
Phosphotyrosine-Mediated Regulation of Enterohemorrhagic
Escherichia coli Virulence

Colin D. Robertson,a Tracy H. Hazen,a,b James B. Kaper,a David A. Rasko,a,b Anne-Marie Hansena

aDepartment of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore,
Maryland, USA

bInstitute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA

ABSTRACT Enteric pathogens with low infectious doses rely on the ability to or-
chestrate the expression of virulence and metabolism-associated genes in response
to environmental cues for successful infection. Accordingly, the human pathogen
enterohemorrhagic Escherichia coli (EHEC) employs a complex multifaceted regula-
tory network to link the expression of type III secretion system (T3SS) components
to nutrient availability. While phosphorylation of histidine and aspartate residues on
two-component system response regulators is recognized as an integral part of bac-
terial signaling, the involvement of phosphotyrosine-mediated control is minimally
explored in Gram-negative pathogens. Our recent phosphotyrosine profiling study of
E. coli identified 342 phosphorylated proteins, indicating that phosphotyrosine modi-
fications in bacteria are more prevalent than previously anticipated. The present
study demonstrates that tyrosine phosphorylation of a metabolite-responsive LacI/
GalR family regulator, Cra, negatively affects T3SS expression under glycolytic condi-
tions that are typical for the colonic lumen environment where production of the
T3SS is unnecessary. Our data suggest that Cra phosphorylation affects T3SS expres-
sion by modulating the expression of ler, which encodes the major activator of EHEC
virulence gene expression. Phosphorylation of the Cra Y47 residue diminishes DNA
binding to fine-tune the expression of virulence-associated genes, including those of
the locus of enterocyte effacement pathogenicity island that encode the T3SS, and
thereby negatively affects the formation of attaching and effacing lesions. Our data
indicate that tyrosine phosphorylation provides an additional mechanism to control
the DNA binding of Cra and other LacI/GalR family regulators, including LacI and
PurR. This study describes an initial effort to unravel the role of global phosphoty-
rosine signaling in the control of EHEC virulence potential.

IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) causes outbreaks of hem-
orrhagic colitis and the potentially fatal hemolytic-uremic syndrome. Successful host
colonization by EHEC relies on the ability to coordinate the expression of virulence
factors in response to environmental cues. A complex network that integrates envi-
ronmental signals at multiple regulatory levels tightly controls virulence gene ex-
pression. We demonstrate that EHEC utilizes a previously uncharacterized phospho-
tyrosine signaling pathway through Cra to fine-tune the expression of virulence-
associated genes to effectively control T3SS production. This study demonstrates
that tyrosine phosphorylation negatively affects the DNA-binding capacity of Cra,
which affects the expression of genes related to virulence and metabolism. We dem-
onstrate for the first time that phosphotyrosine-mediated control affects global tran-
scription in EHEC. Our data provide insight into a hitherto unexplored regulatory
level of the global network controlling EHEC virulence gene expression.
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The enteric human pathogen enterohemorrhagic Escherichia coli (EHEC) causes
food-borne outbreaks of hemorrhagic colitis and the potentially fatal hemolytic-

uremic syndrome worldwide (1–4). EHEC is a challenge to control epidemiologically
because it has a low infectious dose (5). EHEC infection is characterized by the
formation of intestinal attaching and effacing (A/E) lesions due to the activity of a type
III secretion system (T3SS) (6–8). The locus of enterocyte effacement (LEE) pathogenicity
island (PAI) contains five major operons that encode components of the T3SS, the
adhesin intimin, the translocated intimin receptor (Tir), effector proteins, and transcrip-
tional regulators (6, 9). The LEE1 operon encodes the regulator Ler, which is a major
activator of virulence-associated genes located within and outside the LEE island (10,
11). To ensure appropriate production of the T3SS, LEE expression is tightly controlled
and linked to environmental cues such as nutrient availability. The coordinated regu-
lation of genes involved in virulence and metabolism is orchestrated by a multifaceted
regulatory network that integrates environmental cues to ensure the optimal temporal-
spatial expression of genes, a requirement for successful infection by EHEC (10, 12–14).

Signaling by two-component systems involving phosphorylation of histidine and/or
aspartate is a well-characterized central regulatory mechanism known to control the
virulence potential of EHEC (15–17). Yet, the involvement of protein tyrosine phosphor-
ylation as a global regulatory mechanism is an understudied aspect of prokaryotic
signaling, which is in contrast to its fundamental role in eukaryotes (18). Phos-
photyrosine-mediated regulation is a dynamic regulatory process that relies on the
activities of the tyrosine kinase(s) and the cognate tyrosine phosphatase(s) (19). Given
that bacterial tyrosine kinases phosphorylate their target proteins less efficiently than
two-component system kinases because of relaxed substrate specificity, tyrosine phos-
phorylation provides a fine-tuning response rather than eliciting an on-off response as
described for regulation by traditional two-component system kinases (20). The two
currently known E. coli tyrosine kinases (Etk and Wzc) are associated with exopolysac-
charide synthesis, antibiotic resistance, phage lysogenization, and heat shock response
and also affect EHEC virulence by regulating group 4 capsule synthesis (21–26).
However, research elucidating the role of phosphotyrosine signaling in global regula-
tion has been limited by the relatively low number of tyrosine-phosphorylated proteins
previously known (about 32 in E. coli). Our recent phosphotyrosine profiling study of
E. coli (E. coli K-12 and EHEC), as well as a subsequent study involving Shigella flexneri,
revealed tyrosine phosphorylation of between 4 and 12% of the proteomes, indicating
that the prevalence of phosphotyrosine modifications is even higher than in eukaryotic
cells, where about 2% of the proteome is tyrosine phosphorylated (27–29). These
findings refute the previous notion that tyrosine phosphorylation occurs primarily in
eukaryotes. Of the 512 phosphotyrosine sites on 342 proteins combined in E. coli K-12
and EHEC O157:H7 that we identified by a mass spectrometry-based phosphopro-
teomic approach, most relate to fundamental cell functions and virulence, indicating a
central regulatory role of tyrosine phosphorylation in E. coli (27). Interestingly, we
identified phosphotyrosine modifications on nine global transcriptional regulators
associated with LEE expression (27), suggesting that phosphotyrosine signaling could
play an important role in the control of EHEC virulence potential. Indeed, we previously
demonstrated that tyrosine phosphorylation of the regulator SspA positively affects the
production and secretion of LEE-encoded T3SS proteins and is required for optimal A/E
lesion formation by EHEC (27). The proteins identified as being tyrosine phosphorylated
also included the sugar-sensing LacI/GalR family transcriptional regulator Cra, which is
required for LEE expression and A/E lesion formation under gluconeogenic conditions
(30, 31).

