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Abstract: Evidence from studies of the behaviour of stem and progenitor cells and of the influence
of cytokines on their fate determination, has recently led to a revised view of the process by which
hematopoietic stem cells and their progeny give rise to the many different types of blood and immune
cells. The new scenario abandons the classical view of a rigidly demarcated lineage tree and replaces
it with a much more continuum-like view of the spectrum of fate options open to hematopoietic stem
cells and their progeny. This is in contrast to previous lineage diagrams, which envisaged stem cells
progressing stepwise through a series of fairly-precisely described intermediate progenitors in order
to close down alternative developmental options. Instead, stem and progenitor cells retain some
capacity to step sideways and adopt alternative, closely related, fates, even after they have “made a
lineage choice.” The stem and progenitor cells are more inherently versatile than previously thought
and perhaps sensitive to lineage guidance by environmental cues. Here we examine the evidence
that supports these views and reconsider the meaning of cell lineages in the context of a continuum
model of stem cell fate determination and environmental modulation.

Keywords: blood and immune cells; cell lineage; cytokines; fate determination; hematopoiesis;
stem cells

1. Introduction

In 1983, Sulston and colleagues produced a tree map—a series of bifurcations—that delineated
the origins of the 671 cells of the newly hatched roundworm Caenorhabditis elegans [1]. In this organism,
cell lineages and the fates of cells are largely invariant and ancestry therefore determines the end fate
of a cell. The apparent rigidity of a tree lineage map ensures tissues develop reliably and consistently.
An autonomous lineage programme is also likely to generate the cell types required in a manner
that is both efficient and economical. To add to lessons learned from Caenorhabditis elegans, there is
“unpredictability” in the developmental nature of cells within this organism. Numerous sub-lineages
give rise to various populations of motor neurons, rather than these cells descending from the same
progenitor in the map. Moreover, when one of the progeny of a terminal division is a motor neuron its
“sibling” is unlikely to be a cell of the same type [1].

For over 30 years, tree maps have also been used to describe blood and immune cell
development [2] and the development of other tissues (e.g., neuronal-crest-derived cells) [3].
Accordingly, investigations of decision-making by developing cells have tended to examine how
they make either-or choices. In the case of hematopoiesis, attention focused on how the progeny

Int. J. Mol. Sci. 2018, 19, 2122; doi:10.3390/ijms19072122 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-9450-2604
http://www.mdpi.com/1422-0067/19/7/2122?type=check_update&version=1
http://dx.doi.org/10.3390/ijms19072122
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2018, 19, 2122 2 of 17

of hematopoietic stem cells (HSC) first become common lymphoid progenitors (CLP) and hence
generate B cells, T cells and natural killer (NK)/innate lymphoid (ILC) cells, or common myeloid
progenitors (CMP), which gives rise to all the other blood cell types [2]. It is then envisaged that later in
development progenitors choose, for example, between the neutrophil and monocyte pathways [4] and
between the megakaryocyte and erythroid pathways [5]. For years, we have defined hematopoietic
cell lineages in terms of just two initial types of oligo-potential cells, CLP and CMP, giving rise to all of
the various end-cell types.

In recent years, descriptions of the architecture of haematopoiesis have been moving away from
the idea of HSC development progressing via: a) a series of intermediate oligo-potent progenitors;
and b) these cells making a series of binary choices that stepwise restrict lineage options, ultimately to
one final fate. In a new scenario, the suggestion is that HSC can make an immediate lineage choice
from a continuum that encompasses all of the end-cell options. Our pairwise model, proposed in 2009,
(Figure 1A) [6], does not prescribe an invariant route to each end-cell type via definitive intermediate
progenitors. It presumes, quite simply, that all of the options are open to HSCs. This is in keeping
with decision-making, regarding lineage affiliation, at the level of the HSC and very different from
HSC making an immediate and binary choice, for example, between the myeloid and lymphoid fates.
In support of this new viewpoint is the recent finding that HSC in mice can undergo restriction to
the myeloid, megakaryocyte/erythroid and megakaryocyte pathways without dividing or entering
S phase of the cells cycle [7]. Previously, we showed that the human promyeloid cell line HL60 makes
a choice between the neutrophil and monocyte fates without dividing and when held in the G1 and
S phases of the cell cycle [8,9]. Cell fate decisions are therefore uncoupled from cell division and
the mechanisms that control fate determination/differentiation and proliferation are at least partly
independent. An inverse relation between cell cycle and differentiation can actually occur, as has been
shown in the case of the transcription factor PU.1 in myeloid differentiation. Increased PU.1 levels can
lead to prolongation of the cell cycle resulting in further accumulation of PU.1 and thus commitment
of progenitors to the macrophage lineage [10].

