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On implementation 
of a semi‑analytic strategy 
to develop an analytical solution 
of a steady‑state isothermal tube 
drawing model
Azhar Iqbal Kashif Butt1,5, Nehad Ali Shah2,5, Waheed Ahmad1, Thongchai Botmart3* & 
Naeed Ahmad4

In this paper, we consider an isothermal glass tube drawing model consisting of three coupled 
nonlinear partial differential equations. The steady-state solution of this model is required in order to 
investigate its stability. With the given initial and boundary conditions, it is not possible to determine 
an analytical solution of this model. The difficulty lies in determining the constants of integrations 
while solving the second order ordinary differential equation analytically appearing in the steady-
state model. To overcome this difficulty, we present a numerical based approach for the first time to 
develop an analytical solution of the steady-state isothermal tube drawing model. We use a numerical 
technique called shooting method to convert the boundary value problem into a set of initial value 
problems. Once the model has been converted into a system of differential equations with initial 
values, an integrating technique is implemented to develop the analytical solution. The computed 
analytical solution is then compared with the numerical solution to better understand the accuracy of 
obtained solution with necessary discussions.

In glass industry, tubes are drawn through various manufacturing processes used to achieve the continuous 
production of glass tubes having correct wall thickness and diameter. The most commonly used are the Danner 
process and the Vello process1–5 having great importance in glass fabricating industry and are still in use today. In 
Danner process, glass is melted in a furnace to the stage where it is soft and pliable. Molten glass is then let to fall 
with low feeding speed v0 on the surface of a cylindrical device called mandrel kept in a temperature controlled 
tank called oven. Mandrel is slightly inclined and hollow such that the air can be blown through it. By continuous 
rotation of mandrel about its axis of symmetry, the molten glass falling downward creates a smooth layer around 
the mandrel. It cools down gradually and takes the shape of a thick-walled hollow glass tube with all desired 
properties at just below the end of mandrel. The length of hot-forming zone is taken as L. It is then pulled out by 
a drawing machine with a drawing speed vL > v0 . This ratio vL/v0 > 1 is called the draw ratio. Keeping a con-
stant temperature in the hot-forming zone leads to develop an isothermal tube drawing model. The drawn tube 
is then conveyed straight by rollers to further process of cutting, finishing, polishing and packaging at the end 
of the spinline. This manufacturing process is explained and illustrated in3. For the Vello process, we refer to1–5.

The geometry of the drawn tube is illustrated in Fig. 1. The length of hot forming zone is denoted by L. Inner 
and outer radii, inside pressure, feeding and take up speeds, axis of symmetry of the tube during the production 
process are shown in Figure. All other parameters involved along with their numerical values are illustrated in 
Table 1.

The shaping parameters such as the wall thickness and cross-sectional area (or diameter) are the main char-
acterizations of the drawn tube. In either of the manufacturing processes, the required shape of the tube can be 
maintained by the stream of the air gently blown through the mandrel. Insufficient quantity of the air blown 
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through the mandrel can disturb the desired shape of the glass tube. As a result, this insufficient balance collapse 
the walls of the glass tube. Moreover, the geometry of the glass tube can be controlled by the parameters involved 
herein such as the glass temperature, the composition of the raw material, the pressure of the blowing air in the 
mandrel and the rate of draw. We have added a Fig. 1 to better understand the geometry of the drawn glass tube.

A variety of mathematical models both for the isothermal and non-isothermal tube drawing processes, with 
different levels of descriptions and needs, are available in the literature e.g., see1–4 and6–11. In1–3,7 numerical 
solutions of both the isothermal and non-isothermal models have been found and used to optimally control 
the geometry of the glass tube. In recent years, a variety of mathematical models representing physical and real 
world problems have been investigated for numerical solutions and stability analysis (for example see12–24). Thus, 
the concept of finding numerically accurate and exact solutions of real world problems has attracted attention 
from all over the world.

