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Artificial Intelligence (AI) is a broad conceptual category 
of computer software that is designed to mimic, emulate, 
or improve human decision-making. There are two broad 
categories of AI: rules-based expert systems (ES), and 
machine-learning (ML) systems.

Rules-based ES are designed to replicate the interpreta-
tion and decision-making of a subject matter expert. Some 
simple examples include

●	 car antilock braking systems, which automatically apply 
and release (pump) the brakes like an expert driver would 
do in order to maintain maximum control of the auto;

●	 college selection and recommendation system based on 
student grades, aptitudes, and preferences; and

●	 Medication selection or recommendations derived from 
clinical best practices rules and based on the input of ba-
sic data about patient, symptoms, side effects, and costs.

ML AI is based on a different premise and design, in 
which the computer software either is trained to recognize 
or infer desired patterns, or trial-and-error experimentation 
to obtain or attain desired results. Examples include

●	 digital camera software, which detects people’s eyes and 
faces, and uses that information to adjust focus and flash 
intensity;

●	 modern antivirus software that is based on detection of 
anomalous system behaviors or parameters; and

●	 Cardiac arrhythmia detection algorithms used in auto-
mated electronic defibrillators (AEDs).

Both ES and ML system can be paired with one or more 
human operators to improve the quality, performance, or 
safety of the overall system. In many cases, human opera-
tors also take part in training the ML system, and the process 
is much like training a pet. The operator provides examples 

and positive reinforcement for correct decisions and ex-
amples and negative reinforcement for poor decisions. For 
example, the computer can be taught or can infer patterns 
from a sufficiently large set of matching (correct) or defec-
tive (incorrect) examples that were previously scored or 
provided by one or more experts. An automated blood labo-
ratory system, or breast cancer screening software, might 
be based on ML. In other cases, the human operator can 
take control if and when the computer can no longer make a 
successful interpretation of the data (e.g., a self-driving car 
might return control to the human driver if confused, over-
whelmed, or specified safety parameters are exceeded, or 
a bank’s credit card supervisor might personally interview 
an applicant if the software cannot make a credit approval 
decision).

In addition, ES and ML tools can be combined into a 
single product or suite of products, such as the features of-
fered by most contemporary antivirus software.

History and background
The earliest AI systems were analog mechanical devices, 
such as wind-vane self-steering for boats, centrifugal speed 
controls for engines, or automatic chokes and transmis-
sions for automobiles. Mainframe computer programs in 
the 1960s were developed to automate manufacturing plan-
ning, based on organized bills of materials for components 
and subassemblies, and/or for early military attack and tar-
geting. The advent of small, low-cost microprocessors in 
the 1970s allowed computerized implementation of prior 
analog AI, such as self-steering boat systems (Francis West, 
1979), following ES rules and algorithms to assert positive, 
intelligent control of many manufacturing, transportation, 
and related tasks.
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By the mid-1980s, real-time minicomputers coupled 
with advancing analog-to-digital conversion chips allowed 
the development of early ML-based experiments and prod-
ucts. A classic early ML experiment involved a computer 
learning to balance a broomstick on an artificial hand 
(Widrow, 1987). The general concept has the words embed-
ded themselves: methods for machines to “learn” on their 
own, without a priori writing of programs and algorithms. 
There are two broad categories of ML that have evolved: 
machines that “learn” using teaching examples or subsets, 
and machines that explore or discover facts and solutions 
on their own.

An example of the first ML category might be an indus-
trial robot that learns how to see if a component is properly 
assembled and located on a circuit board. In this case, train-
ing the computer would entail showing it examples of the 
target component, from many angles that its camera might 
be presented. In addition, the operator might show images 
of incorrect components. “Correct” examples might include 
labeling the component, shape, color, and size. “Incorrect” 
examples might include outdated and incorrect or inferior 
substitution components. Further training might include im-
ages of correct positioning and alignment with respect to 
other nearby components, and “incorrect” examples might 
illustrate common or potential erroneous assembly.

“Deep Learning” systems are capable of receiving, re-
calling, and analyzing large sets of correct and incorrect 
examples, and can deduce patterns (Weiss, 1990), such as 
“object is of a class of bird, because not like fish, reptile, 
or land mammal, but is not among a set of known living 
birds. Therefore, perhaps it is a Dodo, extinct pigeon, or 
dinosaur.”

An example of the second ML category might be a pro-
gram that can try many possible configurations and com-
binations of assembly, and either testing the success of the 
assembly, or receiving a score or feedback from a human 
trainer or a separate testing subsystem. In this category of 
ML, the computer must “explore,” which infers that the com-
puter is capable of inventing different assembly alternatives. 
That is, either the computer has programs and actuators that 
can randomly or methodically try different positions and 
parts, or an associated subsystem—or operator—creates the 
iterative or random or iterative combinations.

Computer games (and real war-fighting tools) further 
advanced the field, adding intelligent computer responses 
and counterattacks to increase the complexity of single- and 
multiplayer games.

Current state
Today, large numbers of smartphone apps, home appli-
ances, and personal products like automobiles include ES 
and ML capabilities, enabling tasks like voice recognition, 
complex Global Positioning System (GPS)-based routing 

recommendations, and a growing number of Food and Drug 
Administration (FDA)-approved medical devices (Jiang, 
2017).