The concept of a continuum of developmental options is important and applies to the description
of various changes to the status of cells. A longstanding viewpoint is that embryonic stem cells make
a binary choice between pluripotency and specification to a germ cell layer. However, the stem cell
compartment of human embryonic stem cell cultures is significantly heterogeneous and Hough and
colleagues have argued that a continuum of states spans pluripotency and lineage commitment of these
cells [11]. Moreover, the existence of self-renewal as a canonical state is debatable: cells progressively
decrease their likelihood of self-renewal as the expression of stem cell- and pluripotency-related genes
decreases and that of genes encoding differentiation attributes increases [11]. Epiblast cells of the
early mammalian embryo are able to make mesoderm, endoderm or ectoderm fate decisions and as
development progresses they mature through a continuum of lineage potency states [12]. Additionally,
a continuum best describes the progression of cell differentiation. For example, early studies revealed
gradual changes in the expression of a large number of surface antigens during the different stages
of neutrophil development [13]. Similarly, maturation changes occur along a continuum during
erythropoiesis [14]. To return to Caenorhabditis elegans, a continuum framework has been used to model
epithelial morphogenesis and elongation of the embryo to a worm [15].

The pairwise model also emphasizes that there are particular nearest neighbour relationships
between the various cell lineages. The known sets of fates of cells termed lymphoid-primed
multipotent progenitors (LMPP), early progenitors with lymphoid and myeloid potential (EPLM)
and common myeloid progenitors (CMP) and of other downstream progenitors (see Figure 1A,B),
guided the construction of the relationships of progenitors in the pairwise model. However, recent
genotypic studies have revealed that LMPP, EPLM and CMP although phenotypically relatively
homogenous are not homogeneous populations and instead are mixtures of cells with different lineage
affiliations [16–20]. We have examined the affiliations of EPLM, which were originally described as
a population of cells that could generate B and T lymphocytes, NK cells, dendritic cells (DC) and
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macrophages but that lacked megakaryocyte and erythroid potentials [21]. Thus, by using the surface
markers Ly6D, SiglecH and CD11c and by RNA sequencing single cells, we separated EPLM into four
subpopulations each with lineage biases. We divided the most primitive EPLM, lacking these markers,
into cells that already have myeloid, DC or lymphoid signatures [16]. Likewise, Naik and colleagues
have similarly divided LMPP into lymphoid-, myeloid- and DC lineage-biased cell populations [18].
Hoppe and colleagues used RNA expression data to classify CMP into granulocyte/monocyte and
megakaryocyte/erythroid progenitors [17] and Paul and colleagues have assigned bone marrow
progenitors into seven groups with transcriptional characteristics of neutrophils, basophils, eosinophils,
monocytes, DC, erythrocytes and megakaryocytes [20]. Figure 1B shows the sub-populations of LMPP,
EPLM and CMP as cells added to their arcs of potentials. The particular close relationships between
cell lineages remain the same as lineages adjacent to one another share the usage of transcription
factors and cell responsiveness to promiscuous cytokines [6,22]. This fits with the notion of visualising
cell specification as a continuum and infers that adjacent elements are less different from each other
whereas the extremes are quite distinct.
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or committed cells (My) [26,27] that express Flt3+ [25] and/or the receptor for thrombopoietin (TpoR+) 
[28]; cells committed to the erythroid pathway [19] and affiliated as to expression of the receptor for 
erythropoietin (EpoR+) [25,29]; and cells that express the receptor for macrophage colony stimulating 
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Figure 1. A continuum or pairwise model for hematopoiesis. (A) The model envisages a continuum of
fates is available to hematopoietic stem cells (HSC), with pairwise relationships between the various
cell fates. The pairwise model, replaces a rigid and bifurcating lineage tree with a spectrum of fate
options open to HSC. In the “classic” model, HSCs progress stepwise through a series of intermediate
progenitors, to close down developmental options in a binary manner. In the new scenario, HSC make
an immediate lineage choice from all of the end-cell options. The figure is, with permission, from [6]
©Macmillan Magazines Ltd. HSC, hematopoietic stem cell; DC, dendritic cell; NK cell, natural killer
cell. (B) The partial arcs represent the close relationships between cell lineages that we inferred from
the different groups of fates that are available to known intermediary progenitor cells (marked with an
asterisk). Investigators initially described Lymphoid-primed multipotent progenitors (LMPP), early
progenitors with lymphoid and myeloid potential (EPLM) and common myeloid progenitors (CMP) as
homogeneous population of cells. However, they are a mixture of cells with the lineage affiliations
shown as cells added to the arcs for LMPP, EPLM and CMP. Affiliations include B lymphocyte (B),
DC, monocyte (Mo), eosinophil (Eo), basophil (Ba), erythroid (E) and megakaryocyte (M) [16–20].
HSC are shown to include the following: lymphoid biased cells (Ly) [23,24] that express the fms-like
tyrosine kinase 3 receptor (Flt3+) [25]; myeloid biased or committed cells (My) [26,27] that express
Flt3+ [25] and/or the receptor for thrombopoietin (TpoR+) [28]; cells committed to the erythroid
pathway [19] and affiliated as to expression of the receptor for erythropoietin (EpoR+) [25,29]; and cells
that express the receptor for macrophage colony stimulating factor (M-CSFR+) and monocyte-affiliated
(Mo) [25,30]. CLP, common lymphoid progenitor; CMP, common myeloid progenitor; DC/Pro-B,
dendritic cell and B lymphocyte progenitor; Eo/B-CFU, eosinophil and basophil progenitor; EPLM,
early progenitor with lymphoid and myeloid potential; GMP, granulocyte and macrophage progenitor;
LMPP, lymphoid-primed multipotent progenitor; MEP, megakaryocyte and erythrocyte progenitor;
Mon/B/DC?, monocyte, B lymphocyte and dendritic cell? progenitor; Mon/DC, monocyte and
dendritic cell progenitor, NK/T, natural killer cell and T lymphocyte progenitor and NK/ILC, natural
killer cell and innate lymphoid cell progenitor.
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There is good evidence to support the view that the lineage affiliations seen in recent investigations
of LMPP, EPLM and CMP become apparent earlier during development, even as early as in HSC.
In 2010, Ichi and colleagues reported that the transcriptional profiles of individual HSCs show
considerable variation and some HSCs are poor precursors of lymphocytes whilst others generate a
balanced output of cell types [31]. Subsequently, investigators examined the progeny of single cells
transferred into irradiated mice and described myeloid- and lymphoid-biased mouse HSC [24,26,32,33].
Notta and colleagues have shown that the progenitor cell compartment of human bone marrow is
a mixture of cells with uni-potent myeloid or erythroid potential alongside multipotent cells [19].
The Jacobsen group described a sub-set of murine HSC with a bias towards platelets and myeloid cells,
requiring thrombopoietin for their maintenance [28]. Similarly, sub-sets of murine HSC express the
receptor for macrophage colony-stimulating factor (M-CSF), mRNA for the erythropoietin (Epo)
receptor [25,29,30] and the fms-like tyrosine kinase 3 (Flt3) receptor, for Flt3 ligand (Flt3L) [25].
The selective expression of these receptors is suggestive of a predisposition and/or affiliation of
some HSC to a lineage because the corresponding cytokines (M-CSF, Epo and Flt3L) can instruct
end-cell fate ([30,34] and see later).