In this paper, we have considered an isothermal glass tube drawing model consisting of three coupled non-
linear partial differential equations of first and second order. The steady-state numerical solution of this model 
is required in order to investigate its stability. Recently, we have analyzed the stability of an isothermal tube 
drawing model and performed a complete mathematical analysis in3 by incorporating a steady state numerical 
solution. To better understand the physical model and to examine the accuracy of the obtained numerical solu-
tion, our objective here is to develop an analytical solution of the steady-state isothermal model. To start with, 
it is not possible to determine an analytical solution of this type of model with the given initial and boundary 
conditions. When we solve the second order ordinary differential equation appearing in the steady-state model, 
the difficulty lies in determining the constants of integrations. To overcome this concern, we utilize a numerical 
technique called shooting method to convert the boundary value problem into a set of initial value problems. An 
integrating technique is implemented to develop an analytical solution of the converted initial value problems. 

Table 1.   Summary of parametric values appearing in the isothermal model (5).

Parameter Symbol Approximate value Units

Feeding speed v0 1 mm/s

Drawing speed vL 12 mm/s

Length of the hot-forming zone L 1 m

Input viscosity µ0 5× 105 Pa s

Inside pressure ps 420 Pa

Density ρ 2500 kg/m3

Mean radius of the glass tube R0 30 mm

Initial area of the tube A0 1885 mm

W

r2

s

A r

x vL

v0

r

R

Figure 1.   Diagram of a glass tube during production process.
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Similar approach has been suggested in10,22 to construct an analytical solution of a steady-state melt-spinning 
model. The semi-analytical approach developed in this paper has an advantage over other numerical methods 
that it may be applied directly to both linear and nonlinear systems of equations without the need for discretiza-
tion, linearization, or perturbation.

The organization of the paper is as follows: In “Governing equations” section, we give a brief description of 
the mathematical model of an isothermal tube drawing process. A strategy converting a boundary value problem 
into a set of initial value problems is described in “Numerical approach” section. Analytical solution is developed 
in “Analytical solution” section and compared with the numerical solution in “Accuracy comparison” section. 
Conclusion is given in “Conclusions” section. We have included some leftover parts of the modeling of tube 
drawing process in the “Appendix”. In this section, we have included one example concerning the application of 
the analytical solution obtained through the implemented semi-analytic technique.

Governing equations
In the literature, different types of models for the drawing processes with different level of demands and descrip-
tions are available. A considerable amount of work has been carried out by different researchers1–4,6,8,9 and11,25–28 
to model the tube drawing process. In this section, we briefly explain the mathematical model for an isothermal 
tube drawing process.

To model the tube drawing process, we consider an incompressible Newtonian flow of a molten glass between 
two free surfaces r = r1(z, t) and r = r2(z, t) where r1(z, t) and r2(z, t) respectively denote the inner and outer 
radii of the glass tube, and assume that temperature remains constant throughout the forming zone. Glass tube 
during production process is illustrated in Fig. 1. In the draw-down zone, the surface tension force and the 
inertial force acting upon the molten glass are insignificant and hence can be neglected. This kind of flow is 
governed by the equations 

The Eqs. (1a)–(1c) are taken from4 and are known as the standard equations showing the axi-symmetric 
stokes flow. The first equation is the continuity equation and the last two equations are the momentum equations 
respectively in r and z directions. We denote the derivatives by subscripts r and z where z denotes the distance 
along the axis of the glass tube and r measures the distance perpendicular to it. The velocity of the molten glass 
is defined to be v̄ = (u, v) where u and v are the components of velocity v̄ along z and r direction respectively. 
The pressure, density and the acceleration due to gravity are denoted by p, ρ and g respectively.

Now, at the free surfaces r = r1(z, t) and r = r2(z, t) , it is necessary to specify the stress conditions and the 
kinematic conditions.