In the case of rule-based ES, AI is somewhat easy to 
visualize using simple logic statements, like “if daylight is 
bright enough to trigger a sensor, then turn off the porch 
light,” or, “if the child has already received the maximum 
safe daily dose of acetaminophen, and the fever is still 
above 102°, and the child has become listless, and the child 
is not taking fluids or urinating, then call the family physi-
cian immediately.”

Underlying all computer-based ML programs and sys-
tems is a binary digital computer, which only has a lim-
ited—but fast—ability to add and subtract “1s and 0s.” 
Therefore, despite the apparent “ability” of a ML program 
to successfully identify a chicken or balance a broom, the 
actual digital computer is ultimately limited to rudimentary 
statistical or numeric calculations.

To simplify: the computer ultimately must compute a 
numeric representation for the object it is examining. That 
representation may be in multiple dimensions, such as size, 
shape, color, and orientation. That numeric representation is 
ultimately compared to the template or a set of alternatives. 
The simple digital computer method is a simple subtraction 
of the first objects numeric representation from the second 
object’s numeric representation. If the objects are the same, 
the subtraction would result in a zero remainder. The larger 
the difference between numerical representations of the two 
objects’ dimensions, the further the resulting subtraction re-
sult will be from zero.

Similarly, groups of similar objects, such as pieces of 
candy, will share statistically similar average values (and/or 
the min, max, median, or mode values). In order to decide 
if a new object is the same as the original group of objects, 
the digital computer is limited to subtracting the numeric 
representation of the new object from the average values of 
the original group of objects. Again, the closer the result is 
to zero, the stronger the evidence is that the objects are iden-
tical. To compare two groups of samples, such as stained 
pathology samples of cancer tissues, the digital computer 
“knows” they are identical only by subtracting the numeric 
representations from each other.

The underlying statistical tools can be rather sophisti-
cated, representing, for example, multifactor covariance 
calculations. The clinical user no longer needs to under-
stand deeply the underlying calculations or statistics, be-
cause those tools have become broadly, and often freely, 
available. What the user needs to understand, or provide the 
interpretation about, is cofactors that are likely related (such 
as obesity, diet, exercise, education, and diabetes), vs ones 
that are less likely associated, such as eye color, native lan-
guage, or shoe size.

One other related computational area or methodology 
is fuzzy logic. In simple terms, fuzzy logic algorithms are 
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designed to handle vague similarities, or shades of gray. For 
example, there are many unique hybrid chickens and par-
rots. A new bird sample can be segregated into chicken or 
parrot categories based on similarities that are more, or less, 
like the matching template. Fuzzy logic software can help 
by providing mathematical representations and categoriza-
tions such as “more like a chicken, less like a parrot, or not 
much like either.”

Many ML approaches and algorithms are in commer-
cial use, and even more are in experimental trials. Recent 
examples that are well-publicized include self-driving cars 
(Google, Tesla, and Uber), voice-activated home assistance 
devices (Cortana, Alexa, Google Voice, and Siri), and au-
tonomous robots that are being used in industrial, home, 
and healthcare settings (Bickmore, 2018).

Natural language processing (NLP)
There may be no area of AI with as much history, hope, and 
hype as NLP. On the surface, the newcomer to the topic may 
well wonder why a process that very young babies master so 
easily. Many breeds of domesticated animals even seem to 
master rudimentary commands easily. Further, a significant 
number of “everyday people” who have lived near multilin-
gual national boarders for centuries, like most of Europe, 
have been able to acquire and master multiple languages 
with apparent ease. Some countries like Switzerland offi-
cially incorporate multiple languages, and since World War 
II, many, perhaps most, countries have accepted English as 
de facto second language for business, science, and interna-
tional trade.

The challenge of NLP for computers begins with the bi-
nary nature of the technology, because all concepts must be 
reduced to strings of 1 s and 0 s, and the computer’s only 
way to “compute” similarity or difference is simple addition 
or subtraction. That is, two words or sentences are identical 
if the computer can subtract the two binary representations 
and get a result of zero.

Natural human languages, however, contain very rich 
and complex nuances, some of which are only understood 
by the context of the message, or the peculiarities of the lo-
cal language itself.

Some speech recognition examples may help illustrate:

‘Time flies like an arrow’ is a phrase that we easily interpret 
as ‘time goes very swiftly, like an arrow flies’. However, the 
computer is stuck with the task of grouping the words to-
gether in different combinations, trying to ‘make sense’ of 
the possible combinations. For example, do ‘time flies’ ‘like’ 
‘arrows’ in the same sense that ‘fruit flies’ ‘like’ ‘bananas?’ 
Or, maybe, ‘like’ infers affection, rather than food or scent! 
Further, do these ‘time flies’ like only ‘an arrow’ singly, or 
do ‘time flies’ like all arrows? Or, perhaps, ‘time’ has wings 
and ‘flies like an arrow’. And, if so, is ‘Time’ or are ‘time 

flies’ truly winged insects like fruit flies, or some other form 
of life such as a bat, a bird, or even a pig that simply shares 
the characteristic of ‘liking of an arrow’.

Or, as another health-oriented example, an emergency 911 
caller might proclaim: ‘My baby is burning up!’ Is ‘My baby’ 
an infant, a child, sibling, a bride, a husband, or, perhaps 
another cherished and beloved friend? Is ‘My baby’ really 
‘burning up’, and on fire, or perhaps running a very high fe-
ver, badly sun-burned, or perhaps injured with boiling water 
or oil, or, even, perhaps, suffering a life-threatening reaction 
to something that was eaten, swallowed, or touched. Last, 
perhaps ‘My baby’ is burning with anger, embarrassment, or 
resentment about something said, heard, or seen!