2. The Mature End-Cell Populations Are Not Homogeneous

The variety of end-cell types is more complex than is usually shown in models. For example,
the DC family includes Langerhans cells (LC), two types of interstitial DC (iDC) [35,36], CD8+ DC [37]
and CD8− conventional DC (cDC) [37] (Figure 2A). The delineation of these DC sub-populations
depends on their precise functions. They include antigen transport, immune regulation and the control
of infections e.g., yeast. In addition, there are type 1 interferon-producing plasmacytoid pDC [38]
and monocytes that are a form of pre-DC [39] and both are classified within mononuclear phagocytes
(see later). The local environments in which DC precursors reside may be important for their fate
specification (Figure 2). Satpathy and colleagues have highlighted the importance of various cytokines
to DC development, including whether their actions within distinct stromal niches influence fate
choice [40].
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Figure 2. Heterogeneity of dendritic cells. (A) Surface markers are used to describe the various end-cell
DCs and their nature is a matter of gradations. (B) Where each population resides is important to
their function within the immune system and the local environment may determine the fate of DC
precursors [41]. HSC, hematopoietic stem cell, ILC, innate lymphoid cell, Mon, monocyte; Neut,
neutrophil; Eos, eosinophil, Bas, basophil; Ery, erythrocyte; Meg, megakaryocyte, DC, dendritic cells,
iDC, interdigitating dendritic cell; LC, Langerhans cells; Lg, Langerin.

There is heterogeneity among cells of the mononuclear phagocyte system [42]. Human monocyte
sub-populations are discriminated on the basis of CD14 and CD16 expression and those in mice
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by the use of markers such as F4/80, Ly6C (Gr-1), CD11b, CD43 and the chemokine receptor
CX3CR1 [43]. Following trans-endothelial migration, monocytes enter the tissues where they give
rise to macrophages. There is debate about how best to distinguish macrophages from DCs: is there
any real difference between the capacity of some macrophages and DCs to present antigens [44]? Live
imaging studies have not provided clear evidence for a distinction [45]. Additionally, a population of
cutaneous Langerin+ve DC develops from blood monocytes, rather than from Langerhans cells [35,46].