On the inner and outer surfaces of the glass tube, the stress conditions are given as:

where n̂i and n̂o are the unit normals on the surfaces r = r1 and r = r2 of the tube respectively defined as

and ps is the inside pressure applied on the surface r = r1 of the glass tube and τ is the stress tensor given as
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and thus the stress conditions (1d)–(1e) can be expanded to give

 where µ denotes the viscosity of the molten glass which remains constant at the given temperature.
To take benefit of the small parameters present in the problem, it is now convenient to convert the Eq. (1) 

into dimensionless form. For the dimensional quantities, the appropriate scaling is defined as:

where ε =

W

L
≪ 1 . W is the width of the glass tube that has a very small value than the typical length of hot-

forming zone L, U is the typical drawing speed and µ0 is the typical melt glass viscosity which has a constant 
value for the isothermal case. After dropping the bar notation, the system of governing equations in dimension-
less form is given as follows: 

where St =
ρgL2

µ0U
 is known as Stokes number.

The stress conditions (1h)–(1k) read as

The kinematics conditions (1f)–(1g) become

The above model can be simplified by means of an asymptotic expansion, in which the inverse aspect ratio ε is 
used as scaling parameter. Assuming the glass flow as a thin layer flow and ignoring the large aspect ratio of the 
flow, one derives the simplified equations to model the isothermal tube drawing process. In this derivation, the 
surface tension and inertial forces acting upon the molten glass have also been ignored due to their insignificant 
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contributions. For details, we refer to1–6 and9,27. However, we have included the remaining considerations of 
the modeling process in “Appendix A” and reach at the following model equations representing the isothermal 
process: 

equipped with the initial conditions

and the boundary conditions

where A0 and R0 are the cross-sectional area and average radius of the glass tube at the time of entering the hot-
forming zone, respectively. Acceleration due to gravity and density of the molten glass are denoted by g and ρ , 
respectively. Average radius R of the tube is defined as

Equations in system (3) give us cross-sectional area A, velocity v, and average radius R of the glass tube. Width 
W of the tube can be determined by the equation

Since the temperature throughout the forming zone of the tubing process remains constant, the viscosity µ 
of the melt glass also remains constant.

Dimensionless form.  We introduce the following dimensionless quantities

into the model (3) to get the dimensionless equations 
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subject to the conditions:

The system (5) is a system of coupled nonlinear ordinary differential equations. We are interested in develop-
ing an analytical solution of the nonlinear system (5). However, we have already proved the existence and unique-
ness of the solution of steady state isothermal tube drawing model (5) in3. For details, we refer the reader to3.

Numerical approach
There are different techniques available in the literature to solve boundary value problems analytically. The 
obtained general solutions contains arbitrary constant which can be determined by using boundary conditions. 
However, there exist some problems (e.g. problem (5) and see10,22) where it is not possible to find integration 
constants with the given conditions. It is interesting to mention that integration constants can be found if bound-
ary value problem (BVP) is transformed to an initial value problem (IVP).

Shooting method is a technique that transforms a BVP of the form

into an IVP

where s is a guess to be determined in such a way that it shoots φ(b).
We apply RK4 method to the second order differential Eq. (6) to determine approximation si , i = 1, 2, . . . for 

φ(b) . Let the first guess s1 be taken as

RK4 method with s1 gives us an approximation β1 for φ(b) . If the absolute error |β1 − φ(b)| is less than some 
pre-assigned tolerance, we stop, otherwise we refine our guess by considering

and compute β2 by RK4 method. If the error |β2 − φ(b)| agrees to pre-assigned tolerance, we stop. In the case of 
disagreement, we make further guesses using the secant formula

where

is the error of approximation. RK4 method is continued each time with a new guess si , i = 3, 4, . . . computed 
from (7) until βi agrees with the value φ(b) to pre-set tolerance.

Once we able to compute a most suitable guess si → s , we are able to transform the BVP to IVP, and hence 
an analytical solution of the problem of type given in (6) can be found.