Now, add to the above examples the complexity of per-
sonal and/or community dialects, and the problem becomes 
even worse. Even without possible effects of alcohol, medi-
cine, injury, or speech impediment, “time,” for example, 
may be pronounced “tiime,” or “taahm,” (Southern US 
drawl) or even “toyme” (British Cockney) or “tohm” (for-
mal British).

And, lastly, consider the variations of idiosyncratic 
uses of words in different national variants of, for example, 
English. In the United States, a car’s front hood is called 
the bonnet in countries based on British dialects; trunk be-
comes boot, and windshield becomes windscreen. Similarly,  
pants become knickers, and telephone becomes telly. In 
health care, the common US medicine named acetamino-
phen is known more widely worldwide as paracetamol, and 
a US “stretcher” to transport sick or injured patients is a 
“trolley” in British parlance.

A different class NLP problem is a bit easier to tackle: 
voice synthesis from computerized text or numbers. This is 
an easier task for the computer because the context can be 
provided by the human listener. The computer can either 
have a library of digitized words and phrases that it can se-
lect, or it can piece together portions of the word as a child 
does, syllable by syllable. For example, early computerized 
weather reporting could be handled with limited libraries of 
typical words, such as “wind” “one” “two” “knots” “north” 
“heading” “one” “two” “zero.”

In the late 1990s and early 2000s, the earliest personal 
and professional voice translation and transcription soft-
ware, such as Dragon, or professional dictation systems 
sold by companies like Dictaphone, began to make it pos-
sible for ever-growing clusters of users such as lawyers 
or radiologists to correctly dictate reports or observations 
directly into a computer (Devine, 2000). Assistive tech-
nologies began to appear in personal computer (PC)-based 
products, too, that could read out loud for vision-limited 
users or pronounce street names and directions in a GPS 
designed for busy drivers.

In the late 2000s, in fact, low-cost voice synthesis chips 
and low-cost analog-to-digital chips brought constrained 
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voice recognition and speech capabilities to games and toys, 
mass-commercializing products that could entertain, and 
ultimately “communicate” simple concepts. Even a simple 
baby doll that could cry, say Mama, and utter phrases like 
“I love you” were surprisingly well received. Also, web-
based tools like Google Search and Microsoft Bing raised 
awareness of the power that computer-assisted text search-
ing, and similarity ranking can bring to every-day life and 
business. Suddenly, AI tools like Google Search could be-
gin to overcome many common errors, such as misspelling 
Mississippi, Spanakopita, or Sjogren’s Syndrome.

In the latter 2000s, the arrival of smartphones, tablets, 
and apps introduced a much richer array of consumer-
friendly NLP products like Apple’s Siri, which set the 
stage for the huge upswelling of smart home automation 
and Internet of Things appliances like Amazon’s Alexa and 
Google Assistant.

Voice-activated automated attendant software is now 
common in many, if not most, banking, finance, travel, and 
other businesses. Alexa and Google Assistant are appar-
ently soon to be joined by updated and enhanced versions 
of Apple’s Siri, which will add voice recognition for many 
everyday tasks and activities.

The two large branches of AI, ES, and ML, could be-
come much more accessible and “natural” for users if the 
keyboard and mouse can be eliminated with NLP (Jiang, 
2017). This may be especially helpful for aging citizens 
with deteriorating vision, hearing, or hand-eye coordination 
limitations. An ES example might be assisting a patient to 
select a nearby medical specialist for, say, cardiology, solely 
by voice dialog. ML could also be enhanced with NLP by 
allowing users to train the system to their personal prefer-
ences. That might look like a next-generation NEST (https://
nest.com/) thermostat which the user could train to increase 
or set-back heating or air-conditioning to meet their per-
sonal preferences, and/or to override the default settings if 
staying at home on a weekday with a sick child or parent.

Healthcare AI
The applications of ML probably were first widely seen 
in diagnostic healthcare products, such as tumor detec-
tion or medication recommendation and safety systems. 
Large-scale systems ML-based systems first emerged in 
laboratory and pathology, where expert pathologists could 
manage the training and validation of the results. This kept 
the “learned intermediary” (i.e., the licensed pathologist 
or a certified technician) “in the loop” with the labs’ diag-
nostic products and services. The quality and safety regu-
lations embedded in the 1988 CMS Clinical Laboratory 
Improvement Amendments (CLIA) programs were devel-
oped to ensure that competent human operators followed 
well-documented quality assurance practices to ensure the 

automated laboratory devices produced accurate, trustwor-
thy results (Centers for Disease Control and Prevention 
(CDC) et al., 2003). CLIA processes are intended to ensure 
that the human expert remains the authoritative expert in 
control of the diagnostic systems (Ehrmeyer, 2004).

Many emerging and production ML-based imaging anal-
ysis systems depend on an expert human operator’s control 
and decisions for quality and nuanced diagnosis. Although the 
ML-based tumor detection algorithms may be “near perfect,” 
there is such wide diversity in human physiology and disease 
morphology that computers cannot always make definitive 
decisions (ter Voert, 2018). On the other hand, the human 
expert can become fatigued and/or distracted, and the ML-
system can help double-check the human operator’s work.