The markers used to define macrophage sub-sets include the macrophage scavenger receptors
(CD36, CD14, signal-regulatory protein family (SIRP)), Toll-like receptors, various integrins, epidermal
growth factor-seven transmembrane (EGF-TM7) proteins, other immunoglobulin superfamily receptors
(Siglecs) and multiple C-type lectins. Our perception of the assortment of these markers is that it is
apparently random [47]. The use of quantitative flow cytometry (FC) profiles reveals a spectrum of
phenotypic variability, rather than precisely defined sub-sets of cells [42]. Some of this phenotype
noise may be due to stochastic fluctuations in the levels of expression of transcription factors. Even so,
the different macrophage sub-sets, as defined by different combinations of markers, provide distinct
signals to T cell sub-sets and are therefore important physiologically.

Macrophages encounter multiple signals in the various tissues that are important for shaping
their phenotype [48]. For example, macrophages that reside in the lung and in the peritoneum
have distinct gene expression profiles and chromatin landscapes. Lavin and colleagues transferred
macrophages that had been isolated from the mouse peritoneum into the alveolar cavity, whereupon
they upregulated the macrophage-specific genes that typify lung macrophages and downregulated the
peritoneal macrophage-specific genes. Expression profiling confirmed this transition: the transferred
cells resembled lung macrophages more than peritoneal macrophages. So, the originally peritoneal
macrophages had adapted to their new environment [49]. Further evidence of macrophage adaptability
is that CD8+ve and CD8−ve antigen-presenting cells in the spleen that arise from the same progenitor
are interconvertible [50]. These findings both highlight the adaptability of differentiated cells and show
that the microenvironment can influence cell specialization. Signals from the tissue environment may
modulate the chromatin landscape that, in turn, prescribes a tissue-related gene expression pattern
within macrophages.

3. Some End-Cells Are Interconvertible

CD4+ve effector cells include T helper 1 cells (Th1), T helper 2 cells (Th2), interleukin (IL)
17-producing T helper cells (Th17), follicular T helper cells (Tfh) and regulatory T cells (Treg).
These sub-types have different functions. They include the control of bacterial, helminth and fungal
infections and B cell maturation in germinal centres and the suppression of immune responses.
CD4+ve effector cells produce many different cytokines, including IL-2, IL-3, IL-4, IL-13, IL-17, IL-21
and granulocyte-macrophage colony-stimulating factor (GM-CSF) and to a lesser extent interferon
g (IFNγ) [51]. The nature of the cytokines produced is indicative of the type of CD4+ve helper cell.
CD4+ve cell types arise in multiple environments and the prevailing cytokine environment is important
for their differentiation. For example, IL-12 is required for Th1 cell differentiation and IFNγ amplifies
this process, whereas IL-4 drives the differentiation of Th2 cells [52].

The characteristics of some of the mature CD4+ effector cells are interconvertible (Figure 3).
IL-21 is produced by Th2 cells [53] and TFh cells [54] and Th2 cells can give rise to Tfh cells [55].
Induced regulatory T cells (iTreg) can convert to pro-inflammatory Th17 [56] and when transferred into
T cell-deficient CD3−/− or Rag2−/− mice respectively give rise to Tfh cells in Peyer’s patches [57] and
Th2 cells in the spleen [58]. Memory Th2 cells convert in vitro to iTreg, in response to treatment with
transforming growth factor β (TGF-β) and blockade of IFNγ and IL-4 signalling [59]. In all of these
examples, the switching between the different types of CD4+ cells requires an external set of signals,
suggesting that environmental signals may underlie the adaptability of CD4+ cells to the type of the
immune response required. Eizenberg-Magar and colleagues have constructed mathematical models
that predict how different cytokine inputs to CD4+ T cells determine their differentiation state [60].
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cells. CD4+ve effector cells and innate lymphoid (ILC) cells include various sub-populations. For both
of these types of cells, the characteristics of some of the mature effector cells are interconvertible (A) The
arrows connecting the sub-types of CD4 T cells show interconversions. (B) The arrows connecting the
sub-types of ILC show interconversions. HSC, hematopoietic stem cell, iTreg, induced-regulatory T
cells; Th17, Interleukin 17 producing T helper cells, Th1, T helper 1 cells; Th2, T helper 2 cells, Tfh,
follicular helper T cells; NK, natural killer cell, Mon, monocyte; Neut, neutrophil; Eos, eosinophil, Bas,
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The sub-types of ILC have natural killer and helper-like functions that are important as a first
line defence against pathogens, the genesis of lymphoid organs and tissue modelling [61]. There are
three main groups of ILC. Group 1 includes natural killer cells and helper-like ILC and groups 2 and 3
are helper-like. The the expression of transcription factors defines two populations within groups 1
and 2. The developmental relationship between the various ILC populations is presently unclear and
their characteristics are interconvertible (Figure 3). Expression of master regulators of transcription,
surface receptors and the ILs produced define group 3 sub-types. There are cells that either: (1) express
the transcription factor retinoid-related orphan receptor γt (RORγt), CD4 and the cytokine receptor
CCR6 at their surface and produce IL-17 and IL-22 (lymphoid tissue inducer (LTi)-like ILC3) or (2)
express the transcription factor T-bet, the NK receptors NKp46 and NK1.1 at their surface and produce
IFNγ and TNFα. However, LTi-like ILC3 (RORγt+, CCR6+) cells express T-bet when exposed in vitro
to a Notch stimulus [62]. There may be a true bi-directional plasticity of ILC3 as NKp46+ ILC3 may
downregulate NKp46 in vivo giving rise to NKp46− ILC3 [63]. The relative levels of expression of
RORγt and T-bet may determine the effector functions of group 3 ILC3 and underlie the plasticity of
the phenotype of these cells. However, there is controversy on this matter as the subsets of group 3
ILC3 may be separate lineages that develop from different progenitors [64]. To add to the plasticity of
ILC, mouse studies have shown that ILC2 that reside in the lung become ILC1 in response to infection
by influenza virus and Staphylococcus aureus and by cigarette smoke [65].

