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Recent decades have experienced the discovery of numerous complex materials. At the root of the
complexity underlying many of these materials lies a large number of contending atomic- and largerscale
configurations. In order to obtain a more detailed understanding of such systems, we need tools that enable
the detection of pertinent structures on all spatial and temporal scales. Towards this end, we suggest a new
method that applies to both static and dynamic systems which invokes ideas from network analysis and
information theory. Our approach efficiently identifies basic unit cells, topological defects, and candidate
natural structures. The method is particularly useful where a clear definition of order is lacking, and the
identified features may constitute a natural point of departure for further analysis.

C
urrently, no universal tools exist for examining complex physical systems in a general and systematic way
that fleshes out their pertinent features, from the smallest fundamental unit to the largest scale encom-
passing the entire system. The challenge posed by these complex materials is acute and stands in stark

contrast to simple ordered systems. In crystals, atomic unit cells replicate to span the entire system. Historically,
the regular shapes of some large-scale single crystals were suggested to reflect the existence of an underlying
repetitive atomic scale unit cell structure long before modern microscopy and the advent of scattering and
tunneling techniques. This simplicity enables an understanding of many solids in great detail; but in complex
systems, rich new structures may appear on additional intermediate scales.

Currently, some of the oldest and most heavily investigated complex materials are glasses. Recent challenges
include the high temperature cuprate and pnictide superconductors, heavy fermion compounds, and many other
compounds including the manganites, the vanadates, and the ruthenates. These systems exhibit a wide array of
behavior including superconductivity and metal to insulator transitions, rich magnetic characteristic and incom-
mensurate orders, colossal magneto-resistance, orbital orders, and novel transport properties.

A wealth of experimental and numerical data has accumulated on such systems. The discovery of the salient
features in such complex materials and more generally of complex large scale physical systems across all spatial
resolutions may afford clues to develop a more accurate understanding of these systems. In disparate arenas,
guesswork is often invoked as to which features of the systems are important enough to form the foundation for a
detailed analysis. With ever-increasing experimental and computational data, such challenges will only sharpen
in the coming years. There is a need for methods that may pinpoint central features on all scales, and this work
suggests a path towards the solution of this problem in complex amorphous materials. A companion work1

provides many details that are not provided in this brief summary. An explanation of our core ideas require a
few concepts from the physics of glasses and network analysis.

Results
We illustrate our approach by reviewing a central problem—the detection of natural scales and structures in
glasses. Such complex systems are not easy to analyze with conventional theoretical tools2. In a gas, all interactions
between the basic constituents are weak, so the system is easy to understand and analyze. At the other extreme, the
interactions in regular periodic solids are generally strong, and such solids may be characterized by their unit cells
and related broken symmetries.

The situation is radically different for liquids and glasses. Liquids that are rapidly cooled (‘‘supercooled’’) below
their melting temperature cannot crystallize and instead, at sufficiently low temperatures, become ‘‘frozen’’ in an
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amorphous state (a ‘‘glass’’) on experimental times scales. On super-
cooling, liquids may veer towards local low energy structures3,4, such
as icosahedral structures observed in metallic glasses5,6, before being
quenched into the amorphous state. Lacking a simple crystalline
reference, the general structure of glasses (especially prevalent
multi-component glasses) is notoriously difficult to quantify in a
meaningful way beyond the smallest local scales. As such, it remains
a paradigm for analyzing structure in complex materials.

The most familiar and oldest technological glasses are the
common silicate glasses. More modern glasses include phosphate
(biomedical applications), semiconductor chalcogenide (optical
recording media), and metallic glasses. Glass formers display several
key features7. One prominent aspect is that the viscosity and relaxa-
tion times increase by many orders of magnitude over a narrow
temperature range. This dynamic sluggishness is not accompanied
by normal thermodynamic signatures of conventional phase transi-
tions nor a pronounced change of spatial structure. The high number
of metastable energy states in these systems8,9 leads to rich energy
landscapes8–12. A notable facet of the glass transition in the space-
time domain is that the dynamics of supercooled liquids are not
spatially uniform (‘‘dynamical heterogeneities’’)13.

