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A B S T R A C T The steady-state transport of oxygen through hemoglobin solu- 
tions was studied to identify the mechanism of the diffusion augmentation ob- 
served at low oxygen tensions. A novel technique employing a platinum-silver 
oxygen electrode was developed to measure the effective diffusion coefficient of 
oxygen in steady-state transport. The measurements were made over a wider 
range of hemoglobin and oxygen concentrations than previously reported. 
Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin 
solution were obtained as well as measurements of facilitated transport at low 
oxygen tensions. Transport rates up to ten times greater than ordinary diffusion 
rates were found. Predictions of oxygen flux were made assuming that the oxy- 
hemoglobin transport coefficient was equal to the Brownian motion diffusivity 
which was measured in a separate set of experiments. The close correlation be- 
tween prediction and experiment indicates that the diffusion of oxyhemoglobin 
is the mechanism by which steady-state oxygen transport is facilitated. 

I N T R O D U C T I O N  

It  has been observed by Scholander and Hernmingsen (9, 21) as well as 
others (14, 23) that, at relatively low oxygen concentrations, the steady-state 
rate of transport of oxygen through hemoglobin solutions significantly ex- 
ceeds that  predictable on the basis of Brownian motion diffusion of the oxygen 
molecules. These observations have led investigators to postulate that  an 
oxygen transport-augmenting process exists in the system, effective at low 
oxygen concentrations. 

This augmenting process has generated considerable interest because of 
its possible importance in respiratory diffusion. Transport mechanisms by 
which the augmentation might occur have been proposed and several analyses 
based on the various models have been published (3, 6, 22). The  proposed 
mechanisms have certain features in common from which a qualitative descrip- 
tion of the phenomenon can be evolved. As oxygen diffuses into a deoxygen- 
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ated, or partially oxygenated, solution of hemoglobin, some of it combines 
with the reduced hemoglobin. This results in an oxyhemoglobin concentration 
gradient and an oxyhemoglobin flux. The total flux of oxygen through the 
solution is the sum of its flux as molecular oxygen and its flux as oxyhemo- 
globin. 

The greatest difficulty has arisen in reaching agreement on the molecular 
mechanism producing the oxyhemoglobin flux. The view is held by some (6, 
22) that the flux is simply due to the Brownian motion diffusion of the hemo- 
globin molecule as a result of a concentration gradient driving force. However, 
others, including Scholander (21, 14) are of the opinion that the size of the 
hemoglobin molecule is sufficiently large to preclude any significant hemo- 
globin diffusion flux. They have suggested that, during collisions between 
adjacent hemoglobin molecules, oxygen is transferred from oxygenated to 
deoxygenated molecules. This results in an apparent flux of oxyhemoglobin 
without an accompanying translational motion of the large protein mole- 
cules. 

Both the diffusional and collisional mechanisms depend upon a gradient in 
oxyhemoglobin to produce a flux and thus require that at least some of the 
hemoglobin be only partially oxygenated. This is consistent with the ex- 
perimental observation that the augmentation effect only appears at low 
oxygen tension, the condition under which the hemoglobin is not fully satu- 
rated. 

This paper reports the results of a study (10) of the augmentation mecha- 
nism. It should serve as an initial step in evaluating the importance of aug- 
mented transport in the red blood cell. Since the hemoglobin-oxygen system 
is, in certain respects, similar to other diffusing, reacting systems of physio- 
logical as well as nonphysiological interest, the results of this study should 
also provide a useful basis for interpreting and analyzing similar phenomena 
in a broad range of systems. 

ANALYTICAL CONSIDERATIONS 

From a physicochemical standpoint, the hemoglobin-oxygen system is one 
in which a species is diffusing through a solution containing a component 
with which it reacts. Since the hemoglobin-oxygen reaction rate is quite rapid 
and the reaction is reversible, the components of the system are always near, 
though not at, chemical equilibrium. Several analyses of the augmentation 

i Hemming~en has argued erroneously that this is not a requirement for the phenomenon (8). In a 
set of experiments conducted at oxygen tensions in excess of the saturation value, using O16OIS as a 
tracer, he found that the flux of O18018 exhibited the same augmentation effect previously observed 
only at lower oxygen tensions. Since no gradient in HbO2 existed during the experiments, he argued 
that the phenomenon did not depend on one. He neglected to take into account the fact that a 
gradient in HbOa6018 did exist during his experiments and thus a flux of HbOl°O is would occur, 
augmenting isotopic oxygen transport. 