4. How Might We Classify the Types of Cells?

One purpose of classifying blood cells is to aid the understanding of their development: we have
no hope of understanding cell diversification without categorizing a cell’s identity. The conventional
use of the term cell lineage and cell type, refers to the developmental history of a cell. For example,
a progenitor cell that is committed to the B lymphocyte developmental pathway gives rise to cells
we denote as a B lymphocyte. However, ancestry does not always resolve cell identity where there is
inconsistency between the attribution of cells to a lineage and classification with regard to a phenotype.
For cells viewed collectively as ILCs, there are two separate origins; a progenitor that gives rise
to the NK precursor and NK cells and another for all the helper-like ILC [61]. Similarly, it is not
clear to what extent there are separate progenitors for the different DCs. They appear to arise from
two separate -lymphoid and monocytic- origins but the surface phenotypes and gene transcription
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profiles of DCs derived in vitro from purified CLPs or purified CMPs are indistinguishable [66].
A Common Dendritic cell Progenitor (CDP) with the ability to give rise to both cDC and pDC has been
identified [67,68]. Several other phenotypically distinct cells have been proposed as progenitors of
different DC sub-populations [67,69–71]. However, it appears that multiple developmental pathways
are at play in generating the different DCs, and, in some cases, they converge into phenotypically
homogeneous but transcriptionally and functionally distinct mature DC [72,73]. The delineation
of cell type with regard to ancestry is also confounded if we accept that HSCs predispose to a
lineage by expressing, for example, the receptor for M-CSF but might step sideways and adopt
a different trajectory.

In the case of the mature immune cells, an answer to the problem of their classification,
their attributes or conversely the absence of a characteristic(s), is the unique function of each type of cell.
In other words, members of a cell type serve a function that is different from members of another cell
type. However, immune cell types can share functional attributes that confounds ascribing cell identity
on this basis and blurs the boundaries between cell lineages. A cytotoxic capacity brings together some
T cells and some ILC, whereas macrophages, DC and B cells can phagocytose, pinocytose, process and
present foreign antigens. Additionally, cells of the immune system cooperated to perform their role and
it is therefore not too surprising that different types of cells share, for example, the chemokine receptors
that dictate the location of cells to a particular environment and the cytokine receptors for survival.

5. What Are the Differences between Types of Cells?

So, what are features that allow us to specify a population of immune cells? Distinguishing one
cell type from another is in essence a matter of how many phenotypic markers we use to define a cell
type. The use of two surface markers can clearly differentiate one type of cell from another. However,
and as mentioned above, use of additional surface markers reveals substantial heterogeneity regarding
mononuclear phagocytes and investigators must rely on their judgment as to how best to classify cell
populations. Traditionally, the basis for the identification of early progenitors, in particular, is the use
of a limited number of cell surface markers, which appear in many cases to have a graded, rather than
discontinuous expression pattern. Examples of graded expression are the markers used for FC-based
identification of Lineage-negative, CD117+ (kit), Sca-1+ cells (LSK), LMPP and CLP populations.

CD117, Sca-1 and Flt3 show a graded, continuous expression, thus making the identification and
isolation of cells with “high” or “intermediate” expression of markers almost arbitrary and dependent
on the staining prowess and judgement of the investigator (Figure 4). This problem becomes even
larger for genetically modified mice, where it might prove difficult to distinguish between true changes
in the proportions of gated cells (representing progenitor stages) and any potential alterations, caused
by the genetic modification to the mice, in the expression level of markers that are used to “ring-fence”
these cells. Modern and comprehensive analyses, particularly of single cells, have revised the approach
to categorize cell types. Tools currently available for the examination of cellular heterogeneity include
global gene expression analysis and mass cytometry where the number of individual surface markers
analysed is extremely large. This leads to an even more detailed consideration of how finely to draw
lines between different cell types and perhaps this becomes arbitrary for some of the different types of
immune cells.