Analytical solution
With the initial conditions (5d), the Eq. (5a) is solved to get
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With the usual techniques, it is not an easy task to develop an analytical solution of the BVP (9). We use a 
non-conventional approach to build an analytical solution of the given nonlinear model. We convert the BVP (9) 
into two IVPs. For this purpose, we set

and

Then the IVPs corresponding to BVP (9) are defined as 

along with the conditions

 where w0 is approximated value determined by shooting the value of v at 1 i.e., v(1) = vd . (The process of finding 
the approximation w0 = s (say) by shooting method is explained in “Numerical approach” section).
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where one solution u1 , guessed by hit and trial procedure, is given as

and y is any nonzero unknown function of z.
Differentiating (19) with respect to z and then putting the values of u and 

du

dz
 in Eq. (18), we reach at

which is a first order linear ordinary differential equation in y. After few steps of calculations, the solution of this 
differential equation is found to be
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given in (8), (16) and (22) together constitute an analytical solution of the steady-state model (5).

u1 =
1

4πc

(

−

St

3c1
+

St

3c1
cosh

√

c1(z + c2)

) .

dy

dz
+









p

2
−

St

3
√

c1
sinh

√

c1(z + c2)

−

St

3c1
+

St

3c1
cosh

√

c1(z + c2)









y = −πcp,

(20)y = (−2πc)A+ c3B,

A(z) = −

St

3c1
+

St

3c1
cosh

√

c1(z + c2),

B(z) =

−

St

3c1
+

St

3c1
cosh(

√

c1(z + c2))

exp

(

−
3
√

c1p
2St

(

coth(
√

c1(z + c2))+ csch(
√

c1(z + c2))
)

) .

(21)c3 = (4πc)k1 + (2πc)k2,

k1 =

exp

(

−3
√

c1p

2St

(

coth
√

c1c2 + csch
√

c1c2

)

)

(

4πc
(

−

St

3c1
+

St

3c1
cosh

√

c1c2

)

− 1

) ,

k2 = exp

(

−3
√

c1p

2St

(

coth
√

c1c2 + csch
√

c1c2

)

)

.

1

y
=

E

(−2πc)D(z)× E + (4πc)D(z)× eg(z) + (2πc)D(z)× Eeg(z)
.

u =

1

(4πc)D(z)
+

E

(−2πC)E × D(z)+ (4πc)D(z)× eg(z) + (2πc)E × D(z)× eg(z)
,

D(z) = −

St

3c1
+

St

3c1
cosh

(

√

c1(z + c2)
)

,

E = 4πc

(

−

St

3c1
+

St

3c1
cosh

√

c1c2

)

,

g(z) =
3
√

c1p

2St

(

coth
√

c1(z + c2)+ csch
√

c1(z + c2)
)

−

3
√

c1p

2St

(

coth
√

c1c2 − csch
√

c1c2

)

,

(22)R =

√

u,
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Accuracy comparison
The developed analytical solution is plotted and compared with the numerical solution in Figs. 2, 3, 4. The para-
metric values used in the model are given in Table 1. The solutions obtained by RK4 method are reliable and 
competitive with the analytical solutions. We observe that the errors between numerical and analytical solutions 
for the steady state variables A, v and R are negligibly small (see Table 2). We also determine W, the width of the 
glass tube, by using the relation A = 2πRW . The steady state analytical and numerical solutions for W and the 
corresponding error are also shown in the Fig. 5. It is observed from Table 2 that error between the numerical 
and analytical solution for A, v, and R is maximum at z = 0.2 , z = 1.0 , and z = 0.1 respectively. Moreover, the 
error for the solution W is maximum at z = 0.1.