K. H. KELLER AND S. K. FRIEDLANDER Steady-State Oxygen Transport 665 

phenomenon, including those of Wang (22), Collins (3), and Fatt  and La- 
Force (6) are based on the approximation that chemical equilibrium exists 
among the components at all points in the system. In this sense they are ex- 
tensions of the work of 0 lander  (15) who considered several cases for which 
the equilibrium assumption was valid. 

The attractiveness of this approach is that the nonlinear reaction rate 
terms can be eliminated from the equations of conservation of species, sim- 
plifying their solution. However, the method does not permit a check on the 
validity of the equilibrium assumption. It  was shown by Friedlander and 
Keller (7) that when there is a flux of one of the reactants across a boundary 
of a reacting system, the deviation from chemical equilibrium is greatest at 
the boundary. The deviation decreases with distance from the interface and 
becomes negligible at points further away than a relaxation distance, )~, 
which depends on the ratio of the forward reaction rate coefficient to the 
diffusion coefficients. Friedlander and Keller showed that when the ratio of 
the thickness of the system to k exceeds 100, the equilibrium approximation 
is valid. For the hemoglobin-oxygen system, k is given by (10): 

[ ,  (nt(l =_y) 1 ~ =y)'~-]-'  
X = k no2 \ Do,no= -at- ~ -}- yDabo= ]]  ( I ) 

where n~ is the total concentration of oxygenated and deoxygenated hemo- 
globin expressed as g-equivalents/cm 3 (4 g-equivalents/g-mole), and y is the 
fraction of hemoglobin present in the oxygenated form. k' is the forward re- 
action rate of the hemoglobin-oxygen reaction when it is approximated as: 

k ! 

H b + 0 2 ~  ~HbO2 (2) 
k 

The maximum value of k under the experimental conditions of this study 
was calculated to be 1.2 X 10 -4 cm (10). In  the experiments described below, 
the thickness of the diffusion layer was 0.13 cm. Thus the use of an equilibrium 
approach in analyzing the data is justified. 

By modifying the existing equilibrium analyses a quantity related to the 
total oxygen flux can be defined which is easily measurable. In a one-dimen- 
sional, steady-state hemoglobin-oxygen system, the total flux of oxygen at 
any point is given by 

Jo2 = --Do2 dno2 O~bo2 dn,~bo2 ( 3 ) 
dx dx 

By definition, 

n~bO2 = nty ( 4 )  
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If  D~,b = Dnbo2 or if the variat ion in y across the system is small, n~ is con- 
stant.  U n d e r  these conditions, Equa t ion  (3) can be rewrit ten in terms of an  
effective diffusion coefficient as follows : - -  

where 

- dno 2 
Jo2 = - - / ) ~ f ~  dx (5) 

dy 
Dote = Do~ + OHbo~nt dno2 (6)  

T h e  amoun t  of oxygen t ransport  augmenta t ion  will depend  on the mag-  
n i tude  of the last t e rm in Equa t ion  (6). At  chemical  equil ibrium, dy/dno2 is the 
slope of the hemoglobin  oxygenat ion curve so tha t  for a given hemoglobin  
concentrat ion,  augmenta t ion  will be greatest when  the slope of tha t  curve is 
greatest. W h e n  the hemoglobin  is fully saturated,  dy/dno2 approaches zero 
and  the problem reduces to one of simple one-dimensional  diffusion of oxygen. 
The  quan t i ty  Deff is thus a useful measure  of the augmenta t ion  effect. How-  
ever, measurements  must  be m a d e  across a finite oxygen difference and  it is 
necessary to in t roduce an  integral diffusion coefficient, Deft. For  a layer of 
hemoglobin  solution of thickness a, Equat ion  (3) has the following b o u n d a r y  
condit ions:  

At x = 0, no2 = (no2)0, nHbo2 = (nnbo2)0 (7 a 
x = a, no2 = (no2)a, nnbo2 = (nHbo2). (7 b 

In tegra t ing  Equa t ion  (3) one obtains 

aJo~ = - O o 2 [ ( n o ~ ) o  - (no~)03 - DHbo,[(nHbO2)o - -  (nH~O=)0] 

T h e  integral diffusion coefficient is defined as 

( 8  

y a  - -  Y0 

Do,~ = Oo, + OHbo~ n, (no,)° -- (no~)o (9) 

so that 

aJo, = --D-~[(no,)a -- (no,)0] (10) 

T h e  exper imental  system was designed to measure  the integral effective dif- 
fusion coefficient at  varying conditions of oxygen tension and  hemoglobin  
concentrat ion.  