Regarding the use of global gene expression analyses, the conceptual problem is how fine should
the criteria be that we use to distinguish one type of cell from another? A caveat is that it is impossible
to be certain that two cells that, using a set of phenotypic attributes are ring-fenced as identical,
are identical genotypically [77]. A simple reason is that cells of any given end-cell type are not all
interacting with just one environment: some will be inside a particular environment and some left
outside. Even within an environment, a graded input of signals might well lead to a graded output
regarding the level of acquisition/stabilization of a phenotype. Moreover, a population of cells, even if
clonal, is heterogeneous. Chang and colleagues have shown that cells of cloned populations of mouse
hematopoietic progenitors express different levels of Sca-1. This relates to a state that fluctuates
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but is meaningful because cells that express extremely high or low levels of Sca-1 have distinct
transcriptomes and different leanings towards the myeloid or erythroid lineage [78]. Heterogeneity of
cloned cells is also the case for neuronal stem cells whereby in vitro subsets have distinct developmental
commitments [79]. The heterogeneity of cloned stem cells presumably reflects the inherent versatility
of multipotent cells. Of particular interest to lineage-predisposition of these cells are the events that
regulate the expression of transcription factors. It would thus seem that none of the classically accepted
features alone is reliable enough to unequivocally define a particular lineage or cell type. Rather,
we should consider a combination of several attributes, including morphology, phenotype, function
(for mature cell types), genetic signature and developmental ancestry.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  8 of 17 
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For years, the issue of delineation has applied for how to best classify organisms into species,
such as Darwin’s many finches. One solution is that each species of finch breeds true. In a similar vein,
whether cells can or cannot readily, even when “pushed” in vivo or in vitro, interconvert provides
a way of resolving the delineation of cell types. The matter of definition of cell type and lineage,
if we view this a synonymous, is simple if both refer to a cell that has progressed along a pathway
to a stage of development and a phenotype that is irreversible. For example, and to the best of our
knowledge, a cell, including its phenotypically identifiable progeny in the bone marrow, destined to
generate mature B cells does not normally give rise to a mature T cell. Interestingly, the importance
of the extent of developmental progression to irreversible lineage affiliation is exemplified by the
finding that the Double Negative 2 T cell progenitor population that have already progressed some
way along the T cell pathway can still give rise to NK and myeloid cells when “pushed” using the right
conditions [21,80]. Nevertheless, and by applying the rule of irreversibility of phenotype, we would
view the different ILC and CD4+ T cells that can interchange/reverse mature fates under the right
conditions as sub-types of cells belonging to the ILC and CD4+ T cell lineages respectively, rather than
as separate lineages. As to their taxonomy, we might view their differentiation and end phenotype as a
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much more flexible and continuous process that circumvents the need to draw overly strict boundaries.
In this case, there is a continuum of intermediate states between cell sub-types.

6. Does the Environment That Cells Reside in Instruct Cell Fate?

As mentioned above, cells and their genes, do interact with and respond to their environment.
The environmental history of a cell is therefore important to the specification of phenotype. Whilst for
cell identity we have attached prime importance to developmental history, namely who begat whom,
this might merely serve to keep offspring within a particular nurturing environment. In some instances,
we might have mistakenly read environmental nurture as developmental history.

Some hematopoietic cytokines are important for shaping hematopoiesis. Generally, we accept
that they are essential for the survival and proliferation of hematopoietic cells at all stages of their
development. However, in some cases they are also important for the differentiation of hematopoietic
lineages. Thus, their function as merely survival and/or proliferation agents (permissive role)
or inducers of differentiation (instructive role) has been a matter of debate for long time [81–83].
Several investigations have provided evidence in support of both modes of cytokine action, with the
data in some cases being contradictory (reviewed in: [84–86]). Genetic deletion of cytokines or
their receptors has resulted in a reduced production of immune cells whose generation is subject to
regulation by the cytokine in question but even though the disruption in developmental output can be
quite severe, it has never led to the complete absence of the lineage. This indicates either a permissive
role of these cytokines or some level of redundancy, with other cytokines compensating for the absent
instructive signal. Furthermore, over-expression of anti-apoptotic signals, such as B-cell lymphoma
2 (Bcl2), in order to provide a strong survival signal to cells, has been on some occasions sufficient
to rescue the affected lineage, suggesting a permissive cytokine function. Thus, whilst the absence
of IL-7 signalling severely disrupts T cell development, Bcl2 over-expression can significantly rescue
T cell output in these mice [87–89], suggesting a survival role of IL-7 in early T cell development.
Similarly, the B cell defect observed in mice lacking Stat5 (the crucial signalling mediator for IL-7)
can be fully recovered by Bcl2 over-expression [90], while sustained and increased Flt3L levels can
rescue B cell development in Il7-/- mice [91], thus demonstrating the permissive role of IL-7 in both
T and B cell development. Moreover, early in vivo studies with chimeric receptors provided further
evidence for a permissive role of hematopoietic cytokines. The replacement of the intra-cellular part
of the TPO receptor (mpl) with that of G-CSF [92] or the signalling domain of G-CSF with that of
Epo-R [93] did not result in any lineage skewing, as would be expected regarding an instructive role of
the corresponding cytokines.