As ML-based diagnostic systems have become more 
accepted, therapeutic applications have emerged. The use 
of Smart Infusion Pump Systems has become the preferred 
method of ensuring IV medication safety (Giuliano, 2018). 
Most of those systems are based on expert-system AI, rather 
than ML, but the robustness and reliability of such devices 
have led to more complete ML-based applications like im-
planted insulin pumps and emerging closed-loop artificial 
pancreas devices.

The distinction of closed-loop ML devices for life-
critical medical care cannot be overstated. In a closed-
loop implanted defibrillator, pacemaker, or pancreas, the 
“learned intermediary,” or expert operator is being gradually 
removed from the process. It has taken decades of develop-
ment and regulatory refinements to allow such products to 
come to market.

In the absence of any major or catastrophic setbacks, 
one can reasonably expect that ML-based “intelligence” 
being developed for life-critical consumer and commercial 
products like self-driving cars will eventually reinforce so-
ciety’s willingness to allow more ML-based, autonomous 
healthcare diagnostic and therapeutic devices. The posi-
tive potential for improving safety, flexibility, availability, 
and affordability for ever-growing, ever-aging, and largely 
dispersed populations of citizens and patients will need ev-
ery possible automation and safety enhancement possible. 
Several healthcare-related examples have been cited above, 
and applications in health care are multiplying rapidly 
thanks to apps and ubiquitous memory and cloud comput-
ing resources. Broad classes of Healthcare AI (HAI) include 
(Jiang, 2017; Shah, 2018)

●	 vision and pattern detection (tumors, breaks, foreign ob-
jects, gait irregularities);

●	 speech and natural language detection and response 
(voice-controlled robots, self-service patient kiosks, and 
neurological deficit detection);

●	 expert clinician advice to assist other caregivers or pa-
tients (stroke diagnosis and treatment, best clinical prac-
tices and guidelines, and medication recommendations);

https://nest.com/
https://nest.com/
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●	 autonomous surgical instruments or enhancements 
(beating heart surgery, robotic surgery sensory augmen-
tation); and

●	 closed-loop medical devices (artificial pancreas, AED)

AI has been introduced into most electronic medical 
record systems for a wide variety of tasks. Most are sup-
plemental tools to either accelerate medical decisions, re-
duce or eliminate errors, and/or improve healthcare quality, 
compliance to standards, cost-effectiveness, or satisfaction. 
Most smart infusion pump systems, for example, are now 
designed with modules and ancillary devices like bar code 
and radio frequency identification (RFID) readers to help 
enforce “Five Rights:” right patient, right drug, right dose, 
and right route, right time (Podaima, 2018).

NLP and medical technology

There are great hopes surrounding potential improvements 
in healthcare delivery, efficiency, and efficacy based on en-
hanced NLP application. One application, for example, is to 
add NLP-based “syndromic reporting” to population health 
data. The CDC describes syndromic reporting as an out-
growth of the September 11 terrorist attacks and subsequent 
anthrax attacks (Henning, 2004). The goal of syndromic 
reporting was originally to obtain earlier, sentinel notice 
about potential local, regional, or national public health 
problems from real-time multiple data streams instead of 
waiting for retrospective, reactive reporting from physicians 
and hospitals. Since the original surge of interest in 2001, 
many additional nonterrorist possible benefits have been 
identified, including the unexpected transmission of highly 
contagious pandemic diseases like severe acute respiratory 
syndrome (SARS), Ebola, Zika, or avian flu.

Families, parents, and individuals usually discuss and 
describe their illnesses using informal descriptors. In fact, 
few would ever think to use formal international classifica-
tion of diseases (ICD)-10 codes to explain their illnesses, 
let alone the abbreviated descriptors in the ICD-10 system. 
Laypersons will usually describe their symptoms, maladies, 
or syndromes with phrases or words like “tummy-ache,” 
“bones hurt,” “on fire,” “sleepless,” or “sore throat.” Though 
vaguely descriptive, such terms are imprecise, and they also 
lack context. If the tummy-ache happened immediately af-
ter eating week-old left-overs, the probable meaning is quite 
different than a kid who just binged on Halloween candy or 
a tourist who just returned from an Ebola-stricken area of 
Africa! Also, such reports can be combined and analyzed 
in conjunction with similar reports created by international 
agencies e.g., (World Health Organization, 2017).

Google, the CDC, and researchers have also done 
some interesting work correlating Pharmacy prescriptions, 
Google Search queries, and CDC Flu data trying to iden-
tify reliable, earlier flu detection and location information 

in a more timely fashion than the weekly retrospective Flu 
reports posted by the CDC (Centers for Disease Control 
and Prevention, National Center for Immunization and 
Respiratory Diseases (NCIRD), 2019).

Another hotly debated aspect of eHealth is the potential, 
correct, and incorrect uses of free-text reporting and annota-
tions in electronic health record (EHR) and personal health 
record (PHR) systems. Proponents have argued that requir-
ing and constraining physician and nurse reporting to codes 
like ICD-10, CPT (https://www.ama-assn.org/practice-
management/cpt), SNOMED (http://www.snomed.org/), 
LOINC (https://loinc.org/), and others have two significant 
downsides: (1) the effort required to find and post codes 
is so demanding that only minimal detail is likely to be 
recorded; (2) the physician and nursing natural language 
notes are more likely to contain rich, important, and nu-
anced details that are not readily captured by code-only en-
forcement; and (3) highly trusted and successful NLP-based 
tools like Google Search seem to do a very impressive and 
effective job organizing data from the world wide web with-
out imposing arcane standards or cumbersome codes on 
every web site and page.