Conclusions
In this work, we have presented a numerical based approach to find analytical solution of a boundary value 
problem where one cannot find constants of integration with the given boundary conditions. The approach is to 
convert a boundary value problem into initial value problems and then to develop an analytical solution of the 
resulting problems with the usual methods. To explain the approach, we have developed an analytical solution 
of a steady-state model of the isothermal tube drawing process with the help of shooting method. The obtained 
analytical solution is almost in agreement with the numerical solution that justifies our approach.
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Figure 2.   Analytical and numerical solutions for the steady state variable A and the corresponding errors 
between the solutions with discretization step size h = 0.1.
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Figure 3.   Analytical and numerical solutions for the steady state variable v and the corresponding errors 
between the solutions with discretization step size h = 0.1.
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Figure 4.   Analytical and numerical solutions for the steady state variable R and the corresponding errors 
between the solutions with discretization step size h = 0.1.

Table 2.   Summary of errors in solutions for z ∈ [0, 1] using step size h = 0.1.

z Error in A Error in v Error in R Error in W

0.0 0.00 0.00 0.00 0.00

0.1 1.08× 10−6 1.70× 10−7 1.16× 10−2 1.60× 10−6

0.2 1.21× 10−6 5.40× 10−7 1.07× 10−2 1.40× 10−6

0.3 9.67× 10−7 1.37× 10−6 9.90× 10−3 1.20× 10−6

0.4 7.89× 10−7 2.82× 10−6 9.20× 10−3 1.10× 10−6

0.5 6.72× 10−7 5.01× 10−6 8.70× 10−3 1.00× 10−6

0.6 5.92× 10−7 8.12× 10−6 8.20× 10−3 9.00× 10−7

0.7 5.37× 10−7 1.23× 10−5 7.80× 10−3 9.00× 10−7

0.8 4.99× 10−7 1.77× 10−5 7.50× 10−3 8.00× 10−7

0.9 4.72× 10−7 2.45× 10−5 7.20× 10−3 8.00× 10−7

1.0 4.53× 10−7 3.29× 10−5 6.90× 10−3 7.00× 10−7

0 0.5 1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

W

z

Analytical
Numerical

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10-3

err
or 

in W

z

Figure 5.   Analytical and numerical solutions for the steady state variable W and the corresponding errors 
between the solutions with discretization step size h = 0.1.
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Appendix
In this section, we present the remaining part of the modeling of tube drawing process. Moreover, one counter 
example concerning the application of the analytical solution derived through the proposed semi-analytic tech-
nique is demonstrated.

Appendix A: Modeling tube drawing process.  To simplify the system of Eq. (2), we take the advantage 
of the small parameter ε present in the system (2) and exploit it. Note that the parameter ε appears only in even 
powers of ε . Therefore, we use the following expansions of the dependent variables

We substitute the above expansions into the system of Eq. (2) and comparing the coefficients of like powers 
of ε to get simplified model equations.

From the Eqs. (2a)–(2c), the leading-order contributions are respectively given as 

The kinematic conditions (2h)–(2i) and the stress conditions (2d)–(2g) respectively give the following leading-
order contributions.

The leading-order momentum equation (23c) along with the leading-order conditions (23g), (23i) gives us

which shows that the leading-order axial velocity u0 is not the function of r.
Thus the continuity equation (23a) reduces to

where G(z, t) is to be found.
By the Eq. (24) and the boundary conditions (23f) and (23h), we obtain 

u = u0 + ε2u1 + O (ε4),

v = v0 + ε2v1 + O (ε4),

p = p0 + ε2p1 + O (ε4).

.

.

.

(23a)0 =

1

r

∂

∂r
(rv0)+

∂u0

∂z
,

(23b)
∂p0

∂r
= µ

(

∂2v0

∂r2
+

1

r

∂v0

∂r
−

v0

r2

)

+

∂µ

∂z

∂u0

∂r
+ 2

∂µ

∂r

∂v0

∂r
,

(23c)0 =

∂

∂r

(

µr
∂u0

∂r

)

.