Other transgenic approaches, mainly by ectopic expression of cytokine receptors,
have nevertheless suggested instruction of lineage fate by cytokines. Thus, expression of M-CSF
receptor in multi-potent hematopoietic cell lines resulted in skewing of their developmental
output [94,95], while ectopic GM-CSF receptor expression on CLP or pro-T cells increased their myeloid
differentiation potential [96–98]. Similarly, Flt3 expression in MEP up-regulated myeloid-specific
transcription factors and promoted their differentiation towards granulocyte/macrophage lineages [99].
More recently, investigators have provided in vitro and in vivo evidence for an instructive role
of cytokines in lineage fate. Our studies support an instructive role of Flt3L at an early stage
of hematopoiesis [34]. Transgenic mice over-expressing Flt3L ubiquitously are anemic and
thrombocytopenic. Investigation of the progenitor cell populations in these mice revealed that Flt3L
acts to skew hematopoiesis towards the myeloid and lymphoid lineages, as there is a lack of generation
of erythroid and megakaryocyte progenitors. The cells diverted lack expression of cell lineage markers
(Lin-) but express the Sca-1 antigen and the receptor for the stem cell factor CD117 or c-kit and are
termed LSK. Likewise, increasing the level of Epo in vivo, by transgenesis, has revealed an instructive
role for this cytokine in erythropoiesis [29]. In 1982, Metcalf and Burgess provided evidence supporting
the view that G- and GM-CSF instruct bi-potent granulocyte-macrophage colony forming cells in their
choice between granulocyte and macrophage pathways respectively [4]. Rieger and colleagues added
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to these finding by showing that G- and M-CSF instruct granulocyte and macrophage progenitors to
follow each of the pathways respectively [100].

Overall, there is evidence to support the view that some of the hematopoietic cytokines can
instruct cell fate and therefore guide the generation of a particular type(s) of cell as required. The effect
of cytokines seems to be cell-context dependent, highlighting the interplay between extra-cellular
signals from the environment and intra-cellular fate-determining factors, such as transcription factors
and the epigenetic landscape [86]. Additionally, some level of promiscuity in the use of cytokines
by hematopoietic cells makes the identification of their specific mode of action challenging. In that
context, studies at the single cell are necessary. As evident from the data discussed above, most of the
experimental evidence for an instructive role of hematopoietic cytokines comes either from in vivo
over-expression of cytokines and/or their receptors or from in vitro culture systems. It is conceivable
that, depending on the strength of the signal, a particular cytokine may act to provide a signal for
survival, to proliferate or to instruct lineage choice. The response elicited within a cell, as to which
of the three outcomes is undertaken, would accord with an increasing level of signal intensity. Thus,
in order to demonstrate their instructive role, it is necessary to use a high level of cytokine in in vitro
experiments. A graded response of cells to cytokines may be important for steady state versus
hematopoiesis under stress conditions, such as infection, whereby the different requirements are
survival/expansion versus survival/expansion coupled to a rapid and emergency, diversion of cells
towards a required end cell type [101]. Recent evidence to support this viewpoint is that Singh and
colleagues have observed that during chronic erythroid stress, in Epo transgenic mice, HSC exhibit a
vastly committed erythroid progenitor profile together with enhanced cell division [102].

This makes physiological sense when one considers that the hematopoietic system is extremely
flexible, responding rapidly to situations of stress, infection and blood loss. Whilst there is debate
as to how this operates, it is important to bear in mind that cells we identify as HSC that can
reconstitute the entire hematopoietic/immune system long term (LT-HSC) express the receptors for
the proposed instructive cytokines. These include the receptors for Epo, M-CSF and Flt3. Around 19%
of LT-HSC express the receptor for M-CSF on their cell surface and ~5% express cell surface Flt3,
with ~12% expressing Flt3 mRNA. Around 13% express mRNA for the Epo receptor and the level
of surface protein expression is unknown due to the lack of a suitable antibody reagent. These are
essentially sub-populations of LT-HSC [25]. We might assume that engagement of the cytokine with
the receptor provides a signal for survival and proliferation. We do not know whether the presence of
the appropriate cytokine instructs LT-HSC to adopt either a macrophage, myeloid or erythroid fate.