EXPERIMENTAL APPARATUS AND PROCEDURES 

Diffusion Cell 

Measurements of Deaf were made in the oxygen diffusion cell shown in Fig. 1. This 
cell was constructed of Type 304 stainless steel and was divided into two sections; the 
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upper section was a gas reservoir and the lower section was a holder for a Clark-type 
polarographic oxygen electrode. 

Sample solutions were placed in a small well, 0.12 cm deep and 0.36 cm in diam- 
eter, located at the bottom of the gas reservoir. The well bottom was the membrane 
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FIGtr~ 1. Schematic diagram of oxygen diffusion cell used in measurements of b-~eff. 

of the oxygen electrode. Thus a thin film of solution separated the gas reservoir above 
from the oxygen electrode below. A 1.9 cm I.D., 0.013 cm thick Mylar gasket was 
cemented to the flat surface above the well to form a retaining lip. 0.05 ml of test 
solution was pipetted into the well at the beginning of a run. This carefully controlled 
volume and the large radius of the overflow section allowed very close control of the 
depth of the sample solution (4-0.0008 cm). Moreover, any change in the sample 
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depth was easily observable as a change in the opacity of the solution in the overflow 
section, and when such changes occurred, the run was begun again. 

Gas of known oxygen/nitrogen composition was allowed to flow continuously from 
a supply system through the chamber above the test solution. The gas was presaturated 
with water vapor to minimize sample evaporation and the flow rate was adjusted to 
insure that the oxygen concentration at the gas-liquid interface was essentially the 
same as the mean oxygen concentration. The entire system was immersed in a 25 -4- 
0.02 °C thermostat for temperature control. 

Since the oxygen electrode consumes oxygen, oxygen diffused continuously from the 
gas phase to the electrode during experimental runs, giving rise to an oxygen concen- 
tration gradient in the test solution. Both flux and gradient could be measured and 
related to Deff• A Clark Oxygen Electrode (Yellow Springs Instrument Co., Antioch, 
Ohio) was used in the cell. The anode is a silver-silver chloride half-cell and the 
cathode is platinum. The cell was filled with a 0.1 M KC1, phosphate-buffered elec- 
trolyte. To  facilitate using the electrode in an inverted position, the electrolyte was 
supported in an agar gel made of 1.5 g of agar per 100 ml of solution. 

Both 1 rail polyethylene and 1 rail Teflon membranes were used during the experi- 
ments to provide a variation in the over-aU electrode permeability. A Sargent Model 
I I I  Manual  Polarograph was used to operate the electrode. The galvanometer on this 
instrument had an accuracy of -4-0.003 microampere. Polarograms were made to 
establish the diffusion current range and, based on these, an electrode operating 
voltage of --0.9 v was selected. 

In  the one-dimensional steady state, the flux of oxygen across the membrane surface 
is equal to the rate of reduction of oxygen at the cathode surface which, in turn, is 
simply related to the measured current as follows : - -  

(Trr,.~)Jo, = I / v F  ( 11 ) 

where I is the current in amperes, F is Faraday's constant, r,, is the radius of the 
membrane surface, and v is the number  of electrons involved in the reduction of an 
oxygen molecule. 

In the diffusion current range the concentration of oxygen approaches zero at the 
cathode surface, so that the flux of oxygen may also be expressed as 

Jo~ = ko(no,)0 (12) 
where (no,)0 is the concentration of oxygen at the bottom of the well (the surface of 
the membrane),  kc is an over-all electrode permeability which is a function of mem- 
brane and electrolyte characteristics. 

By combining Equations (10), (11), and (12) a simple expression for Deff in a one- 
dimensional system can be obtained in terms of the measured quantities: 