The ability of enteric pathogens to effectively link metabolism to virulence by
sensing compounds produced by the host and the resident microbiota is paramount
for their survival and successful colonization of the gastrointestinal tract (12, 32–36).
The EHEC colonization site at the colonic epithelium comprises an aerobic environment
that is rich in gluconeogenic carbon sources derived from the breakdown of host
carbohydrates by the microbiota (34, 37, 38). Cra facilitates the ability of EHEC to switch
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effectively between the use of glycolytic carbon sources and that of gluconeogenic
carbon sources, which provides a competitive advantage over resident E. coli in mouse
and bovine infection models (39–44). In particular, Cra is a key player in the control of
the carbon flux in central metabolic pathways in response to carbon source availability
by coordinating the expression of genes involved in glycolysis and gluconeogenesis
(30, 45–49). Cra activity is regulated in a glycolytic flux-dependent manner through
binding of the glycolytic metabolites fructose-1,6-bisphosphate (FBP) and fructose-1-
phosphate, inducing conformational changes that diminish Cra DNA-binding ability
under glycolytic conditions (30, 46, 47, 50, 51). A comparison of the global transcrip-
tomes of wild-type EHEC and a cra deletion mutant demonstrated that Cra is a global
regulator in EHEC that affects the expression of genes associated with virulence and
major carbon metabolic pathways (52). Cra links metabolism to EHEC virulence inde-
pendently or in concert with the response regulator KdpE by controlling the expression
of virulence genes, including LEE1/ler, to induce the production of the T3SS under
gluconeogenic conditions, thought to represent the environment at the colonization
site (31, 52, 53). On the contrary, LEE expression, and thereby redundant production of
the T3SS, is prevented in the glycolytic lumen environment. Hence, coordinated
regulation of virulence and metabolic genes by Cra in response to carbon source
availability promotes survival and successful host colonization. Cra activation of LEE
expression was also recently demonstrated to depend on oxygen availability (53).
However, it is currently unknown whether Cra activity is directly regulated by post-
translational modification mechanisms other than carbon catabolite repression such as
protein phosphorylation. Notably, our phosphotyrosine profiling study identified phos-
phorylation of the Cra Y47 residue in an EHEC O157:H7 isolate grown under glycolytic
conditions (27). Cra Y47 is a highly conserved and functionally important residue in
LacI/GalR family proteins, where it is located in the linker region next to the DNA
recognition helix of the helix-turn-helix (HTH) motif in the N-terminal DNA-binding
domain (54–56) (see Fig. S1 in the supplemental material). Structural studies of LacI/
GalR family regulators bound to operator DNA demonstrate that the tyrosine residues
corresponding to Cra Y47 make base-specific contact with the DNA backbone through
hydrogen bond formation (57–60). Thus, we hypothesize that the introduction of a
negative charge through phosphorylation of Y47 could affect Cra DNA binding and,
with that, EHEC virulence gene expression.

The present study demonstrates that phosphorylation of Cra Y47 negatively affects
production of the T3SS and A/E lesion formation under glycolytic conditions, thereby
controlling EHEC virulence. Global transcriptome analysis reveals that phosphotyrosine-
mediated regulation by Cra affects the transcription of genes involved in both virulence
and metabolism. In particular, Cra phosphorylation negatively affects the expression of
LEE genes that encode the T3SS. This study demonstrates that tyrosine phosphorylation
diminishes the DNA-binding capacity of Cra, indicating that phosphotyrosine-mediated
regulation provides an additional mechanism to regulate Cra activity besides cata-
bolite-mediated allosteric control. Our data further suggest that tyrosine phosphoryla-
tion could serve as a general mechanism to control the DNA binding of LacI/GalR family
regulators in addition to ligand-mediated regulation.

RESULTS
Phosphorylation of Cra Y47 negatively affects the production and secretion of

LEE-encoded T3SS proteins. To determine the functional importance of Cra Y47
phosphorylation, we constructed two classes of Cra Y47 substitution variants, a non-
phosphorylatable phenylalanine substitution Cra variant (Y47F) and a phosphomimetic
Cra variant that has Y47 replaced with a negatively charged aspartate (Y47D) or
glutamate (Y47E) residue (Fig. 1A), which is traditionally used to generate a derivative
that mimics constitutively phosphorylated protein. To assess whether phosphotyrosine-
mediated regulation by Cra occurs under glycolytic conditions where Cra Y47 was
identified as phosphorylated (27), we compared the abilities of plasmid-encoded
wild-type Cra and nonphosphorylatable Cra Y47F to complement T3SS expression in a
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cra deletion-containing variant of the EHEC EDL933 Δstx mutant strain, TUV93-0 (61),
grown in M9 medium with a 0.4% concentration of glycolytic or gluconeogenic carbon
sources. We verified that expression of Cra from a low-copy-number plasmid supports
the production and secretion of T3SS proteins, as well as A/E lesion formation (P �

0.36), in a manner similar to that of chromosome-encoded Cra, thereby ruling out any
gene dosage effect from expressing plasmid-encoded Cra (Fig. S2A and B). EHEC
producing nonphosphorylatable Y47F Cra versus wild-type Cra under glycolytic condi-
tions (glucose and fructose) showed a 2-fold increased abundance of the LEE-encoded
T3SS protein EspA (Fig. 1B, compare lanes 2 and 4 with lanes 1 and 3), whereas growth
on gluconeogenic carbon sources (mannose and N-acetylglucosamine) diminished the
regulatory impact of Cra Y47 (Fig. 1B, compare lanes 6 and 8 with lanes 5 and 7). Thus,

FIG 1 Phosphorylation of Cra Y47 negatively affects the production and secretion of T3SS proteins. (A)
Structure of amino acid residues used for substitution of Y47 to generate nonphosphorylatable and
phosphomimetic Cra. (B) Cra Y47 affects the production of the T3SS protein EspA under glycolytic
conditions. Western analysis of EHEC expressing wild-type Cra and nonphosphorylatable Cra Y47F in M9
medium supplemented with 0.4% glycolytic (lanes 1 to 4) or gluconeogenic (lanes 5 to 8) carbon sources
as indicated. NAG is N-acetylglucosamine. EspA and GroEL were detected by Western analysis. (C) Cra Y47
affects T3SS protein production and secretion under glycolytic conditions (M9 with 0.4% glucose). The
abundance of LEE-encoded proteins in cell lysates (lanes 1 to 5) and culture supernatants (lanes 6 to 10)
of an EHEC cra deletion-containing strain producing wild-type Cra, nonphosphorylatable Cra (Y47F), and
phosphomimetic Cra (Y47D and Y47E) variants was determined by Western analysis. GroEL served as an
internal control for the total cellular protein loaded and was added to culture supernatants as a control
for protein precipitation.
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Cra Y47 negatively affects T3SS protein production in response to glycolytic conditions,
representing the carbon source status of the large intestine lumen where T3SS expres-
sion is unnecessary. Under glycolytic conditions, EHEC producing nonphosphorylatable
Cra Y47F exhibited increased the production and secretion of LEE-encoded T3SS
proteins EspA, EspB, and Tir by 2- to 4-fold compared to that of the wild type (Fig. 1C,
compare lane 3 with lane 2 and lane 8 with lane 7), suggesting a negative regulatory
effect of Cra Y47. EHEC expressing the phosphomimetic Y47D and Y47E Cra variants
demonstrated diminished T3SS protein production and secretion (Fig. 1C, lanes 4 to 5
and 9 to 10), suggesting that phosphorylation of Cra Y47 negatively affects LEE
expression.