(23d)v0 =
∂r1

∂t
+

∂r1

∂z
u0 on r = r1,

(23e)v0 =
∂r2

∂t
+

∂r2

∂z
u0 on r = r2,

(23f)− p0 + 2µ
∂v0

∂r
= −ps0 on r = r1,

(23g)
∂u0

∂r
= 0 on r = r1,

(23h)− p0 + 2µ
∂v0

∂r
= 0 on r = r2,

(23i)
∂u0

∂r
= 0 on r = r2.

u0 = u0(z, t),

(24)v0 = −

r

2

∂u0

∂z
+

1

r
G(z, t),

(25a)− p0 −
2µ

r21
G(z, t)− µ

∂u0

∂z
+ ps0 = 0,
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Solving the Eq. (25) for G(z, t) and p0 , we get

By using the kinematic boundary condition (23d), the Eq. (24) at boundary r = r1 is written as

Now using (26), we obtain 

Similarly the Eq. (24) at boundary r = r1 gives us

Equation (29a) gives us the inner radius r1 and the Eq. (29b) gives the outer radius r2 of the glass tube. We 
do some manipulations with the Eq. (29) to obtain a differential equation for mean radius R in a dimensional 
form that is,

where R in terms of r1 and r2 is the mean radius of the glass tube and is given by the relation

and A = 2πrW is the cross-sectional area of the glass tube where W is the width of the glass tube defined by 
the relation

Equations (29) yield us the continuity equation

In dimensional form, the Eq. (32) becomes as

Since u0 and µ are not depending or r. Therefore, the leading-order r-momentum equation (23b) yields

which mean that the leading-order pressure is not a function of r.
We consider the z-momentum equation to get equations in closed form for the tube drawing process.

Multiplying the Eq. (34) by r and then integrating from r = r1 to r = r2 , we get

The boundary conditions of order ε2 for the normal stress are 

(25b)− p0 −
2µ

r22
G(z, t)− µ

∂u0

∂z
= 0.

(26)G(z, t) =
ps0r

2
1 r

2
2

2µ(r22 − r21)
,

(27)p0 = −

ps0r
2
1

r22 − r21
− µ

∂u0

∂z
.

(28)−

r1

2

∂u0

∂z
+

1

r1
G(z, t) =

∂r1

∂t
+

∂r1

∂z
u0,

(29a)
∂

∂t
(r21 )+

∂

∂z
(u0r

2
1 ) =

ps0r
2
1 r

2
2

µ(r22 − r21)
.

(29b)
∂

∂t
(r22 )+

∂

∂z
(u0r

2
2 ) =

ps0r
2
1 r

2
2

µ(r22 − r21)
.

(30)
∂

∂t
(R2)+

∂

∂z
(uR2) =

ps

16πµA
(16π2R4

− A2),

R =

r1 + r2

2
,

(31)W = r2 − r1.

(32)
∂

∂t
(r22 − r21 )+

∂

∂z
(u0(r

2
2 − r21 )) = 0.

(33)
∂A

∂t
+

∂

∂z
(uA) = 0.

∂p0

∂r
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∂z
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µ
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∂
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(

r
∂u1
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(
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(
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(
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∂z2
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Differentiating Eq. (24) with respect to z and then substituting the value of 
∂v0

∂z
 in the stress condition (36), 

we get 

Differentiating p0 with respect to z and using the conditions (37), the momentum equation (35), after certain 
simplification, becomes

or in a dimensional form

For simplicity, we dropped the zero subscripts of the leading order quantities present in the derived Eqs. (30), 
(33) and (38). Moreover, we need to attach these derived equations with the initial and boundary conditions.

The initial conditions read as: 

The boundary conditions are:

The derived model Eqs. (30), (33), (38) along with the initial conditions (39a) and the boundary condi-
tions (39b) are highly nonlinear, coupled and describe an isothermal tube drawing process. To make it more read-
able, we replace u by v. Then the model for the isothermal tube drawing process in a dimensional form is given as: 

with the initial conditions

and the boundary conditions

where L is the length of the hot-forming zone, ps is the inside pressure, µ is the input viscosity, v0 is the feeding 
and vL is the drawing speed.