Perhaps the “Holy Grail” of NLP applications in health 
care would be replacement or enhancement of electronic 
medical record systems so that physicians, nurses, and 
patients could reliably use free text or voice input instead 
of using tedious codes like ICD-10, SNOMED, RxNorm, 
LOINC, and others. Technically, though, this goal is very, 
very difficult to achieve, especially for data input (com-
pared to data retrieval and reporting). The ancient comput-
ing axiom of Garbage In, Garbage Out (GIGO) is always at 
work: GIGO. For example, if a specific tumor, like a variety 
of melanoma is not initially correctly entered into the elec-
tronic medical record, analysis, or retrieval of melanomas 
of that type may be impossible to achieve. Yes, a more gen-
eral report, analysis, or query might capture the data in a 
broader category of “cancer,” but little more specificity may 
be possible. Similarly, medicine names are often so closely 
similar that typographic—or faulty memory—errors could 
cause life-threatening risks. Many antibiotics have similar-
sounding names, but the benefits, side-effects, and allergic 
complications can be very, very different. Similarly, many 
narcotic pain killers use terms that sound like “codeine,” 
but some are 10× stronger than others, and could cause 
life-threatening complications from overdose or allergic 
reactions!

Hopefully at some future date, advanced AI software 
might reliably infer and even correct information as it is 
entered. For example, a patient with chronic or reoccurring 
disease and treatments, the computer might predict the cor-
rect terminology during data input. Such a system might, 
for example, alert the physician or nurse that “According to 
the EHR records, Mrs. Jones’s osteoarthritis pain has in the 
recent past been treated with 100 mg of generic Celebrex, 

https://www.ama-assn.org/practice-management/cpt
https://www.ama-assn.org/practice-management/cpt
http://www.snomed.org/
https://loinc.org/
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or celecoxib. Is that the medicine you want to prescribe, or 
do you want to continue with this prescription for 500 mg 
of ibuprofen?” Or, a system might suggest that “Mrs. Jones 
has had a diagnosis of rheumatoid arthritis since 2009. Do 
you want to add a new diagnosis of osteoarthritis?”

For query, reporting or analytical purposes, the software 
might easily search for all potential variants of arthritis, or 
melanomas, or antibiotics. Retrieval, analysis, or report-
ing software cannot add specificity or details that are not 
in the original data, however, nor can errors be corrected. 
However, broad-based data analysis can take place, e.g., 
summary statistics of all patients with skin cancers, includ-
ing all varieties of melanomas, are possible.

Clinical decision support systems (CDSS)
CDSS are software-based AI tools that can assist physi-
cians, nurses, patients, or other care-givers to make better 
decisions. A common use of CDSS is to analyze past, cur-
rent, and new patient data and identify or suggest gaps, er-
rors, safety concerns, or care pathway improvements to the 
user.

CDSS can be based on either of the two classes of AI: 
ES or ML. To implement the first category of CDSS, ES-
based CDSS, many EHR systems offer sophisticated rule-
management subsystems. Some physicians may specialize 
in specific types of surgery, such as knee replacement, and 
they may create customized “Order sets” that orchestrate 
virtually every part of the patient’s care to ensure optimal 
results. For example, the order set might include presurgi-
cal lab tests, prophylactic medication, and patient instruc-
tions, customized preparation of trays and sets of surgical 
instruments, implants, sutures and related supplies, video 
enhancement systems, and surgical devices, postsurgical 
patient recovery, intensive care, pain management medica-
tion, physical therapy, hospital discharge, and, finally, out-
patient and home-care procedures. Each aspect of the order 
set may include optional or alternative steps to deal with 
expected care variations and situations.

The ES-based CDSS is relatively simple to set up and 
validate because the rules often use binary decisions. The 
rule may be based on a physiologic parameter, such as “If 
the patient weighs greater or equal to 300 pounds then fol-
low Procedure 1; If the patient weighs less than 100 pounds, 
follow Procedure 2; Else follow Procedure 3.”

ML-based CDSS may be based on statistical inferences, 
such as “If this patient’s physiological and medical condi-
tions are similar to the majority of other patients with the 
same category of disease, then the most common treatment 
will probably be A, B, and C.” IBM’s Watson Health is 
an example of such a system. For example, International 
Business Machines (IBM) teams with highly respected clin-
ical teams, like Memorial Sloan Kettering Hospital for can-
cer, or Cleveland Clinic for Heart or Orthopedic Surgery. 

IBM and the medical experts “train” an instance (i.e., a ded-
icated Watson Health system) using that hospital’s medical 
records to create a trained CDSS tool that can readily match 
that hospital’s optimized practices (Malin, 2013).

Rather than the physician experts going through the te-
dious ES-system rule documentation, however, the Watson 
Health ML system uses statistical matching algorithms to 
group similar and dissimilar patients, treatments, and out-
comes automatically. If the hospital’s patient data is accu-
rate and complete, ideally the Watson Health system will 
infer the basic rules described above (e.g., “If the patient 
weighs greater than or equal to 300 pounds then…”) Of 
course, the ML system is completely dependent on correct 
and complete training. If, for example, Cleveland Clinic fol-
lows more flexible decisions for the first weight category, 
say patients above 280 pounds are usually grouped with 
the 300 pound patients, then the ML system may select the 
lower limit, or the ML system may create a fuzzy set of 
rules, which might roughly be stated as “if the patient is 
close to or above 300 pounds…”.