D e f f =  _ ¢'x ( 13 ) ( ~ ) ( ~ )  (no,)° ¢~ 
(,~o~)./I- 1/~r..ko i 

In the experimental apparatus, deviations from one-dimensional geometry oc- 
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curred at the top of the well because of the overflow lip and at the bottom of the well 
because of a nonuniform boundary condition. As shown in Fig. 1, the diameter of the 
well was larger than the diameter of the platinum cathode. The diffusion path to the 
cathode was relatively long from points not directly over the platinum surface so that 
the flux through the membrane was not constant across the well bottom. However, an 
approximate solution (10) showed that, for this modified geometry, Deu could be ex- 
pressed in a form analogous to Equation (13), substituting an appropriate geometric 
constant ~1 for ~ ; ~2 remains the same. In order to obtain a measurement of Def~, 
it was necessary to measure the current, I; (no~)a was assumed to be the oxygen con- 
centration in equilibrium with the gas phase oxygen partial pressure and ~I  and ~ 
were obtained by calibration runs with systems in which Def~ was known. It  should be 
noted that it is not necessary to know the value of u in order to calculate Dot~ • 

Hemoglobin Preparation and Analysis 

Hemoglobin solutions were prepared from whole human blood which had been in 
storage for 3 wk in the blood bank of The Johns Hopkins Hospital. The blood was 
centrifuged at approximately 3500 RPM for 25 min and the plasma discarded. The red 
blood cells were washed twice with isotonic saline and hemolyzed by repeated freezing 
and thawing in a salt-ice slush at --15°C. After hemolysis the hemoglobin solution 
was again centrifuged to separate out the cell stroma. 

Hemoglobin concentrations of approximately 30 g/100 ml were obtained in this 
manner. They were diluted with 0.05 ~, pH 7.4 phosphate buffer to obtain other solu- 
tion concentrations. Normally six dilutions were prepared ranging from approximately 
5 g/100 ml to 30 g/100 ml. 

A Bausch and Lomb Spectronic 20 colorimeter was used to measure concentra- 
tions. The absorption maxima at 542 m#  and 576 m# were determined. Reproduci- 
bility of readings on this instrument was approximately 4-0.4 g/100 ml. The  instru- 
ment was calibrated by the pyridine hemochromagen technique; i.e., the actual 
hemoglobin concentration of a sample was determined by converting part of it to 
reduced alkaline pyridine hemochromagen and measuring its optical density at 557 
m# (16); this value was used to establish a calibration point on the oxyhemoglobin 
transmittance-concentration plot. The  sample was also checked for the presence of 
methemoglobin by the technique described by Benesch et al. (2). The  preparation was 
treated with a solution containing methemoglobin reductase and DPNH, reducing 
any methemoglobin present to oxyhemoglobin. A recheck of the transmittance follow- 
ing this treatment indicated that the methemoglobin concentration in the initial 
sample was less than 2 %. 

Hemoglobin preparations were stored at 4°C and checked before use to insure that 
no significant oxidation had occurred. Preparations were discarded after 4 or 5 days 
when evidence of denaturation appeared. 

E X P E R I M E N T A L  R E S U L T S  

Calibration Runs 

T o  de te rmine  the constants,  ~1 and  ~ ,  two sets of  ca l ibra t ion  exper iments  
were  run ;  in the first set, the test solut ion well con ta ined  no  l iquid,  so tha t  it 
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was filled with the test chamber gas, and in the second set, the well contained 
distilled water. In both sets of experiments the partial pressure of oxygen 
was varied over a wide range. The data from the gas and water runs are 
plotted in Figs. 2 and 3 as (Po~)o vs. I. A Henry law constant of 1.669 X 10 -e 
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FIGURE 2. 
ethylene membrane on electrode; (b) 0.001 in. Teflon membrane on electrode. 
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FIGURF. 3. Oxygen electrode calibration curve for distilled water at 25°C with a 0.00l  
in. polyethylene membrane on electrode. 

moles / l i ter /mm Hg was determined from the data of Douglas (4)• Equation 
(13) can be rearranged to 

-- [ ÷ 
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The  term in brackets can be determined from the slopes of Figs. 2 and 3. In 
the absence of augmentation, De~ is equal to Do2, which, in the gaseous 
mixture is approximately 0.2 cm2/sec, and for oxygen in water is 2.3 X 10 -s 
cm2/sec (19). For the gas runs ~1/Do2 is negligible compared to ~2, so that 
the slopes of Fig. 2 are equal to the values of ~2 • ~2 is a function of the elec- 
trode membrane  material. Both 0.001 in. polyethylene and 0.001 in. Teflon 
were used yielding the following values of ~ : 

For the 1 mil polyethylene membrane,  q~2v = 0.242 g mole sec/coulomb 
cm 3 

For the 1 mil Teflon membrane,  @2r = 0.0659 g mole sec/coulomb cm a 
From the slope of Fig. 3 and the value of ~ w ,  q~l was determined to be 

6.33 X 10 -~ g mole From the definition of @1, its value can be cal- 
coulomb cm" 

culated as 2.24 X lO-S/~ g equi__ v coulomb cm" If this is equated to the experimental 

value, one finds a value of u of 3.54. In view of the possible experimental 
error and a mathematical  simplification used in obtaining the analytical 
form of ~1,  v can be approximated as 4, the value which other workers have 
postulated for the over-all reduction of oxygen at this operating voltage (12). 