Many theories of glasses, e.g.,7,14–21 have been advanced over the
years. The theory of Random First Order Transitions (RFOT) inves-
tigates mosaics of local configurations7,14. As shown in19, RFOT is
related to theories of ‘‘locally preferred structures’’20,22–24—which also
rely on the understanding of natural structures in glasses. Other
(inter-related) theories seek a similar quantification of structure.
Investigations include spin glass approaches15 topological defects
and kinetic constraints19,20,25–27, network topology28, and numerous
approaches summarized in excellent reviews, e.g.,11,29,30.

There is a proof that a growing static length scale must accompany
the diverging relaxation times of glass31. Some evidence has been
found supporting the existence of growing correlation lengths
(associated with both static correlations as well as those describing
dynamic inhomogeneities)32,33. More recent discussions include
divergent shear penetration depths1. Correlation lengths were
studied via ‘‘point-to-set’’ correlations34 and pattern repetition size35.
Common methods of characterizing structures center on an atom or
a given link: (a) Voronoi polyhedra,27,36. (b) Honeycutt-Andersen

indices37, and (c) bond orientation38. A long-standing challenge
addressed in this work is the direct detection of structures of general
character and scale in amorphous physical systems. Towards this
end, we briefly introduce several concepts from network analysis.

Network analysis. Network analysis has been transformative in
generating keen new insights in numerous areas such as sociology,
homeland security, biology, and many other problems. Complex
physical problems have not yet been examined before through this
prism in this detail. We specifically introduce methods from the
growing discipline of ‘‘community detection’’39. The key idea is
that any complex physical system may be expressed as a network
of nodes (e.g., atoms, electrons, etc.) and connecting links that
quantify the relations (interactions/correlations) between the
nodes. With this representation, we then apply multiresolution
methods40 from network theory to analyze the systems.

Partitions of large systems into weakly coupled elements. As
depicted in Fig. 1, community detection describes the problem of
finding clusters (‘‘communities’’) of nodes with strong internal
connections and weak connections between different clusters. The
definitions of nodes and edges depend on the system being modeled.
For the present system, between each pair of nodes i and j we have
an edge weight Vij which may emulate an interaction energy or
measured correlation between sites i and j. The nodes may belong
to any of q communities, Caf gq

a~1. In our particular realization, the
nodes represent particles and edges model the pair-wise potential
energy interactions.

An ideal decomposition of a large graph is into completely disjoint
communities (groups of particles) where there are no interactions
between different communities. The system is effectively an ‘‘ideal
gas’’ of the decoupled clusters. In practice, the task is to find a par-
tition into communities which are maximally decoupled. Such a
separation may afford insight into large physical systems. Many
approaches to community detection exist47.

Community detection method. We generalize our earlier works by
adding a background v and allowing for continuous weights Vij. Our
(Potts type) Hamiltonian reads

H~
1
2

Xq

a~1

X
i,j[Ca

Vij{v
� �

h v{Vij
� �

zch Vij{v
� �� �

: ð1Þ

In Eq. (1), the inner sum is over nodes i and j in the same community
Ca, and the outer sum is performed over the q different communities.
The number of communities q may be specified from the outset or
left arbitrary (the usual case) allowing the algorithm to determine q
based on the lowest energy solution(s)40,42.

Minimizing this Hamiltonian corresponds to identifying strongly
connected clusters of nodes. The parameter c . 0 tunes the relative
weights of the connected and unconnected edges and allows us to
vary the targeted scale of the community division (the ‘‘resolution’’).
The model for the current application could be further generalized by
incorporating n-body interactions or correlation functions (such
as three or four point correlation functions). Details concerning a
greedy minimization of Eq. (1) appear in40,42. Somewhat better
optimization could be obtained with a heat bath algorithm43 at a cost
of substantially increased computational effort, but the greedy algo-
rithm has shown itself to be robust.

Multiresolution network analysis. We address multi-scale partition-
ing40 by employing information-theory measures44,45 to examine
contending partitions for each system scale. While decreasing c, we
minimize Eq. (1) resulting in partitions with progressively lower
intra-community edge densities, effectively ‘‘zooming out’’ toward
larger structures. A key construct in our approach is the applica-
tion of replicas—independent solutions of the same problem. The

Figure 1 | A weighted network with 4 natural (strongly connected)
communities. The goal in community detection is to identify such

strongly related clusters of nodes. Solid lines depict weighted links

corresponding to complimentary or attractive relationships between nodes

i and j (denoted by Aij) [(Vij – u) , 0 in Eq. (1)]. Gray dashed lines depict

missing or repulsive edges (denoted by Bij) [(Vij 2 u) . 0]. In both cases,

the relative link weight is indicated by the respective line thicknesses.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 329 | DOI: 10.1038/srep00329 2



number of replicas p may be set by the user where higher value of p
leads to more accurate analysis.