The system (40) gives us the velocity v, the cross-sectional area A and the average radius R of the glass tube. 
The width, denoted by W, of the glass tube can be determined by the relation

Throughout the forming zone of the tubing process, the temperature remains constant and hence the viscosity 
µ of the molten glass is also remains constant.

Appendix B: A motivating example.  In order to understand our approach introduced, there arise two 
cases.

(36a)µ

(

∂u1

∂r
+

∂v0

∂z

)

−

(

−p0 + 2µ
∂u0

∂z

)

∂r1

∂z
= ps0

∂r1

∂z
on r = r1,

(36b)µ

(

∂u1

∂r
+

∂v0

∂z

)

=

(

−p0 + 2µ
∂u0

∂z

)

∂r2

∂z
on r = r2.

(37a)µ
∂u1

∂r
|r=r1 =

µr1

2

∂2u0

∂z2
−

1

r1
µ
∂G

∂z
+

(

−p0 + 2µ
∂u0

∂z

)

∂r1

∂z
+ ps0

∂r1

∂z
,

(37b)µ
∂u1

∂r
|r=r2 =

µr2

2

∂2u0

∂z2
−

1

r2
µ
∂G

∂z
+

(

−p0 + 2µ
∂u0

∂z

)

∂r2

∂z
.

∂

∂z

(

3µ(r22 − r21 )
∂u0

∂z

)

+ (r22 − r21 )St = 0,

(38)
∂

∂z

(

3µA
∂u

∂z

)

+ ρgA = 0.

(39a)A(z, t = 0) = A0, r(z, t = 0) = r0, for all z ∈ [0, L].

(39b)A(z = 0, t) = A0, r(z = 0, t) = r0, u(z = 0, t) = u0, u(z = L, t) = uL, ∀ t ≥ 0,

(40a)
∂A

∂t
+

∂

∂z
(vA) = 0,

(40b)
∂

∂z

(

3µA
∂v

∂z

)

+ ρgA = 0,

(40c)
∂

∂t
(R2)+

∂

∂z
(vR2) =

ps

16πµA

(

16π2R4
− A2

)

,

(40d)A(z, t = 0) = A0, R(z, t = 0) = R0, for all z ∈ [0, L],

(40e)A(z = 0, t) = A0, R(z = 0, t) = R0, v(z = 0, t) = v0, v(z = L, t) = vL, ∀ t ≥ 0,

A = 2πRW .
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Case‑I: when the exact solution is possible with the given BCs.  Consider the following BVP

It is possible to find the exact solution of Eq. (41) with the given boundary conditions, and is computed to give

We employ shooting method to convert the BVP (41) into an IVP

where w0 is approximated value determined by shooting the value of y at 3 i.e., y(3) = 20
3

 . The developed analyti-
cal solution of IVP (43) is given as

which is also a semi-analytic solution of the problem (41) using the proposed semi-analytic technique. The com-
puted analytical solution (44) is then compared with both the numerical and exact solutions to better understand 
the accuracy of obtained solution as shown in Fig. 6. The corresponding errors are illustrated in Figs. 7 and 8.

(41)2y′y′′ = 1, y(0) = 2, y(3) =
20

3
.

(42)y(x) =
2

3
(x + 1)3/2 +

4

3
.

(43)2y′y′′ = 1, y(0) = 0, y′(0) = w0 ≈ 1,

(44)y(x) =
2

3
(x + w2

0)
3/2

+

2

3
(3− w3

0),
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Figure 6.   Comparison of exact solution and solutions obtained through the shooting method and developed 
semi-analytic technique using discretization step size h = 0.5.
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Figure 7.   Error between the exact and semi-analytic solutions with discretization step size h = 0.5.



15

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7636  | https://doi.org/10.1038/s41598-022-11708-5

www.nature.com/scientificreports/

Case‑II: when the exact solution is impossible with the given BCs.  In this case, it is not always possible to deter-
mine an analytical solution of a system of equations with the given initial and boundary conditions. As an 
example, we refer the reader to22.
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