Phosphotyrosine-mediated regulation by Cra affects global transcription.
Given that the Cra Y47 residue is functionally important, we assessed the global
regulatory effect of Cra tyrosine phosphorylation by defining the global transcriptomes
of EHEC producing wild-type Cra, nonphosphorylatable Cra Y47F, and phosphomimetic
Cra Y47D by transcriptome sequencing (RNA-Seq) analysis. We determined the global
transcriptomes of cells grown to early stationary phase under glycolytic conditions
(0.4% glucose), where Cra Y47 affects the production and secretion of T3SS proteins
(Fig. 1B and C). Under these conditions, we expected to specifically identify genes that
respond to phosphotyrosine-mediated regulation by Cra Y47 in addition to metabolite-
mediated control. The three RNA samples, each prepared in duplicate, generated
between 39.5 million and 70.9 million Illumina HiSeq reads per sample (a total of
approximately 339.3 million reads), which were mapped to the corresponding genome
or virulence plasmid pO157 (Table S1). We compared the transcriptomes and consid-
ered genes significantly differentially expressed (DE) if the transcript level log2 fold
change (LFC) was �1 or ��1 (P � 0.01). Comparison of the global transcriptomes of
EHEC producing wild-type Cra, Cra Y47F, and Cra Y47D identified a total of 691 DE
genes located on the chromosome or plasmid pO157 (Fig. 2A and B; Table S2). Of note,
there is a chromosome-wide distribution of the genes, indicating that phosphotyrosine-
mediated gene regulation was not limited to only a small region of the chromosome,
whereas the DE genes on the pO157 plasmid are clustered into a few regions associ-
ated with plasmid replication and a type II secretion system (T2SS).

Comparison of the global transcriptomes of EHEC producing phosphomimetic Cra
Y47D versus wild-type Cra identified 559 DE genes (141 increased and 418 decreased),
whereas EHEC producing nonphosphorylatable Cra Y47F versus wild-type Cra identified
152 DE genes (107 increased and 45 decreased) (Table S3). Accordingly, comparison of
transcriptomes for EHEC producing phosphomimetic Cra Y47D with nonphosphorylat-
able Cra Y47F identified a total of 304 DE genes with 219 being decreased and 85 being
increased (Table S3). To identify DE genes that were unique to the transcriptomes for
EHEC producing Cra Y47D or Cra Y47F, we excluded 54 genes that demonstrated DE in
both transcriptomes compared to that of cells producing wild-type Cra. This compar-
ison revealed that EHEC producing phosphomimetic Cra Y47D expresses 505 DE genes
that are subject to phosphotyrosine-mediated regulation, which is a 5-fold greater
number than the 98 DE genes identified in EHEC producing nonphosphorylatable Cra
Y47F (Fig. 2C; Table S3). Thus, Cra tyrosine phosphorylation exhibits an overall negative
regulatory effect on global transcription. The lower number of DE genes identified for
EHEC producing nonphosphorylatable Cra Y47F than phosphomimetic Cra Y47D, both
compared to cells producing wild-type Cra, suggests that only part of the cellular Cra
pool is phosphorylated, thereby potentially targeting parts of the Cra regulon to
fine-tune expression rather than generating an all-or-none regulatory response. Indeed,
we did not observe significant DE of several well-characterized Cra-controlled genes
involved in the tricarboxylic acid (TCA) cycle, glycolysis, and gluconeogenesis that are
known to be positively (aceA, acnA, fbp, icdA, pckA, ppsA, and cydB) and negatively
(acnB, eda, edd, eno, gapA, pfkA, ptsH, and pykF) regulated by Cra (30).

Phosphotyrosine-mediated regulation by Cra affects EHEC virulence gene ex-
pression. Among genes DE in response to regulation by Cra Y47 phosphorylation are
genes related to virulence and various metabolic pathways (Fig. 2; Tables S2 and S3).
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The LEE PAI that encode the T3SS exhibited the greatest degree of differential expres-
sion, with all but 1 of the 41 LEE genes showing significantly lower expression in EHEC
producing phosphomimetic Cra Y47D (Fig. 3). The finding that 32 of 41 LEE genes had
significantly greater expression in cells producing nonphosphorylatable Cra Y47F than

FIG 2 Phosphotyrosine-mediated regulation by Cra affects global transcription. Comparative RNA-Seq transcriptome
analyses of EHEC expressing wild-type Cra, nonphosphorylatable Cra (Y47F), and phosphomimetic Cra (Y47D) variants
in M9 medium containing 0.4% glucose. Shown are circular plots of the LFCs in gene expression from the chromosome
(A) and virulence plasmid pO157 (B). Genes are organized clockwise on the basis of their locus tags for the chromosome
and pO157. The tracks located on the circular plots represent transcriptome comparisons of EHEC expressing Cra Y47F
versus wild-type Cra (inner track), Cra Y47D versus wild-type Cra (mid track), and Cra Y47D versus cra Y47F (outer track).
The tracks display the LFCs of each gene with significant DE based on the criteria LFC �1 and �1. The locations of the
LEE island and selected DE loci are indicated. Red indicates increased DE, green indicates decreased DE, and white
indicates no significant difference in expression. (C) Venn diagram illustrating the numbers of shared and unique DE
genes of EHEC producing nonphosphorylatable (Y47F) and phosphomimetic (Y47D) Cra compared to wild-type Cra. The
numbers of genes with differentially increased (red) and decreased (green) expression are shown.