In earlier work40, we dealt with a static network where replicas
were formed by permuting the order of nodes for the same network
definition. Here, we take advantage of the dynamic system to imple-
ment a further generalization where replicas are defined at different
times. We automatically determine the natural scales of a system by
identifying the values of c for which these replicas agree most
strongly via information theory measures such as normalized mutual
information NMI and variation of information VI.

The central result in40 was that extrema (including plateaux) of
information theory overlaps (when averaged over all replica pairs)
indicate the ‘‘natural’’ network scales40. That is, we find the values c*
for which the average Q of information overlaps (over all replica
pairs) is extremal, dQ=dcð Þ c~c�

�� ~0. We then identify the partitions
that correspond to these c* (s).

This approach is fast40,42 and has an accuracy that surpasses most
methods, such as SA applied to other disparate cost functions40,42.
More notably, to our knowledge, this approach is the only one that
quantitatively evaluates the natural partitions for all scales. A detailed
analysis41 compared the accuracy of several algorithms for non
multi-scale community detection. Multiresolution approaches40,46,47

are much more recent. In the current analysis, we further apply a
relatively trivial extension1 that allows ‘‘overlapping’’ communities
(nodes have more than one membership) to better model the phys-
ical clusters.

Detection of multi-scale structures in complex systems. We
ascertain general hidden structure in complex systems with no
prior assumptions regarding what the important properties may be.
To achieve this, we set the graph edge weights for use Eq. (1) to be
either (i) pair interaction energies or (ii) inter-node (inter-atomic)
correlations1 (see SI).

Our approach to multi-scale community detection40 is concep-
tually simple: copies of the community detection problem are given
to different ‘‘solvers’’ (or ‘‘replicas’’). If the starting solution traject-
ories of the distinct replicas in the complex energy landscape are
different, then they will generally arrive at different solutions (differ-
ent community groupings). If many of the solvers strongly agree
about certain features, then these aspects are more likely to be cor-
rect, and the level of agreement is measured by information theory
correlations.

When applying this to a physical system, the replicas can be cho-
sen to be copies of the system all at the same time. This setup will

detect natural static scales and structures. Alternatively, the replicas
may be copies of the system at different times, as depicted in Fig. 2,
enabling the detection of general spatio-temporal correlations. In
either case, we find the extrema of the information theory correla-
tions as a function of c the ‘‘resolution’’ parameter in our Hami-
ltonian Eq. (1). Once these extremal values are found, the ground
states of Eq. (1) determine the pertinent structures. Multiple extrema
in the information theory correlations suggest multiple relevant
length/time scales. In this way, our analysis is not limited to the
assumption of one or two specific correlation lengths relative to
which scaling type analysis may be performed or what correlation
function should be constructed. Rather, viable natural scales of the
system appear as extrema in the calculation of the direct information
theory overlaps.

Applications to complex amorphous systems. We used interaction
energies to investigate a ternary metallic glass model Al88Y7Fe5. At
low temperatures, we found larger and more pronounced compact
structures than those at higher temperature. Static and dynamic
structures in the KA LJ glass are illustrated in the SI. Large atomic
structures of Zr80Pt20 (based on RMC directly applied to experi-
mental measurements) are shown in1.

In Figs. 3 and 4, we provide the multiresolution plots at low and
high temperatures, respectively. A sample of the corresponding
structures of Al88Y7Fe5 for the T 5 300 K system are depicted in
Fig. 5. These clusters are selected at the peak NMI at c 5 0.001. The
identified structures are not unique reflecting a high configurational
entropy. That is, different partitions may be found for a given value of
the resolution parameter c that are similar in their overall scale but
different in precise detail and identities of the nodes. These re-
sults may flesh out a facet of the glass transition. As the system is

Figure 2 | A set of replicas separated by a time Dt between successive
replicas. We generate a model network for each replica using the potential

energy between the atoms as the respective edge weights and then solve

each replica independently by minimizing Eq. (1) over a range of c values.