7. The Events That Shape Cell Identity

It is reasonable to conclude that the nature of immune cell diversity is not merely a matter
of affiliation to an ancestral pathway but that environmental nurture is important. A mixture of
(i) predisposition towards/affiliation of HSC to a lineage and (ii) nurture at a later stage of development,
by environmental cues, appear to govern the end-fate of a cell (Figure 5). This perhaps explains the
many sub-types of a number of different immune cells. Nurture is also important for HSC. It is likely
that the localization of HSC within diverse and supportive bone marrow niches and their exposure to
different development growth factors and morphogen gradients plays an important role in driving
their heterogeneity [103].

Waddington’s epigenetic landscape has provided a longstanding model for the general nature of
the events that shape cell identity [104]. Cells roll down bifurcating valleys and once a cell has chosen
a fate there are ridges that help maintain this fate. Changes to the epigenome dictate the hills and
valleys that exclude other fates and which the microenvironment might impose. Ferrell has proposed
an alternative landscape whereby at the start there are numerous valleys and ridges, commitment
to a fate relates to the disappearance of some of the valleys and ridges and new valleys and ridges
arise from cell-cell competition [105]. Sieweke examines a landscape that he likens to a small group
of Pacific islands—Captain Cook’s Islands—in the middle of an ocean. These can be reached from
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many directions such that the routes to a fate are flexible [106]. Waddington’s landscape and the
alternative landscape both involve stepwise bifurcations but there does not seem to be the need for
HSC to undergo this progressive restriction. These models and a “small group of islands” model
mean that there are close relations between particular cell lineages, as envisaged in the pairwise model.
A “small groups of islands” model is more in keeping with the pairwise model except that each island
can be approached separately rather than by Captain Cook’s route from island to island and from east
to west.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  11 of 17 
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8. Implications for Leukemia

Normal HSCs and their immediate progeny are versatile in their choice of developmental pathway.
If we accept that HSC can commit themselves directly to one pathway, we might presume that each
pathway is equally available. Versatility is also the case for the progeny of HSC. The colonies observed
for the progeny of HSC, particularly multipotent HPC, grown in semi-solid agar or methylcellulose
medium contain many different cell types. We have argued that these findings are misleading as
to how HSC and HPC behave in vivo, because single cells dispersed in agar are not in their normal
social environment and lack the influence of niches, the extracellular matrix and the appropriate
cytokines [101]. Nevertheless, the findings from colony assays support the notion of inherent versatility
of HPC and perhaps indicate that environmental influences in vivo are important for guiding and/or
narrowing the trajectories of HSC. HSC are versatile in the pairwise model, because they can step
sideways to adopt alternative, closely related, fates, even after they have “made a lineage choice.”
The making of the architecture of leukemia and lymphoma, is very different because the lineage
output of the transformed counterparts is restricted to a particular pathway [107–109]. In contrast
to the flexibility of HSC, the transformed counterpart essentially dumps cells down a particular
pathway. The rationale for this and perhaps the cardinal aspect of cell transformation in cancer is that
a genetic insult fixates the epigenome to a lineage. Sanchez-Garcia has proposed that the contribution
of oncogenes to leukemia is via epigenetic priming of the cells that initiate leukemia and the initial
oncogenic insult(s) is/are then dispensable for tumour progression and maintenance [109]. In other
words, there appears to be an insult-wired block to versatility in the leukemia stem cell.

9. Concluding Remarks

In the pairwise model, HSC can immediately predispose towards or affiliate to a single lineage,
yet retain the ability to divert to an adjacent lineage. We might view the adjacent options as easily
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accessible or latent in some way. In this case, predisposed or affiliated HSC are essentially progressively
differentiating towards an outcome, including narrowing their trajectory from the continuum of
options. In the original diagram for the pairwise model, we showed DC, monocytes and NK cells
as a single population. Each of these cell types is clearly a heterogeneous population and, therefore,
it seems that some cells have a lifelong capacity to differentiate and diversify. Questions that are
perhaps more important than lineage affiliation are (i) what channels a cell towards a particular
phenotype and (ii) how does a cell stabilize a pattern of attributes, some of which are shared by
different cell types. Perhaps the signals they receive from the environment in which they reside,
that “mark” the epigenome, are as important as developmental history. Our view of the architecture
of haematopoiesis has important implications to our understanding of the initiation of leukaemia.
Whereas HSC are versatile, an insult(s) appears to wire the epigenome of HSC regarding lineage choice
to a fixed leukaemia cell fate [109].
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