Robertson et al. ®

January/February 2018 Volume 9 Issue 1 e00097-18 mbio.asm.org 6

http://mbio.asm.org


in cells producing wild-type Cra further supported a negative regulatory effect of Cra
phosphorylation on LEE expression (Fig. 2A and 3; Table S4). These data are consistent
with Cra Y47 affecting the production and secretion of LEE-encoded T3SS proteins
(Fig. 1C). We also observed significant differential expression of the Ler-regulated
prophage CP-933P gene nleA, which encodes the T3SS-secreted effector NleA (62, 63)
(Table S4). Importantly, we detected significant differential expression of ler, encoding
the activator Ler, which followed the expression pattern of LEE genes and nleA with
reduced expression in cells producing phosphomimetic Cra Y47D and increased ex-
pression in cells producing nonphosphorylatable Cra Y47F (Fig. 3; Table S4). Given that
the only identified Cra binding site within the LEE island is located upstream of the ler
gene (LEE1 operon) (31, 52), phosphotyrosine-mediated regulation by Cra likely controls
the expression of T3SS genes by negatively modulating ler expression. Also, differential
expression of LEE genes that encode the GrlA and GrlR transcriptional regulators (Fig.
3; Table S4), which fine-tune ler expression through a positive regulatory feedback loop
(64), likely amplifies the impact of phosphotyrosine-mediated control of ler expression.
Furthermore, the expression of chromosomal genes located on various prophages,
including CP-933K, CP-933M, CP-933R, CP-933P, CP-933T, CP-933V, and CP-933X, was
significantly decreased in cells producing phosphomimetic Cra Y47D, indicating that
Cra phosphorylation affects the expression of prophage functions (Fig. 2A; Table S4).

The global transcriptome data also revealed significant differential expression of
Ler-activated T2SS genes etpC and stcE located on the pO157 virulence plasmid (11, 65,
66) (Fig. 2B; Table S4). The expression pattern of stcE and etpC mimics that of LEE with
reduced transcript levels in EHEC producing phosphomimetic Cra Y47D and increased
levels in EHEC producing nonphosphorylatable Cra Y47F. Given that no Cra DNA
binding sites were identified in the regulatory region of etpC and stcE (52), phospho-
tyrosine-mediated regulation by Cra of ler expression also likely facilitates the observed
regulatory effect on stcE and etpC expression. Indeed, LEE genes, along with stcE and
etpC, comprised 95% of the Ler-regulated genes identified in a recent microarray
analysis of the Ler regulon in EHEC (65), further indicating that phosphotyrosine-
mediated regulation of these virulence genes by Cra occurs through Ler. We confirmed
the differential expression of selected LEE genes, nleA, and stcE by quantitative reverse
transcription-PCR (Fig. S2C). Also, pO157 genes involved in plasmid DNA replication
initiation (repA and repA4) and various genes of unknown function (Z_L7074-Z_L7087)
showed significantly decreased expression in EHEC producing phosphomimetic Cra
Y47D, suggesting that phosphotyrosine-mediated regulation by Cra affects plasmid
replication and other plasmid-encoded functions that have yet to be defined (Fig. 2B;
Tables S2 and S3). Interestingly, the global transcriptome data revealed a regulatory

FIG 3 Cra phosphorylation negatively affects LEE expression. Diagram of the LEE PAI and heat map of LEE gene expression in EHEC producing nonphos-
phorylatable Cra Y47F versus wild-type Cra (row 1), phosphomimetic Cra Y47D versus wild-type Cra (row 2), and phosphomimetic Cra Y47D versus
nonphosphorylatable Cra Y47F (row 3). LFCs are shown with red, green, and white indicating increased DE, decreased DE, and no significant difference in
expression, respectively.
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effect of Cra phosphorylation on only two (espG and ler) of eight PAI genes previously
reported as being directly regulated by Cra on the basis of a comparison of the
transcriptomes of wild-type EHEC and a cra deletion mutant (52). Thus, only part of the
Cra regulon responds to Cra tyrosine phosphorylation, further supporting the idea that
phosphotyrosine-mediated regulation serves to fine-tune gene expression. Overall,
phosphorylation of Cra Y47 affects the expression of at least 43 EHEC PAI genes that
encode the T2SS and T3SS, which are essential for EHEC to achieve its fullest virulence
potential.

Phosphomimetic Cra negatively affects A/E lesion formation by EHEC. The
observed negative regulatory effect of Cra Y47 on LEE expression and T3SS protein
production and secretion led us to determine whether phosphotyrosine-mediated
regulation by Cra Y47 affects A/E lesion formation. We evaluated the abilities of strains
producing wild-type Cra, nonphosphorylatable Cra (Y47F), and phosphomimetic Cra
variants (Y47D and Y47E) to support A/E lesion formation by an EHEC cra mutant by
using the fluorescent actin staining (FAS) assay (67, 68). EHEC strains producing
phosphomimetic Cra Y47E and Y47D variants exhibited A/E lesion formation signifi-
cantly decreased by 8- and 16-fold, respectively, relative to that of EHEC strains
producing wild-type Cra (unpaired t test, P � 0.05) (Fig. 4), suggesting that Cra Y47
phosphorylation negatively affects A/E lesion formation. Nonphosphorylatable Cra
Y47F did not significantly affect A/E lesion formation under these conditions (growth in
Dulbecco’s modified Eagle’s medium [DMEM]). These data indicate that phospho-

FIG 4 Phosphomimetic Cra negatively affects A/E lesion formation by EHEC. (A) A/E lesion formation on
HeLa cell monolayers of EHEC producing no Cra (�), wild-type Cra, nonphosphorylatable Cra (Y47F), and
phosphomimetic Cra (Y47D and Y47E). A/E lesions are visualized as condensed fluorescein
isothiocyanate-phalloidin-stained actin. Arrowheads indicate clusters of at least eight A/E lesions in
representative images of HeLa cells (n � 300). (B) A/E lesion formation efficiencies as determined by the
number of clusters containing at least eight lesions per 100 HeLa cells. The standard deviations are
indicated. The unpaired t test was used to determine statistically significant differences relative to EHEC
expressing wild-type (WT) Cra with P � 0.05, as indicated by an asterisk.
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tyrosine-mediated regulation by Cra affects the virulence potential of EHEC by reducing
A/E lesion formation.

Tyrosine phosphorylation diminishes Cra DNA binding. Tyrosine residues in the
LacI/GalR family regulators LacI and PurR that are equivalent to Cra Y47 have been
demonstrated to interact with the DNA backbone (57, 69). We therefore determined the
effect of Y47 phosphorylation on Cra DNA binding with electrophoretic mobility shift
assays (EMSAs) by assessing the abilities of wild-type Cra and Y47 substitution variants
to bind to fluorescently labeled target DNA fragments (70). Cra recognizes and binds to
the 14-bp consensus sequence RSTGAAWCSNTHHW (71), which is present in the region
upstream of LEE1/ler (31). The Cra binding site within the regulatory region of LEE1 is
of particular interest because phosphotyrosine-mediated regulation of LEE1/ler by Cra
likely accounts for the observed differential expression of many Ler-regulated virulence
genes (Fig. 2 to 3; Table S4). A search for genes with already known Cra DNA binding
sites (48, 49, 52) among the DE genes identified in the present study only revealed a
binding site in the regulatory region of prpB, which encodes a methylisocitrate lyase
(48). However, we were unable to detect binding of Cra to prpB target DNA (Fig. S4A).
In addition to the LEE1 target, we therefore included two well-characterized Cra targets
contained in the regulatory regions of adhE and fruB (71, 72). EMSAs revealed that
increasing concentrations of wild-type Cra bound to LEE1, adhE, and fruB target DNA as
expected (Fig. 5A to C, lanes 2 to 4). We verified the DNA-binding specificity of Cra to
LEE1, adhE, and fruB target DNA by using unlabeled nonspecific (rssB) and specific
fragments as competitor DNA (Fig. 5A to C, lanes 5 to 6). Nonphosphorylatable Cra Y47F
bound to the DNA targets despite lacking the hydroxyl group of Y47 expected to
interact with DNA (Fig. 5A to C, lanes 8 to 10). To establish whether the DNA-binding
ability of Cra Y47F differs from that of wild-type Cra, we determined the protein
dissociation constants by using the LEE1 DNA target as previously described (10, 73, 74).
The dissociation constants measured for wild-type Cra (111 � 17 nM) and Cra Y47F
(130 � 17 nM) were not significantly different (P � 0.15) (unpaired t test, P � 0.05).
These data indicate that hydrogen bond formation between the hydroxyl group of Y47
and DNA is dispensable for Cra DNA binding.