We then use information measures40 to evaluate how strongly pairs of

replicas agree on the ground states of Eq. (1).

Figure 3 | The result of our community detection analysis applied to
Al88Y7Fe5 at a temperature of T 5 300 K. The panels at left (a, b) show the

information theoretic overlaps between the different replicas when

averaged over all replica pairs (see text). In Fig. 5, we highlight the spatial

structures corresponding to the NMI maximum/VI minimum.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 329 | DOI: 10.1038/srep00329 3



supercooled, the effective couplings become quenched. Detecting the
optimally decoupled structures, such as those that may describe the
deeply supercooled liquid, constitutes a spin-glass problem43.

Temperature dependence. We connect the network system to a large
heat reservoir at a constant temperature TCD and solve the community

detection problem using a stochastic heat bath algorithm43,48. With this
setup, any determined communities must have an interaction energy
that is stable with respect to thermal fluctuations. Since the above results
are at TCD 5 0 via a greedy solver, this effect was omitted above.

Since we base the edge weights on the interaction potentials, and
the w0 shifts are relatively small here, we assign TCD^T so that the
community detection temperature is approximately equal to the
simulation temperature. The caveat is that the ‘‘repulsive’’ energies
in terms of Eq. (1) are scaled by the model weight c, so the corres-
pondence is best near c 5 1.

In Fig. 6, we plot the NMI (IN) and the number communities q
as a function of the heat bath temperature TCD and Potts model

Figure 4 | The result of our community detection analysis as applied to
Al88Y7Fe5 at a temperature T 5 1500 K. When comparing the

information theory replica overlaps and structure with Fig. 3, it is evident

that at higher temperatures, the system is more random.

Figure 5 | A set of sample clusters found in a three dimensional AlYFe
model system (see text). Here we allow for overlapping nodes. The

information overlaps at left show a maximum NMI (IN) and plateau for

other information theory measures at (i) in Fig. 3.

Figure 6 | Our community detection analysis is applied to the Al88Y7Fe5 system at T 5 300 K in panels (a) and (b) for a range of heat bath temperatures
TCD (temperature used for the community detection solver). Both panels here represent a single instant in time as opposed to the time varied replicas

used in Figs. 3 and 4. Panel (a) plots NMI IN, and panel (b) plots the corresponding number of clusters q. The sample clusters in Fig. 5 are found at the left

edge of panel (a).

www.nature.com/scientificreports
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parameter c43,48. In panels (a) and (b), we observe different phases
with distinct transitions for TCD 5 300 K for a single instant in time
(i.e., the replicas are identical here). At high c, the low correlations at
TCD^0 transition into a large ‘‘plateau’’ indicating one distinct phase
of the system. Here the partition is almost exclusively composed of
dimers and triads of atoms analogous to a gas phase of small non-
interacting groups.

In Figs. 3 and 4, our solution for TCD 5 0 at low c 5 0.001 resides in
another solvable phase. In this region, there is only a weak depend-
ence of the partitions on the heat bath temperature, and the best c is
roughly stable across a large range of heat bath temperatures because
the contributions of the repulsive edge weights are greatly reduced.
The communities are also stable against the addition of noise (not
depicted) indicating that the structures are physical entities as
opposed to random constructs. Similar behavior is seen in43,48 where
we observe the identification of planted communities in the presence
of noise or real objects in images.

Discussion
We outlined a ‘‘first principles’’ network analysis method to ascertain
correlations and structures where traditional tools encounter great
difficulty in an important problem. Our key notion is that a general
classical physical system may be represented in terms of a (dynamic)
network whose links, loops, etc. encode interactions and/or disparate
measured multi-particle correlations. We applied the method to
detect structures in benchmarks such as disparate lattice systems,
with and without defects, Ising spin systems with domain wall struc-
tures, (weak) metallic glass formers and binary Lennard Jones sys-
tems (see SI). In all of these systems, we are able to identify pertinent
structures where the system may be expressed in terms of these
building blocks (e.g., the system correlations, energy, and dynamics
can be expressed in terms of these reduced degrees of freedom). This
identification of pertinent structures in these benchmark systems
attests to the physical meaning of this approach. In our model metal-
lic glass of Al88Y7Fe5, we identify medium range order clusters that
overlap neighboring clusters but are weakly coupled with the rest of
the system. In this system, strong information theory correlations are
found at low temperatures while, as expected, the clusters progres-
sively become less sharply defined as temperature is increased.