Oeu Measurements 

Data with oxyhemoglobin solutions in the test well were first obtained with 
oxygen partial pressures of 315 m m  Hg and 105 m m  Hg. These data  are 
tabulated in Table I. Since the lowest oxygen tension (at the membrane  
surface) is above the oxyhemoglobin saturation value, the oxyhemoglobin 
could be assumed to be fully saturated throughout the sample and, by Equa- 
tion (9), Deft = Do , .  Values of Do, were thus determined from these runs 
and the data plotted in Fig. 4. Note that  the data from both the 315 m m  Hg runs 
and the 105 m m  Hg runs fall along the same line, corroborating the hypothe- 
sis that as long as no gradient in oxyhemoglobin exists, the diffusivity of 
oxygen is independent  of the absolute level of oxygen concentration. The  
line drawn through the data  is the least squares fit. The  points shown at a 
hemoglobin concentrat ion of zero were obtained using phosphate buffer. 
These points were not included in the least squares fit, although the extrap- 
olated line passes through them as expected. 

The data  agree closely with those obtained by Pircher (19) in pig methemo- 
globin. They  also agree with the~ predictions of Longmuir  and Roughton 
(13) based on their study of nitrogen diffusion in sheep hemoglobin. 

After establishing the values of D o , ,  the oxygen partial pressure was re- 
duced and runs made at 35 m m  Hg and at 23.1 m m  Hg. A polyethylene 
membrane  was used during the 35 m m  Hg runs and during the first set of 
runs at 23.1 m m  Hg. It  was then replaced with a Teflon membrane  and 
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T A B L E  I 

THE D I F F U S I V I T Y  OF O X Y G E N  IN H U M A N  
H E M O G L O B I N  S O L U T I O N S  A T  25°C 

• i966 

HbO2 concentration Gas phase p02 Membrane 02  tension DO2 X 10 5 

g /  lO0 ml mm Hg mm Hg cnil/uc 

0 315 145.8 1.98 
0 315 142.0 2.02 
0 105 46.2 2.08 
5.0 105 44.4 1.85 
7.1 315 124.9 1.79 
9.9 105 42.1 1.74 
9.9 105 39.6 1.49 

14.2 315 110.8 1.47 
14.9  105 38 .9  1 .46  
20.3 315 99.1 1.25 
24.8 105 28.8 0.93 
24.8 105 35.9 1.25 
29.8 105 31.2 0.99 
29.8 105 19.9 0.58 
28.4 315 88.3 1.02 

2.5[ 
pO 2 DURING RUNS 

• :515 mm Hg 
2 . 0 0 . . ~ . . . . ~  • 105 mr, I"lg 

i 

a 

0.5 

o 

CONCENTRATION OF HEMOGLOBIN (g/ lO0 ml ) 

FmtraE. 4. Diffusivity of oxygen in hemoglobin  solutions at  25°C. Measurements  were 
made  at  high oxygen tensions corresponding to negligible augmenta t ion .  Over  the con- 
centra t ion range  0 to 30 g /100 rnl the diffusivity is approximately  l inear  in  the  concen-  
tration. 

another set of runs made. Values of Deft were calculated from these data  and 
are tabulated in Table II. 

In Fig. 5, the data  taken with the polyethylene membrane at 35 mm Hg 
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T A B L E  IT 

Do~-'-~ OF O X Y G E N  IN H E M O G L O B I N  
S O L U T I O N S  AT 25°C 

HbO2 eoncenwation Gas phase PO2 Membrane 02 tension Def-'~ X 10 ~ 

g/ lO0 ml ram Hg mm Hg cm2/sec 

4.8 35.0 17.2 2.43 
4 .9  35.0 19.4 3.09 
4 .8  23.1 13.1 3.11 
5.0 23.1 7.8 4.87 
9 .8  35.0 21.2 3.62 
9.8 23.1 16.1 5.49 