To determine whether phosphorylation of Cra Y47 affects Cra DNA binding, we used
phosphomimetic Cra Y47E, which was unable to bind DNA fragments containing the
regulatory regions of LEE1, adhE, and fruB (Fig. 5A to C, lanes 12 to 14). These data
indicate that the presence of a negatively charged residue at position 47 diminishes Cra
DNA binding. Yet, given that aspartate and glutamate do not completely mimic a
phosphotyrosine structurally (Fig. 5D), the observed inability of Cra Y47E to bind DNA
could be due to steric hindrance rather than the presence of a phosphorylated residue.
To address this possibility, we took advantage of an approach successfully used in
eukaryotic protein phosphorylation studies that includes the nonhydrolyzable phos-
photyrosine analogue p-carboxymethylphenylalanine (pCmF), which is structurally and
electrostatically similar to a phosphotyrosine (Fig. 5D) (75, 76). To incorporate pCmF at
Cra position 47, we replaced codon 47 with an amber stop codon (UAG) and then used
an orthogonal aminoacyl-tRNA synthetase-tRNA pair (aaRS/tRNACUA) encoded by
pEVOL-pCmF to incorporate pCmF at UAG (76). To ensure specific incorporation of
pCmF, we used the genomically recoded strain C321.ΔA.exp, which has UAG reassigned
as a sense codon to optimize the incorporation of unnatural amino acids (77). EMSAs
revealed that Cra Y47pCmF containing the phosphotyrosine analogue, like Cra Y47E,
exhibits diminished binding to Cra target DNA (Fig. 5A to C, lanes 16 to 18). These data
indicate that it is tyrosine phosphorylation, rather than merely the presence of a
negatively charged residue, that interferes with the DNA-binding ability of Cra.

Providing that glycolytic metabolites modulate the ability of Cra to bind DNA (30),
Cra Y47 phosphorylation could, in theory, affect DNA binding through metabolite-
mediated control instead of representing an independent mechanism. To assess this,
we compared the DNA binding of wild-type Cra and that of nonphosphorylatable Cra
Y47F in the presence of the glycolytic metabolite FBP. The presence of FBP reduced the
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binding of both wild-type Cra and Cra Y47F to LEE1 DNA by 33% (Fig. S3, compare lanes
2 and 3 and lanes 6 and 7), whereas glucose-6-phosphate, which served as negative
control, did not affect Cra DNA binding (Fig. S3, lanes 4 and 8). These findings indicate
that Cra Y47 phosphorylation is not a prerequisite for metabolite-mediated control of

FIG 5 Tyrosine phosphorylation abolishes the DNA-binding capacity of Cra. The DNA-binding capacities of
purified wild-type (WT) Cra and Y47-substituted Cra variants were evaluated by EMSAs with LEE1 (A), adhE (B),
and fruB (C) DNA targets. (D) Structures of phosphotyrosine, glutamate, and the phosphotyrosine analog
pCmF used to substitute Cra Y47 to generate phosphomimetic Cra variants. Fluorescently labeled DNA was
incubated with increasing concentrations (10, 75, and 200 nM) of wild-type Cra (lanes 2 to 6), Cra Y47F (lanes
8 to 10), Cra Y47E (lanes 12 to 14), and Cra Y47pCmF (lanes 16 to 18) and then subjected to gel
electrophoresis. DNA binding specificity was determined by coincubating wild-type Cra (plus sign) with
unlabeled nonspecific competitor DNA (ns; lane 5, rssB) and unlabeled specific competitor DNA (s; lane 6 LEE1
[A], adhE [B], or fruB [C]). Locations of unbound and Cra-bound DNA are indicated. Asterisks designate
protein-bound DNA subpopulations. The images shown are representative of at least three independent
experiments.
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Cra DNA binding, suggesting that phosphotyrosine-mediated regulation and meta-
bolite-mediated regulation represent two independent mechanisms to control the
DNA-binding capacity of Cra.

Tyrosine phosphorylation affects the DNA-binding capacity of other LacI/GalR
family regulators. We previously also demonstrated phosphorylation of the PurR Y45
residue that is structurally equivalent to Cra Y47 (27), suggesting that tyrosine phos-
phorylation also could modulate the DNA binding capacity of other LacI/GalR regula-
tors. To address this, we substituted the corresponding tyrosine residues in PurR (Y45)
and LacI (Y47) with nonphosphorylatable (F) and phosphomimetic (E) residues and
assessed the DNA binding of these proteins by EMSA. Whereas wild-type and non-
phosphorylatable LacI and PurR variants bound to DNA at increasing concentrations
(Fig. 6A and B, lanes 2 to 8), the phosphomimetic variants did not bind DNA (Fig. 6A and
B, lanes 10 to 12), suggesting that tyrosine phosphorylation negatively controls the
DNA-binding abilities of LacI and PurR. Furthermore, PurR containing the phosphoty-
rosine homologue pCmF in place of Y47 did not bind DNA, further supporting the
regulatory effect of a phosphotyrosine (Fig. S4B, lanes 14 to 16). These findings are
consistent with the observed effect of Y47-mediated regulation by Cra (Fig. 5A to C).
Thus, our data suggest that tyrosine phosphorylation could provide a general regula-
tory mechanism for DNA binding of the LacI/GalR family in addition to ligand-mediated
control.