One of the biggest challenges of ML systems can be 
validation and verification of the ML system rules that have 
been inferred. Some ML systems could self-disclose the 
“logic” and data underlying the rule to the user, so the user 
can evaluate whether the recommendation is correct. For ex-
ample, the ML system might be able to show a distribution 
of patient weights for source data that led to the 300-pound 
rule, such as 96% of patients who were 300 pounds or more 
received Procedure 1, and 3% of patients 280 pounds and 
above also received Procedure 1.

Why CDSS is useful

CDSSs can assist clinicians, patients, or other users by serv-
ing an advisory or watchdog role. In the advisory role, the 
CDSS might suggest a best practice for postsurgical patient 
discharge that could include recommended medications and 
doses, exercise regimens, and periodic follow-up check-ups 
and tests to assure optimal results. CDSS can help patients 
decide on alternate treatment or rehabilitation choices, and/or  
assist with most-appropriate escalation and treatment of 
emergent complications in the safest and most cost-effective 
way possible.

CDSS can also play an important role in reducing medi-
cal errors, including patient errors. Many EHR software sys-
tems have competent medication error subsystems to protect 
patients. These CDSSs will check prescribed drugs against 
known patient allergies, potential drug–drug interactions 
with existing medication regimens, and/or call out better or 
less expensive medication alternatives for consideration.

CDSS can offer many advantages to clinicians and to 
hospital and practice managers. Physicians and nurses may, 
for example, add or modify rules to assist them in imple-
menting new procedures and rules.
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For example, on November 13, 2017, the American 
College of Cardiology and the American Heart Association 
reduced the threshold for determining high blood pressure 
(hypertension) to 130/80 from 140/90 (Vongpatanasin, 2018). 
Though these blood pressure levels seem very, very close to 
one another, the new, lower limit may well shift nearly half of 
the US adult population into the high blood pressure category 
(Cunningham, 2017)! For a physician or hospital, this new 
guideline may need to trigger earlier and more aggressive in-
terventions, including modifications of diet and exercise, and 
medication. In addition, this definition will have implications 
for health insurance availability and cost, because many more 
adults will suddenly find they have a new “preexisting condi-
tion” even though they did not have that medical condition in 
their medical records prior to that date!

Presuming the scientific and medical evidence con-
tinues to support these new hypertension guidelines, 
the EHR’s CDSS can help ensure every patient gets the 
best-recommended treatment even if the physician does not 
notice a patient’s elevated blood pressure.

Another very volatile recent patient safety issue relates 
to the prescription of opioid pain medication. Because of 
the scourge of addictions and deaths, many physicians and 
hospitals—and government agencies—are considering 
limiting prescriptions of these narcotics to 7-day doses. A 
CDSS can help enforce the transition to these new, safer 
limits by reminding physicians, and/or enforcing strict con-
straints and reviews on physicians’ attempts to override 
these new limits. The governor of Florida even proposed 
limiting prescriptions to 3 days (Lardieri, 2017).

CDSS can also provide very valuable assistance to 
nurses and physicians by maintaining immediate access to 
large repositories of uncommon diseases, treatments, and 
complications. When the Ebola crisis (2014–15) occurred, 
CDSS which were configured to ask and analyze patients’ 
recent international travel patterns could add Ebola to the 
list of potential diseases and treatments if a patient suddenly 
arrived at the emergency department exhibiting fever, se-
vere headache, and stomach pain.

A separate category of CDSS in health care is found 
in certain medical devices such as mammography tumor 
screening, blood pathology analysis systems, and some im-
planted devices like implanted defibrillators, and a few free-
standing devices like AEDs.

CDSS can also augment preventive medicine, too, by of-
fering guidelines and advice before physiological measure-
ments trigger disease warnings. For example, Body Mass 
Index or fasting blood sugar levels can trigger diet or exer-
cise recommendations, and ongoing alcohol or tobacco use 
can trigger remediation program guidance.

Ultimately, CDSS can be very useful because such sys-
tems are consistent and ever-vigilant. They are not suscep-
tible to negligence, fatigue, training lapses, data overload, 
and/or distractions.

CDSS regulations

CDSS technologies represent a challenging regulatory issue  
for the FDA because the FDA’s regulatory authority is 
significantly limited to manufacturer’s published or ver-
bal claims. Because of FDA’s limited regulatory authority, 
virtually every EHR vendor is careful to document that its 
CDSS products are intended to be used by a “learned in-
termediary,” i.e., a licensed medical professional or under 
the direction of same. The FDA—and the vendors—use this 
distinction to clarify that the software is not intended or ap-
proved to deliver medical diagnosis and/or therapy without 
the supervision and control of an appropriate licensed pro-
fessional. Since the FDA does not nominally operate, in-
spect, or impose itself directly in a physician’s office, clinic, 
or hospitals, the daily use of devices is not nominally visible 
to it.

If a CDSS is part of a system or device that is intended 
to make a direct, independent diagnosis or deliver a thera-
peutic treatment, then the FDA categorizes it as a medical 
device, which then is subject to strict design, registration, 
safety, and quality measures. The level of liability assumed 
by the device and vendor is quite a bit higher, too, since it 
is not necessarily controlled by a “learned intermediary.”

Some products sit on the edge, or middle, of such dis-
tinctions. For example, a mammography breast tumor de-
tection system could be used as a backstop for physician 
diagnosis. The benefit is the “learned intermediary” is doing 
the actual diagnosis, and the CDSS is double-checking his/
her work. Because mammography reviewers are known to 
encounter periods of mistakes, they often spot-check each 
other’s work, which is a role that the CDSS can potentially 
do more effectively and consistently.