We partition the system into strongly correlated cohesive inter-
connected clusters that are optimally decoupled from other clusters
on all determined scales. Although we employed one particular
method for network partitioning, other methods may, of course, be
applied. To our knowledge, to date, physical systems have not been
investigated with graph theoretic concepts. Thus far, analysis of
structure has largely relied on various insightful conjectures and
on methods that are well suited for simple systems, such as non-
interacting gases or periodic crystals, but these may fail in complex
(especially multi-component complex) physical systems. The
approach that we outline here does not invoke any guesswork. The
rudiments of our method can be generally applied to numerous other
systems having exact or effective interactions (or measured correla-
tions) between their constituents (e.g., liquids, plasmas, etc.).
Although we focused in this work on real space representations,
extensions may include representations of the system in Fourier or
other spaces. A method such as that presented here may similarly
examine the multi-scale structure of other materials such as ‘‘phase-
change materials,’’ poly-crystalline Silicon, thin films of poly-crys-
talline CdTe, and similar materials.

More speculative extensions may include electronic and other
quantum systems. In the quantum arena, when feasible, a direct
product representation in terms of decoupled degrees of freedom
(and related matrix product states53 that efficiently describe cluster
states) may be potent. The decomposition into optimally decoupled
clusters is indeed what the community detection approach seeks to
emulate in the classical systems. Applications to electronic systems

such as electronic glasses54 are also natural. Other applications may
offer insights into the long sought diverging length scales (or lack
thereof) in strongly correlated electronic systems.

Numerous works, e.g.,55,56, suggest that a quantum critical point is
also present in optimally doped high temperature superconductors.
Competing orders and multiple low energy states may lead to a glassy
response57. As in classical glasses, divergent time scales and various
non-uniform structures appear in these complex electronic materials,
but the character of the low temperature phases remains a mystery.
Generally speaking, a multiresolution approach similar to the one
outlined in this work may also be of use for theoretically analyzing
non-uniform systems where there are no obvious natural building
blocks to consider in performing real space renormalization-group-
type calculations and constructing coarse grained effective theories.

Methods
Our potential energy functions for Al88Y7Fe5 were computed by fitting configuration
forces and energies49 employing ab initio results using VASP50,51. The calculated
structure factors were compared to experimental data52. The potentials are of the form

V rð Þ~ a0

r

� �a1

z
a2

ra5
cos a3rza4ð Þ

h i
, ð2Þ

with the parameters {ai} depending on the specific types of atom pairs (i.e., Al-Al,
Al-Y, …). See the SI for tabulated values1 of {ai}.

We utilized information measures to determine the strengths of replica correla-
tions in our multi-scale analysis40. The probability for a randomly selected node to be
in community a of partition A is P(a) 5 na/N where na is number of nodes in
community a and N is the total number of nodes. If there are q communities in

partition A, then the Shannon entropy is HA~{
Xq

a~1

na

N
log2

na

N
. The mutual

information I(A,B) between partitions A and B is

I A,Bð Þ~
XqA

a~1

XqB

b~1

nab

N
log2

nabN
nanb

: ð3Þ

qA and qB are the number of communities in partitions A and B, respectively, nab is the
number of nodes of community a in partition A that are shared with community b in
partition B, and nb is the number of nodes in community b of partition B. The
variation of information VI between two partitions A and B is VI(A,B)5HA1HB–
2I(A,B) with a range of 0 # VI(A, B) # log2 N. The normalized mutual information
NMI is NMI(A, B) 5 2I(A, B)/(HA 1 HB) with a range of 0 # NMI(A, B) # 1. A high
average NMI or a low average VI indicate strong agreement between the replicas.

After calculating the average replica correlations, we further assigned ‘‘overlap-
ping’’ nodes to the lowest energy partition in order to determine the final clusters.
Specifically, we fixed the initial partition configuration (unique node assignments)
and iteratively added (or removed) nodes to (from) each cluster k if the change
lowered the energy of cluster k. This process repeated until no further overlap changes
are detected.
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