DISCUSSION

Successful host infection by pathogens relies on a highly integrated regulatory
network that coordinates the expression of virulence and metabolic genes in response
to nutrient-derived environmental cues. Specifically, EHEC links the expression of
virulence factors to metabolic sensing through the regulator Cra by promoting the
expression of virulence genes in response to the gluconeogenic environment at the

FIG 6 Phosphomimetic PurR and LacI negatively affect DNA binding. The abilities of wild-type (WT) and
substituted variants of LacI Y47 (A) and PurR Y45 (B) to bind to, respectively, lacO1O3 and purF-cvpA
target DNA was determined by EMSAs. The purified wild-type proteins (LacI and PurR, lanes 2 to 4),
nonphosphorylatable variants (LacI Y47F and PurR Y45F, lanes 6 to 8), and phosphomimetics variants
(LacI Y47E and PurR Y45E, lanes 10 to 12) were bound to their respective target DNA at increasing
concentrations (25, 150, and 300 nM). Positions of protein-bound and unbound DNA fragments are
indicated. The images shown are representative of at least three independent experiments.
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colonization site, whereas glycolytic conditions prevent unnecessary expression in the
colonic lumen (31). Here, we demonstrate that tyrosine phosphorylation negatively
controls Cra DNA binding (Fig. 5), which is reflected in global differential gene expres-
sion in cells producing nonphosphorylatable Cra Y47F and phosphomimetic Cra Y47D
(Fig. 2). Yet, our data indicate that only part of the Cra regulon, previously defined by
using a cra deletion mutant (52), responds to phosphotyrosine-mediated regulation,
suggesting that a fraction rather than the entire Cra pool is tyrosine phosphorylated.
This notion is consistent with the findings of Soares et al., who reported a low median
occupancy of Ser/Thr/Tyr phosphorylation sites in E. coli (�12%) (78). Given that Cra
Y47 exhibits a regulatory effect in cells grown on glycolytic rather than gluconeogenic
carbon sources (Fig. 1B), we speculate that a greater fraction of Cra protein is phos-
phorylated in response to glycolytic conditions, as illustrated in the proposed model
(Fig. 7). Hence, changing Cra phosphorylation levels likely serves to fine-tune gene
expression. Importantly, our data indicate that phosphorylation of Cra Y47 negatively
affects the binding of Cra to the regulatory region of LEE1/ler, which encodes the major
activator of LEE expression, Ler (Fig. 5A). Accordingly, phosphotyrosine-mediated reg-
ulation by Cra negatively affects ler expression and subsequently Ler-regulated genes
that encode the T3SS, such as those on the LEE and nleA (Fig. 2A and 4). Hence,
phosphotyrosine-mediated regulation by Cra negatively affects the production and
secretion of T3SS proteins, resulting in decreased A/E lesion formation (Fig. 1 and 4).
Given that untimely expression of the T3SS during infection likely provides a detrimen-
tal energy burden and may expose EHEC to the host immune system (26), Cra
phosphorylation could provide an additional mechanism besides catabolite repres-
sion to prevent the activation of LEE/ler expression by Cra in a glycolytic environ-
ment typical of the colonic lumen. Moreover, Cra phosphorylation negatively affects
the expression of Ler-regulated pO157 genes stcE and etpC (Fig. 2B), which are associated
with the T2SS and involved in cell adherence and intimate attachment (79, 80). Thus,
phosphotyrosine-mediated control by Cra is likely to affect the virulence potential of EHEC
by fine-tuning the expression of genes that encode the T2SS and T3SS to prevent redun-
dant expression in the glycolytic environment of the colonic lumen.

Apart from controlling the expression of virulence genes, our data suggest that Cra
phosphorylation also likely affects the virulence potential of EHEC by indirectly affect-
ing the expression of metabolic genes involved in the acquisition of gluconeogenic
nutrients (Fig. 2A; Tables S2 and S3). In particular, phosphomimetic Cra negatively
affects the expression of eut locus genes involved in ethanolamine transport and
metabolism, which is known to provide a nitrogen source for EHEC under nutrient-
limited conditions and thereby a competitive advantage over the commensal flora

FIG 7 Model of phosphotyrosine-mediated regulation by Cra. Under glycolytic conditions typical of the
environment of the colonic lumen where T3SS production is unnecessary, Cra Y47 phosphorylation
diminishes Cra DNA binding to Cra targets, including LEE1/ler, and thereby provides a means in addition
to catabolite repression to prevent the expression of virulence-associated genes, including those of the
LEE and pO157. In the gluconeogenic environment of the colonization site Cra Y47 phosphorylation is
likely reduced, which promotes the expression of virulence genes. Our model suggests that
phosphotyrosine-mediated regulation represents a gradual rather than an all-or-none response to
modulate Cra activity and, with that, fine-tune gene expression according to nutrient availability. The
arrows and the T line indicate positive and negative regulation, respectively.
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during infection (42). However, the link between Cra regulation and the eut operon
remains unknown, as Cra is not known to control the expression of eut genes either
directly or indirectly through regulation of eutR, which encodes a eut operon regulator
(81). Furthermore, the global transcriptome data suggest that Cra tyrosine phosphor-
ylation negatively affects the expression of phn operon genes involved in phosphonate
metabolism, which supplies inorganic phosphate under phosphate-limited conditions
(82, 83). Phosphomimetic Cra also negatively affects the expression of prp and mhp
operon genes associated with the metabolism of the gluconeogenic nutrients propi-
onate and phenylpropanoid compounds, which are degraded to TCA cycle substrates
that can serve as an energy source under glycolytic nutrient deprivation (84, 85). Thus,
phosphotyrosine-mediated regulation by Cra could also affect the virulence potential
of EHEC by preventing the unnecessary expression of genes related to the transport
and utilization of gluconeogenic nutrients under glycolytic conditions.

Phosphorylation of Cra Y47 positioned in the DNA-binding domain affects global
transcription by interfering with the DNA-binding capacity of Cra (Fig. 5). This is
consistent with data demonstrating that phosphorylation of a tyrosine residue located
in the DNA-binding domain HTH motif of the Bacillus subtilis transcriptional regulator
FatR disrupts DNA binding (86). Given that Cra Y47 is conserved in Gram-negative
bacteria, phosphotyrosine-mediated control by Cra might also occur in other human
pathogens such as S. flexneri and Salmonella enterica the virulence of which Cra
influences (87–89). Furthermore, we showed that introduction of phosphomimetic
residues at positions corresponding to Cra Y47 in the LacI/GalR family regulators PurR
(Y45E) and LacI (Y47E) disrupts DNA binding, as observed for Cra (Fig. 6). These data
suggest that tyrosine phosphorylation of LacI/GalR family regulators provides a regu-
latory mechanism to modulate DNA binding besides ligand-mediated allosteric control.
PurR Y45 is phosphorylated under glycolytic conditions (27), where derepression of the
PurR regulon to promote the expression of genes involved in purine synthesis is
warranted. Although Cra Y47 was identified as phosphorylated under glycolytic con-
ditions, other environmental cues such as oxygen availability might also induce Cra Y47
phosphorylation. Indeed, Carlson-Banning and Sperandio showed that aerobic condi-
tions, representing the environment at the colonization site, are required for Cra-
mediated activation of LEE expression, whereas anaerobic conditions mimicking those
of the colonic lumen repress T3SS expression (53, 90, 91). Thus, oxygen sensing could
provide a signal that favors Cra phosphorylation under anaerobic conditions to prevent
the redundant T3SS expression in the colonic lumen. Indeed, tyrosine phosphorylation
of the Streptococcus pneumoniae regulator CpsD, which is involved in capsular poly-
saccharide expression, is controlled by oxygen levels (92, 93). However, it is beyond the
scope of this study to investigate the role of oxygen availability in Cra tyrosine
phosphorylation. Also, future studies will define the tyrosine kinase(s) and phospha-
tase(s) that modulate the phosphorylation status of Cra. Overall, our data suggest that
phosphotyrosine signaling provides an additional layer to the global regulatory net-
work controlling virulence gene expression and thereby affects the virulence potential
of EHEC. This notion is further supported by our previous finding that tyrosine phos-
phorylation of the global regulator SspA positively affects the production of LEE-
encoded T3SS proteins and A/E lesion formation (27). In addition, it was recently
demonstrated that tyrosine phosphorylation of the virulence gene regulator VirB and
the T3SS ATPase Spa47 modulates the production and activity of the T3SS in S. flexneri
(30), further emphasizing the importance of phosphotyrosine signaling in the control of
enteric pathogen virulence.