The cost and complexity of obtaining FDA approval for 
a CDSS-based medical device is heavily based on the po-
tential risk to patients if the device is faulty or ineffective. If 
the underlying scientific and medical facts are crystal clear 
for the CDSS rules, and the rules have been extensively 
tested and approved in similar nonautomated applications, 
the patient risks are low, and competent human oversight 
is likely, the vendor may only need to document the intrin-
sic performance and reliability of the software and device. 
For example, a portable digital chest X-ray device that self-
limits the radiation exposure to assure high-quality image 
functions solely within very well-known laws of physics. 
The voltage and duration of the radiation-emitting device 
can be automatically controlled by a radiation sensor and 
safety system at a level of precision that may well exceed 
human measurement capability.

If, however, the device introduces novel capabilities 
and is meant to function relatively autonomously, like an 
implanted defibrillator or AED, then carefully planned and 
documented clinical trials may be required by the FDA be-
fore the device can be sold.
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CDSS in practice

CDSS have become very common in many clinical settings. 
Most of the above examples illustrate applications where 
the “learned intermediary,” typically a physician or nurse, 
operates the device in a safe and effective manner.

The largest challenge to CDSS deployment and man-
agement is the long-term maintenance, verification, and 
validation to assure the CDSS is functioning properly. 
Physicians have gotten themselves in trouble—and injured 
patients—when the erroneous customization of their order 
sets prevented the CDSS from safe operation. Because many 
departments, specialists, and clinical situations require cus-
tomized rules, and because the rule systems (whether ES or 
ML) are complex, large, and difficult to assess, verification 
that they are operating as intended, and/or validation that 
their functions are indeed safe and optimal for current medi-
cal care is a growing challenge.

Take, as one example, the new hypertension rules, 
which define a lower blood pressure for hypertension 
diagnosis and treatment. In principle, every physician, 
hospital, medical device, electronic medical record sys-
tem, and pharmacy information system may need every 
affected CDSS system to be updated, verified, and vali-
dates. Though cumbersome for an ES-based system, the 
method of retraining an ML-based CDSS may be much 
more complex, because the system may need to “unlearn” 
prior examples, or it may need to be retrained or tweaked 
in some manner.

An emerging class of smartphone- and app-based 
medical devices are becoming more common is de-
vices that are nominally patient-controlled, like self-
administered blood-glucose monitoring and insulin 
injection. The FDA has approved a growing number of 
“blood glucose management systems” that transfer the 
data from the blood glucose monitor to a physician or 
nurse management team, allowing earlier detection of 
problems and intervention prior to expensive and dan-
gerous emergency crises.

The entire infrastructure of physician practice elec-
tronic medical records (EMRs), hospital electronic health 
record (EHRs), regional hyperimmunoglobulin E syndrome 
(HIEs), and medical devices with bi-directional data com-
munication capabilities may eventually open the way to 
more closed-loop patient health management systems. One 
only must look at the apparent rapid pace of self-driving car 
research and on-road testing to see that society is becoming 
more tolerant and interested in expanding its trust of tech-
nology to protect human life. Only time will tell if, when, 
and how quickly such innovations will make their way into 
health care.

Until then, practitioners can expect to see more and 
more “augmentive” CDSS technologies that are intended to 
empower clinicians, patients, and caregivers.

Intersection of AI and big data
Big Data is a term or concept that tries to capture sev-
eral related, but very different, aspects of clinical 
information.

1.	 In one dimension of Big Data, we can consider what is 
being described as the “quantified self.” In other words, 
each person is the source of a large and growing accu-
mulation of health-related data that spans, literally, from 
cradle to grave. An extraordinarily healthy person’s data 
may largely consist of vital signs and limited labora-
tory tests from annual check-ups, while the unfortunate 
patient born with multiple genetic defects and diseases 
may generate a veritable private encyclopedia of obser-
vations, test results, experiments, and outcomes. This 
patient’s health records may be influenced by many 
personally unique environment factors, too, including 
education, financial situation, nutrition, medication, cli-
mate, culture, and more.

2.	 In another dimension, we are gathering incredible 
volumes of data at the very smallest molecular bio-
logical level. This data is coming from fields that we 
label genomics (the DNA of the person), proteomics 
(the molecular effluent of tumors), epigenomics (tem-
porary and/or permanent modifications of the DNA 
caused by diseases, injuries, stress, pollution, or other 
effects).

3.	 In yet another dimension, we are gathering local and 
regional community health data in electronic and/
or PHR, which can be used to discern emergence 
or arrival of diseases like Ebola, anthrax, influenza, 
and/or environmental effects like lead in the water 
supply.

4.	 In a larger dimension, we can obtain, aggregate, and ana-
lyze national and global trends such as obesity, diabe-
tes, heart disease, and also environmental data including 
increasing baseline outside temperatures, expansion of 
brackish water intrusion into water and food supplies, 
and/or antibiotics, steroids, and illegal drugs in the water 
supply.

5.	 Plus, we cannot forget the temporal/time dimension, 
which is allowing us to accumulate data across the spec-
trum of the fine-grained moment to moment heartbeats 
through weekly, monthly, and annual sampling of all the 
above data; and

6.	 In a composite dimension, much of the above data is 
now available from mobile sources, including wearable 
sensors and monitors that can incorporate not only hu-
man physiologic data, tagged with geospatial locations 
and synchronized microclimatic and local pollutant 
measurements.