10.0 23.1 11.2 9.09 
10.2 23.1 10.8 8.50 
14.9 35.0 21.9 4.13 
14.9 35.0 19.9 3.26 
14.7 35.0 20.5 3.36 
14.6 23.1 16.2 5.56 
15.0 23.1 12.1 10.67 
15.3 23.1 12.2 10.91 
19.7 35.0 20.3 3.57 
19.2 23.1 16.1 5.48 
20.0 23.1 11.2 9.05 
24.6 35.0 19.2 3.16 
24.0 23.1 16.7 6.58 
25.0 23.1 9.1 6.27 
29.5 35.0 17.7 2.79 
29.5 35.0 17.7 2.68 
28.8 23.1 17.1 6.46 
30.0 23.1 9 .4  6.57 
30.6 23.1 10.7 8.36 

9 

O 4  
x 

, 2 

0 

(po2)o 
105mm • 
35mm • 
23.1 mm•  

J 

_.__~-----~e j 

. . . .  - "  . . . . .  t . . . .  • . I  . . . .  - ~ . - -  

- I 0  5 I0 15 20 2 :3 

Hemoglobin Concentration (g/lOOml) 

FIGuI~ 5. Augmen ta t ion  of oxygen t ranspor t  as a function of hemoglobin  concentra t ion  
and  reservoir oxygen tension. Oxygen diffused from the reservoir th rough  a th in  film 
of hemoglobin  solution and  a 1 nail polyethylene m e m b r a n e  of known permeabil i ty.  
Values of the integral  effective diffusivity were calculated from Equa t ion  (9). T h e  lines 
shown were calculated from theory and  are based on values of DMHb measured inde- 

pendent ly  (11). 
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and 23.1 m m  Hg are plotted. The ordinate, Dof~ - Do~, was determined 
by subtracting a value of Dos obtained from Fig. 4 from the experimental 
value of Do , .  This difference is a measure of the amount  of transport aug- 
mentation. The amount  of augmentation is plotted vs. hemoglobin concen- 
tration with oxygen tension at the upper boundary of the test solution as a 
parameter. While Deff depends upon the oxygen tension at both boundaries 
of the solution, Equations (11), (12), and (13) determine a unique relation 
among De~f, (pO2),, and (pO2)0 for constant membrane  permeability. Since 
only the data  for runs made with the polyethylene membrane  are plotted 
(constant membrane  permeability), the specification of D~ff and (pO~)~ is 
sufficient to describe each point unambiguously. 

D I S C U S S I O N  

The data  in Fig. 5 confirm the earlier experimental observations (9) on the 
effect of decreasing oxygen tension on the augmentation effect. The  data 
from the 105 m m  Hg runs, in which the hemoglobin was saturated throughout 
the test solution, are plotted to show that under  these conditions there is 
no augmentation. For the 35 m m  Hg runs, where the oxygen tensions in the 
test solution correspond to a section of the oxygenation curves with shallow, 
but finite slope (i.e., Ay/Ano, > 0), augmentation appears and for the 23.1 
m m  Hg runs, where oxygen tensions in the test solution correspond to a sec- 
tion of the oxygenation curves with relatively steep slope, augmentation is 
even greater. 

The data  also show that as hemoglobin concentration increases, augmenta- 
tion increases rapidly at first, but the magnitude of the effect then levels out. 
Equation (9) indicates that the augmentation effect is related to the magni- 

(ya -- y0) 
rude of the t e r m  DHbo~nt ( n o 2 ) a  - -  (no2)o" Since n~ increases with hemoglobin 

concentration, the leveling of the augmentation effect must result from a de- 

(ya - yo) is a func- crease in one of the other two terms in the product. (no~)~ - (no,)o 
tion of the pH of the hemoglobin solution which decreased with increasing 
hemoglobin concentration. Examination of typical hemoglobin oxygenation 
curves shows that such a shift would tend to increase augmentation in the 
range oi oxygen tensions studied. Thus the leveling of the enhancement  effect 
with increasing hemoglobin concentration indicates that DBbo~ decreases. In 
the lower concentration range it appears that this decrease is slow and the 
net effect of concentration increase is an increase in augmentation. 

If the diffusion of HbO2 occurs by a collisional mechanism rather than by 
Brownian motion of the hemoglobin molecule, Dnbo~ should increase with 
increasing concentration because of the increased collision rate. Perutz has 
pointed out that even at the red blood cell concentration, hemoglobin mole- 
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cules can rotate freely about any axis (17) which indicates that restricted 
rotation would not offset the effect of increased collision rate. Thus the data  
indicate that  the collisional mechanism is not of significant importance in 
the augmentation of oxygen transport. 