In conclusion, we demonstrate that tyrosine phosphorylation of Cra negatively
affects the expression of virulence-associated genes, including those that encode the
T2SS and T3SS, to prevent redundant expression in glycolytic environments. Impor-
tantly, phosphotyrosine-mediated regulation affects A/E lesion formation and, with
that, controls the virulence potential of EHEC. Specifically, tyrosine phosphorylation
diminishes Cra DNA binding, suggesting that phosphotyrosine signaling could provide
an additional mechanism to control the DNA-binding capacity of Cra besides catabolite
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repression. Our data suggest that Cra tyrosine phosphorylation fine-tunes gene expres-
sion in response to environmental cues such as glycolytic conditions to ensure optimal
spatial-temporal expression of virulence-associated genes. Further studies are war-
ranted to fully understand the extent and role of phosphotyrosine signaling in the
regulation of EHEC virulence.

MATERIALS AND METHODS
Standard procedures. Standard molecular biology techniques were used as previously described

(94). Bacteria were grown at 37°C in LB medium, M9 medium, or DMEM (Corning catalog number
17207CU) supplemented with antibiotics (100 �g/ml ampicillin, 20 �g/ml chloramphenicol, and
30 �g/ml kanamycin) and carbon sources as needed. HeLa cells (ATCC CCL-2) were cultured in
DMEM/F12 (Gibco catalog number 11330) supplemented with 10% fetal bovine serum (FBS), 100 U/ml
penicillin, and 100 �g/ml streptomycin at 37°C in 7% CO2.

Strain and plasmid construction. The strains and plasmids used in this study (Table S5) were
constructed by using standard genetic manipulations as described in Text S1. For biosafety, we used
throughout this study an EHEC O157:H7 EDL933 strain with stx1 and stx2 deleted (TUV93-0) (61).

Western analysis. Overnight cultures grown in LB were diluted 1:1,000 in M9 medium supplemented
with a 0.4% carbon source (as indicated in the figure legends) and grown aerobically at 37°C to an optical
density at 600 nm (OD600) of ~1. The total protein present in whole-cell lysates and culture supernatant
fractions was precipitated with 5 and 10% (vol/vol) trichloric acid, respectively. Protein samples equiv-
alent to 0.03 OD600 unit of culture were resolved on 4 to 20% Tris-HCl protein gels (Bio-Rad), and proteins
were transferred onto an Immobilon-FL polyvinylidene difluoride membrane (Millipore). The membrane
was blocked in Odyssey blocking buffer (LI-COR Biosciences); exposed to polyclonal antibodies specific
to T3SS proteins (EspA, EspB, and Tir [95]), Cra, or GroEL (Sigma); and subsequently exposed to an Alexa
Fluor 680-conjugated goat anti-rabbit secondary antibody (Invitrogen). A polyclonal rabbit antibody to
purified Cra protein was generated by Lampire Biological Laboratories by using the EXPRESS-LINE service.
GroEL served as an internal control for the total cellular protein loaded and was added to culture
supernatants as a control for protein precipitation. Proteins were visualized and quantified with an
Odyssey Infrared Imaging System and application software version 3.0 (LI-COR Biosciences) as recom-
mended. Western analyses were carried out with four independent biological samples of each strain.

RNA isolation and sequencing. Overnight cultures of TUV93-0 Δcra::FRT producing wild-type Cra
(pAMH257), nonphosphorylatable Cra Y47F (pAMH258), or phosphomimetic Cra Y47D (pAMH268) were
grown in LB and then diluted 1:100 in M9 with 0.4% glucose and grown aerobically at 37°C to an OD600

of ~1. Cells were treated with RNAlater (Ambion) in accordance with the manufacturer’s instructions.
Total RNA was isolated from culture samples corresponding to ~2.3 � 1010 cells by a hot phenol
extraction method as previously described (96). Contaminating DNA in the RNA preparations was
removed with the Turbo DNA-free kit (Ambion). RNA samples were enriched by reducing rRNA levels
with the Ribo-Zero magnetic kit for Gram-negative bacteria (Illumina). The DNA-free RNA samples were
submitted for paired-end library construction with the TruSeq Library kit (Illumina) at the Institute for
Genome Sciences Genomic Resource Center (http://www.igs.umaryland.edu/resources/grc/). The libraries
were sequenced as 150-bp reads on the Illumina HiSeq 4000.

RNA-Seq analyses. The Illumina reads generated for each RNA sample were analyzed and compared
by using an in-house Ergatis-based (97) RNA-Seq analysis pipeline as previously described (98). The reads
were trimmed for quality with the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html).
The reads were then aligned with the chromosome of EDL933 (AE005174.2) and plasmid pO157
(AF074613.1) with the Bowtie aligner (99). The number of reads that aligned with the protein-encoding
regions was determined with HTSeq (100). The differential expression of each gene across the biological
replicates was determined with DESeq (101). The LFCs were calculated for EHEC producing CraY47F
versus wild-type Cra, CraY47D versus wild-type Cra, and CraY47D versus Cra Y47F. The genes were then
filtered for further analysis to meet the following criteria: a minimum read count percentage of 0.1,
transcript LFCs of �1 or ��1, P � 0.01, and a false-discovery rate (FDR) of �0.05. Genes that met these
criteria were identified as having significant differential expression. The circular displays of the significant
LFCs for each gene of the EDL933 chromosome and the pO157 plasmid were generated with Circos
0.69-3 (102). Heat maps of the significant LFCs for the LEE genes were generated with MeV (103).

