cl2N3O5S (504.34).

4.1.3. General synthesis pathway compounds 14a-c. Compound 12 (0.001 mol) was

heated with K2CO3 in a dry DMF for 30 min. till formation of the corresponding in situ potas-

sium salt 13. Then, the appropriate 2-chloro-N-substitutedacetamide derivatives 9a-c (0.001

mol), and KI (0.001 mol) in DMF (10 ml) was added to the previous mixture with reflux on a

water bath for 6 h. The reaction mixture was poured on crushed ice. The precipitate was fil-

tered, dried, and crystallized from ethanol to give the corresponding target compounds 14a-c

(Figs 21–23).

4.1.3.1. N-(4-Chlorophenyl)-2-(2,4-dioxo-5-(2-oxoindolin-3-ylidene)thiazolidin-3-yl)acet-
amide (14a). IR: 3185, 3142 (NH), 3062 (CH aromatic), 1745, 1690 (C = O); 1H NMR: 11.32 (s,

1H), 10.58 (s, 1H), 8.78 (s, 1H), 7.60 (d, J = 8.5 Hz, 2H), 7.48–7.37 (m, 3H), 7.09 (t, J = 7.8 Hz,

Fig 15. The full optimized structure of 14a, 13 and 9a at B3LYB/6-311G++(d,p) basis set.

https://doi.org/10.1371/journal.pone.0272362.g017
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1H), 6.99 (d, J = 7.8 Hz, 1H), 4.58 (s, 2H); 13C NMR: 170.23, 168.72, 165.68, 164.47, 144.64

(2C), 137.78, 133.59, 129.31 (2C), 128.43, 128.25, 127.83, 122.68, 121.28 (2C), 120.22, 111.17,

44.13. C19H12ClN3O4S (413.83).

4.1.3.2. N-(2,5-Dichlorophenyl)-2-(2,4-dioxo-5-(2-oxoindolin-3-ylidene)thiazolidin-3-yl)acet-
amide (14b). IR: 3211, 3176 (NH), 3065 (CH aromatic) 2994, 2949 (CH aliphatic), 1744, 1696

(C = O); 1H NMR: 11.32 (s, 1H), 10.24 (s, 1H), 8.78 (d, J = 7.9 Hz, 1H), 7.88 (d, J = 2.5 Hz, 1H),

7.58 (d, J = 8.7 Hz, 1H), 7.44 (t, J = 7.7 Hz, 1H), 7.31 (dd, J = 8.6, 2.6 Hz, 1H), 7.12 (d, J = 7.8

Hz, 1H), 6.99 (d, J = 7.8 Hz, 1H), 4.70 (s, 2H).; 13C NMR: 170.26, 168.72, 165.70, 163.97,

144.60, 136.31, 133.56, 133.24, 129.74 (2C), 129.40, 128.42, 128.17, 122.67, 120.21, 119.71 (2C),

111.15, 44.06. C19H11Cl2N3O4S (448.27).

4.1.3.3. 2-(2,4-Dioxo-5-(2-oxoindolin-3-ylidene)thiazolidin-3-yl)-N-phenethylacetamide
(14c). IR: 3303, 3179 (NH), 3062 (CH aromatic) 2935, 2886 (CH aliphatic), 1744, 1691

(C = O); 1H NMR: 11.31 (s, 1H), 8.82 (dd, J = 18.2, 7.0 Hz, 2H), 7.45 (t, J = 7.7 Hz, 1H), 7.35 (t,

J = 7.5 Hz, 2H), 7.28 (d, J = 7.7 Hz, 3H), 7.12 (t, J = 7.8 Hz, 1H), 6.99 (d, J = 7.8 Hz, 1H), 4.40

(s, 2H), 4.34 (t, 2H), 3.40 (t, 2H); 13C NMR: 170.30, 168.74, 165.75, 165.61, 144.54, 139.31,

133.48, 129.88, 128.82 (2C), 128.39, 127.89, 127.66 (2C), 127.42, 122.67, 120.24, 111.14, 43.66,

42.75, 31.18. C21H17N3O4S (407.44).