It  is then necessary to determine whether  the diffusion of HbO2 by Brown- 
ian motion is of sufficient magnitude to account for the augmentation effect. 
In a separate set of experiments reported elsewhere (11), the diffusivity of 
methemoglobin was determined over a wide range of hemoglobin concentra- 
tion. Because of the similarity in the molecular architecture of methemo- 
globin and oxyhemoglobin (18), their Brownian motion dittusivities should 
be the same. Therefore the Brownian motion hypothesis of augmentation 
can be checked by using the D~Hb data and Equation (9) to predict values 
of Def~, provided hemoglobin oxygenation curves are available. In  the 

T A B L E  I I I  

p H  M E A S U R E M E N T S  O F  O X Y H E M O G L O B I N  S O L U T I O N S  

Oxyhemoglobin concentration pH 

g/100 ml 

5 .0  -4- 0 .03  7.1 -4- 0 .05  
10.0 7 .0  
15.0 6 .9  
19.7 6 .8  
24 .6  6 .72  
29.5  6.65 

absence of experimental data, oxygenation curves were calculated from the 
Hill equation: 

K(p02)" ( 15 ) 
Y - 1 + K(pO2) ,~ 

The ionic strength of the salts in the hemoglobin solutions used varied 
from 0.1 to 0.15. In this range n has a value of approximately 2.6 (20). Values 
of K as a function of pH were obtained from Wyman's  data  for the log of the 
oxygen pressure at half-saturation, log pl/2, vs. pH at 25 °C and ionic strength 
0.15 (24). Although Wyman's  data are for horse hemoglobin, the similarity 
in the Bohr effect in horse and human  hemoglobin has been shown and com- 
mented upon frequently (5, 1). Since the amount  of buffer used in preparing 
each of the hemoglobin solutions varied, pH values as a function of the 
hemoglobin concentration were measured (Table I I I )  and from these, ap- 
propriate values of K were determined for each hemoglobin concentration. 
In the unbuffered, 30 g/100 ml solution, a rise in pH of 0.3 during deoxy- 
genation was assumed and a K value based on the average pH for each ex- 
perimental point was determined. 
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Values of Deff - -  Do~ were calculated from the experimentally measured 
values of DMHb for (pO~)a = 35 mm Hg and(pO2)a = 23.1 mm H g  and for the 
range of hemoglobin concentrations studied. The calculations were made 
by  a trial and error procedure for each hemoglobin concentration and upper 
oxygen tension using Equations (9), (11), (12), (13), and (15). 

Curves based on these calculations are shown on Fig. 5. The agreement 
between the calculated curves and the experimental data is good. The  largest 
deviation occurs for the 5 g/100 ml run at (pO2)a --- 23.1 m m  Hg;  this may 

io-e 

6 

4 

o 

Id t 

FIGUP~ 6. 

m 

6 I l I I I I 
0 5 I 0 15 20 25 30 

HEMOGLOBIN CONCENTRATION (g / lO0  ml) 

Comparison of DM~s (solid line taken from Keller and Friedlander (l 1)) 
with predicted values of Dabo2 (data points) for varying hemoglobin concentrations. 

reflect some oxidation of the hemoglobin during the course of the run. The 
slight inflection in the curves which occurs at high hemoglobin concentra- 
tion results from an increase in the magnitude of the variation of slope with 
p H  in this region. 

By inverting Equation (9), one obtains the following expression for DHbO2 : 

Dubo2 = Deff -- Do~ (16) 
Y~ -- Y0 

n, (no~)o  - (no~)0 

Using this expression and the experimental values of Deft and Do~, values 
of Dabo~ were calculated and are plotted in Fig. 6. The curve drawn is a 
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plot of the separately measured DMab. As in Fig. 5, the data  for the 5 g/100 
ml solutions are least satisfactory. However, the data  points fall quite close 
to the curve, indicating that  Dabo~ = D MHb and that the mechanism of aug- 
mented oxygen diffusion is the Brownian motion diffusion of the hemoglobin 
molecules. 