FAS assay. A/E lesions were detected with the FAS assay as previously described (67, 68). Briefly,
overnight cultures of statically grown strains (~2 � 107 bacteria, multiplicity of infection of ~10) were
coincubated with HeLa cell monolayers in DMEM supplemented with 2% FBS. At 4 h postinfection, the
monolayers were fixed in 4% formamide and F-actin was stained with Alexa Fluor 488 phalloidin
(Invitrogen). The FAS assay was carried out independently at least three times for each strain. Samples
were visualized with an Axioskop microscope equipped with a 40� objective, and images were captured
with an AxioCam MR3 digital camera and AxioVision v 4.8 software (Carl Zeiss MicroImaging Inc.).
Pedestal formation efficiency in each experiment was determined as the number of microcolonies
containing at least eight lesions per 100 HeLa cells relative to the cra mutant producing wild-type Cra.
The unpaired t test with a P value of �0.05 was used to determine statistical significance.

Protein production and purification. Recombinant wild-type Cra and Cra Y47 substitution variants
were produced in TUV93-0 Δcra::FRT from pAMH384 (Cra), pAMH385 (Cra Y47F), pAMH386 (Cra Y47E),
and pAMH387 (Cra Y47D). Recombinant wild-type PurR and PurR Y45 substitution derivatives were
produced in C321.ΔA.exp ΔpurR::kan from pAMH413 (PurR), pAMH414 (PurR Y45F), and pAMH419 (PurR
Y45E). Recombinant wild-type LacI and LacI Y47 substitution derivatives were produced in C321.ΔA.exp

Robertson et al. ®

January/February 2018 Volume 9 Issue 1 e00097-18 mbio.asm.org 14

http://www.igs.umaryland.edu/resources/grc/
http://hannonlab.cshl.edu/fastx_toolkit/index.html
https://www.ncbi.nlm.nih.gov/nuccore/AE005174%2e2
https://www.ncbi.nlm.nih.gov/nuccore/AF074613%2e1
http://mbio.asm.org


ΔlacI::kan from pAMH416 (LacI), pAMH417 (LacI Y47F), and pAMH420 (LacI Y47E). Overnight cultures
were diluted 1:100 in LB containing ampicillin and grown aerobically at 37°C to an OD600 of ~0.8 prior
to induction with 0.5 mM isopropyl-�-D-thiogalactopyranoside (IPTG) for 1 h. Cells were collected by
centrifugation. To replace Cra Y47 with the phosphotyrosine analogue pCmF, we used an expression
plasmid where the codon Y47 was replaced with an amber stop codon (Cra Y47TAG, pAMH390). To
incorporate the phosphotyrosine analogue pCmF in place of Cra residue Y47, we used an orthogonal
aminoacyl-tRNA synthetase--tRNA pair (aaRS/tRNACUA) encoded by pEVOL-pCmF as previously described
(75). We used strain C321.ΔA.exp (77) with cra deleted for the incorporation of pCmF (Table S4). Briefly,
an overnight culture of C321.ΔA.exp Δcra::kan (pAMH390, pEVOL-pCmF) was diluted 1:100 in LB
containing ampicillin and chloramphenicol and grown aerobically in LB at 37°C to an OD600 of ~0.4. Then,
1 mM pCmF was added and the expression aaRS/tRNACUA was induced with 0.2% arabinose for 1 h prior
to the induction of recombinant protein expression with 0.5 mM IPTG. Cells were grown for an additional
1 h and then harvested by centrifugation. The phosphotyrosine analogue pCmF was synthesized by
AsisChem Inc. as previously described (75).

To purify recombinant proteins, cell pellets were suspended in buffer A (20 mM Tris HCl, 100 mM
NaCl, 10% glycerol, 10 mM Na4P2O7, 1 mM Na3O4V, 0.5 mM PMSF, pH 8) containing 25 mM imidazole,
cells were lysed by two passages through an LV1 microfluidizer (Microfluidics), and lysed cell suspensions
were cleared by centrifugation at 26,500 � g for 15 min at 4°C. His-tagged proteins were purified with
Ni-NTA agarose (Qiagen) in accordance with the manufacturer’s recommendations. Protein was eluted
with buffer A containing 200 mM imidazole, resolved by SDS-PAGE with a 4 to 20% Tris-HCl precast gel
(Bio-Rad), and visualized with GelCode Blue Stain Reagent (Thermo Scientific). Protein purity was about
95%, as estimated from stained gels. Purified protein was concentrated and buffer exchanged into buffer
A with an Amicon Ultra Centrifugal Filter Device with a 30-kDa cutoff (Millipore) and then stored in buffer
A containing 25% glycerol.

EMSAs. Fluorescently labeled oligonucleotides used for PCR amplification of DNA fragments con-
taining Cra targets were prepared as previously described (104). The oligonucleotides used are listed in
Table S5. Fragments containing Cra DNA-binding sites associated with the LEE1 (�450 to �255) (31),
adhE (�96 to �181) (72), and fruB (�43 to 234) (71) regulatory regions were PCR amplified from TUV93-0
genomic DNA (gDNA) with fluorescently labeled primer sets AH1384/AH1385, AH1382/AH1383, and
AH1148/AH1149, respectively. Fragments containing the PurR and LacI DNA-binding sites located in the
regulatory regions of cvpA-purF (�171 to 56) (105) and lac (�139 to 69) (106), respectively, were PCR
amplified from TUV93-0 gDNA with fluorescently labeled primer sets AH1424/AH1425 and AH1426/
AH1427. An unlabeled DNA fragment containing part of rssB, which served as a nonspecific DNA target,
was amplified with oligonucleotides K5365/K5366. The DNA fragments were purified with G-50 spin
columns (GE Healthcare). Purified wild-type and Y substitution derivatives of Cra, PurR, and LacI (the
concentrations used are indicated in the figure legends) were incubated with 24 ng of fluorescently
labeled target DNA fragment in binding buffer (60 mM HEPES-KOH, 25 mM MgCl2, 5 mM EDTA, 300 mM
KCl, 50 �g/ml bovine serum albumin, 3 mM dithiothreitol, pH 7.5) for 20 min at room temperature.
Unlabeled target DNA and nonspecific (rssB) DNA fragments added in 20-fold excess served as specific
and nonspecific competitor DNA, respectively. DNA fragments were separated with a 4 to 20% TBE
Criterion gel (Bio-Rad). Fluorescently labeled DNA fragments were visualized with an Odyssey Imaging
System at 800 nm with application software version 3.0 (LI-COR Biosciences). EMSAs were carried out four
times for each experiment with proteins from at least two different protein purification preparations.

Accession number(s). The Illumina reads obtained in this study have been deposited in the NCBI
Short Read Archive under the accession numbers listed in Table S1. The RNA-Seq study is described
under GEO accession number GSE103764.
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