Fig 16. Frontiers molecular orbitals, HOMO, LUMO, energy gaps, ΔE and absolute hardness, η in eV for 14a inhibitor and free

individual components, 13 and 9a at B3LYB/6-311++G(d,p) level.

https://doi.org/10.1371/journal.pone.0272362.g018
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4.2. Biological testing

4.2.1. In vitro anti-proliferative activity. The synthesized compounds were evaluated for

their anti-proliferative activities against A549, Caco-2, HepG2, and MDA-mb-231 cell lines

using the MTT assay protocol [52–54] as described in S.1.2. Section in S1 File.

4.2.2. In vitro VEGFR-2 inhibition. VEGFR-2 ELISA kit was used in this test as described

in S.1.3. Section in S1 File [24, 55, 56].

4.2.3. Safety assay. The safety profiles of the tested compounds were checked on one non-

cancerous cell line (Vero) to determine the treatments concentrations that do not depict toxic

effects against the tested cells as described in S.1.1. Section in S1 File [57].

4.2.4. Selectivity index (SI). The selectivity index values of the tested compounds on can-

cer cells were calculated as described (S.1.4 Section in S1 File) [58].

4.2.5. Cell Migration assay. Cell Migration assay was conducted according to the

reported protocol as described [59]in S.1.5. Section in S1 File.

4.2.6. Gene expression pattern. The molecular anticancer mode of action of 14a was

investigated by screening their ability to control the gene expression levels of Bcl2, Bcl-xl, TGF

and Survivin genes as reported [60] in S.1.6. Section in S1 File.

4.3. In silico studies

4.3.1. Docking studies. MOE2019 software was used to perform docking studies against

VEGFR-2 [PDB ID: 4ASD] [61–65] as described in S.2.1. Section in S1 File.

Fig 17. Total density of state, TDOS for 14a inhibitor and free individual components, 13 and 9a at B3LYB/6-311++G(d,p) level.

https://doi.org/10.1371/journal.pone.0272362.g019
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4.3.2. ADMET studies. Discovery studio 4.0 was used to perform ADMET studies as

reported in before [43, 65–69] (S.2.2. Section in S1 File).

4.3.3. Toxicity studies. Discovery studio 4.0 was used to carry out the toxicity studies as

described [18, 70–72] in S.2.3. Section in S1 File.

4.3.4. Molecular dynamics simulation & MM/PBSA. MD simulation experiments and

MM/PBSA (Molecular Mechanics/Poisson Boltzmann Surface Area) were carried out using

GROMACS as reported in S.2.4 & S.2.5. Sections in S1 File [67, 73–75].

4.4.4. Density Function Theory (DFT) calculations. The DFT calculations were per-

formed using Gaussian 09 software and the output files were visualized using GaussianView5.

Table 7. The colors, yields, and meting points of the new compounds.

Compounds Color Yield Meting points (˚C)

10a White powder 74% 265–267

10b Yellow powder 70% 234–236

14a White crystals 76% 224–226

14b Yellow powder 78% 230–232

14c White powder 80% 250–252

https://doi.org/10.1371/journal.pone.0272362.t007

Fig 18. Molecular electrostatic potentials for 14a inhibitor and free individual components, 13 and 9a at B3LYB/6-311++G(d,p) level

of theory.

https://doi.org/10.1371/journal.pone.0272362.g020
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Fig 20. Chemical structure of compound 10b.

https://doi.org/10.1371/journal.pone.0272362.g022

Fig 21. Chemical structure of compound 14a.

https://doi.org/10.1371/journal.pone.0272362.g023

Fig 19. Chemical structure of compound 10a.

https://doi.org/10.1371/journal.pone.0272362.g021
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Total density of state (TDOS) was calculated and analyzed using GaussSum software. Chem3D

15 was used to draw the original chemical structures of all compounds. The DFT (B3LYP)

method with 6-311G++(d,p) basis set to optimize organic structure compounds.
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S1 File. Supporting information related to this manuscript is found in a separate file.

(PDF)
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37. Peña-Morán O.A., Villarreal M.L., Álvarez-Berber L., Meneses-Acosta A., Rodrı́guez-López V.J.M.,
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