The  variation of Deft, the differential effective diffusivity, is plotted in 
Fig. 7 as (De~ - Do,) vs. oxygen concentration for a 10 g/100 ml hemo- 

I O.C 

O 
¢1) 

E 
0 

%- 
- -  6.C × 

0 c:l 
I 

~_ 4.C 
ID 

121 

2.C 

0 ~  
0 4 8 12 16 2.0 24 28 32 56 

OXYGEN TENSION,mrn Hg 

FIGURE 7. Predicted values of the differential effective diffusivity of oxygen for a I0 
g/100 ml hemoglobin solution at p H  7.0. A maximum is predicted at an oxygen tension 
of about 9 m m  Hg. 

globin solution at pH  7.0. The  experimental DM,,b values and the appro- 
priate calculated oxygenation curve were used in Equation (6) to construct 
this curve. Unlike the integral diffusion coefficient, Def, is a unique function 
of the oxygen tension at a given hemoglobin concentration. I t  is interesting 
to note that the augmentation effect passes through a max imum at about 9 
m m  Hg. This effect was not found experimemtally because sufficient data  in 
the low oxygen tension range were not obtained. The  predicted max imum 
is a result of the sigmoidal shape of the oxygenation curve and the inflection 
point which occurs at approximately 9 m m  Hg. 

The  importance of the phenomenon of augmentat ion in oxygen transfer 
in the red blood cell is not clear. Friedlander and Keller (7) showed that  the 
augmentat ion effect is at a max imum in systems in which local equilibrium 



678 T H E  J O U R N A L  O F  G E N E R A L  P H Y S I O L O G Y  • V O L U M E  49 • I966  

can be assumed and decreases as the system departs from equilibrium. An 
approximate value of X for the red cell conditions can be calculated from 
Equation 1. By extrapolating the experimental data to 37°C and 35.5 g/100 
ml hemoglobin concentration, a value of 0.75 X 10 -5 cm2/sec is obtained 
for Dos and a value of 1.75 × 10 -7 cm2/sec for D~Hb. Using these values, 
k was calculated for various oxygen tensions. It was found that  in the range 
of oxygen tensions of 10 ram Hg to 100 mm Hg, X was fairly constant, vary- 
ing from 1.8 × 10 -5 cm to 2.6 X 10 -5 cm. For a characteristic red cell dimen- 
sion of about 5 X 10 -4 cm, the ratio of cell size to ~ is less than 100 and the 
system is not at local equilibrium. Moreover, since the in vivo system is an 
unsteady-state system, the actual characteristic length which should be used 
in applying the criterion of local equilibrium is' probably not a red cell dimen- 
sion, but the thickness of the hemoglobin-oxygen reaction zone. This reac- 
tion zone thickness is likely to be even smaller than the red cell diameter (or 
thickness), resulting in an even greater departure from local equilibrium. 

N O M E N C L A T U R E  

a thickness of layer of solution, cm. 
D~ diffusivity of the i th species, 

cm2/sec. 
Detf effective diffusivity, defined by 

Equation (6), cm2/sec. 
D e f  f integral effective diffusivity, de- 

fined by Equation (9), cm2/ 
see. 

F Faraday's constant, 96,487 
coulombs/g equiv. 

I current through 02 electrode, 
amp. 

Ji flUX of species i, moles/cm2/sec. 
K empirical coefficient in Hill 

equation, mm -n 
k over-all reverse reaction rate 

coefficient, sec -1. 
k' over-all forward reaction rate 

coefficient, em3/(g mole see). 
kc oxygen electrode permeability, 

cm/sec. 
n empirical exponent in Hill equa- 

tion, dimensionless 
n~ molar concentration of species 

i, g moles/era 8. 
n~ total molar concentration of 

oxygenated and deoxygenated 
hemoglobin, g equivalents/ 
C m  3. 

Po, oxygen tension; partial pressure 
of oxygen in equilibrium with 
solution, mm Hg. 

Pl12 oxygen tension at which a 
hemoglobin solution is 50% 
saturated, mm Hg. 

rm effective radius of oxygen elec- 
trode surface, era. 

x linear variable, cm. 
y fraction of hemoglobin present 

as oxyhemoglobin, dimen- 
sionless. 

X characteristic length in a react- 
ing, diffusing system, defined 
for the hemoglobin-oxygen 
system by Equation (1), cm. 

q~l constant related to oxygen dif- 
fusion cell geometry, g mole/ 
coulomb cm. 

~2 constant related to oxygen elec- 
trode permeability, g mole 
see/coulomb cm a. 

Subscripts 

0 value at electrode membrane 
surface. 

a value at upper boundary of test 
solution. 
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