7.	 To all the above descriptive and numeric data, we must 
now add multimedia formats (pictures, video, and 
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sound) that are accumulating everywhere, from smart-
phones, pervasive surveillance cameras, dental com-
puted tomography (CT) images, hospital images from 
virtually all specialties, and more.

In a very real sense, human health data is now available 
as if we were zooming in from a satellite in layers from the 
overall population to communities, the individual, and the 
individual’s molecules.

This abundance of “Big Data” is creating opportunities 
that never existed before, but the volume of data has out-
stripped manually guided data analysis and display. Even 
10 years ago, the CDC or the World Health Organization 
(WHO) were limited to relatively static maps and map lay-
ers that were able to display retrospective data that was 
rarely more current than a few weeks in the past.

Thanks to higher-density AI and graphic display tools 
developed for military net-centric warfare and commer-
cial logistics applications (e.g., Amazon.com), we are 
beginning to see very innovative applications emerge for 
health care.

Challenges of data acquisition

Certainly, we cannot overlook one of the axioms of all 
data and information analytics: GIGO. If we do not control 
the quality and consistency of data that is being captured, 
stored, and analyzed, we cannot add precision or quality af-
terwards without running big risks of data distortion.

PHR illustrate one sort of risk. In principle, mHealth 
device companies have been arguing that capturing every 
nuanced detail of a person’s health record can assist a phy-
sician in more precise diagnosis or detection of problems. 
If only, the argument goes, we could track a diabetic pa-
tient’s every blood sugar measurement, every episode of 
exercise, every hour of restful sleep, and every detail of 
nourishment, then we might be able to pinpoint risks and 
problems precisely. However, we also know that patients 
get very resentful of being overmonitored and managed—
and dealing with very unpleasant side effects—they forget 
details, and, not surprisingly, sometimes they simply mix 
in white lies—errors of omission and commission—to help 
them regain control and privacy over their lives. Also, pa-
tients go through cycles of grief, including anger and de-
nial, which affects their willingness and ability to comply 
with rigid regimens of care.

On top of these human foibles, the personal health mon-
itoring devices that patient can buy from Amazon, eBay, or 
Walmart are not necessarily subject to routine calibration, 
which can introduce even more inaccuracies into the data 
stream.

Also, clinical providers have only a finite—and dwin-
dling—amount of time, energy, and focus they can devote 
to reviewing patient data. The average physician is therefore 

not enthusiastically encouraging pouring moment-by-
moment PHR data into their carefully and scientifically 
controlled EHR.

If we then add the legal liability that providers face if they 
make a mistake, we can quickly understand why many view 
PHR data as a risky and burdensome source of erroneous 
data, and the quantity of PHR data may be orders of magni-
tude more voluminous than the trusted EHR data, too.

Researchers must also consider that there may be two or 
more Data Acquisition challenges: (1) Source data to teach 
the Machine Learning (ML) AI tools may be incomplete 
or biased, and (2) System users may introduce their own 
distortions or biases.

Acquisition and analysis of source data are the way an 
ML system learns, or is taught, “Truth,” or “best practices.” 
An ML AI system could identify disease and case manage-
ment practices from (EMR). If studying congestive heart 
failure (CHF) patients, for example, an ML system would 
likely notice that CHF patients often have second or third 
disease diagnoses, and that most of the patients would be 
put on similar low-sodium diets and, depending on coexist-
ing diseases, certain patterns of medications would emerge. 
The electronic records would also likely indicate that CHF 
patients wind up being transported to hospitals when they 
start showing one or more significant clinical distress signs, 
including shortness of breath, high and/or erratic heart rate, 
swollen joints and difficulty moving, and confusion caused 
by lower blood oxygen levels. Many of these patients would 
also show significant water-weight gain upon arrival at 
emergency departments, and they are likely to receive strong 
doses of Lasix, a medication that stimulates the kidneys to 
accelerate urination to eliminate the accumulated water.

Consider, though, the inferences that an ML might make 
if the patient was part of an active home-care regimen in 
which food, exercise, and medication were constantly ad-
justed to minimize these emergency situations.

Consider, too, a third ML system that tries to understand 
patterns in a large rural population of unemployed, unin-
sured, and uneducated patients who have little access to pri-
mary care and are forced to rely on ER treatment.

If three different ML systems are trained with these dis-
parate sets of data, each ML system will “correctly” infer 
the common, and perhaps most successful, clinical care 
pathways for each situation, but none of the three will nec-
essarily have suitable information for each other’s circum-
stances and patient population.

This is, in many ways, a computerized version of the 
parable about the four wise men and the elephant, in which 
each individually describes an ear, a trunk, a tail, or a leg as 
their “truth” about the nature of an elephant.

The user may misapply an ML system too, by asking the 
“wrong questions,” and the user may also misunderstand 
the ML’s guidance if it is provided without the necessary 
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context. For example, a caregiver in a rural setting may 
try to follow the best practice of sending a patient to their 
primary care physician for follow-up and medication man-
agement, or by ordering state-of-the-art home care support, 
But if neither of those options exists for the patient, due 
to the patient’s circumstances, the guidance will simply be 
ignored.

●	 Benefits of Big Data and AI
●	 Challenges of Processing Big Data using AI
●	 Current Technology Approaches

Despite the limitations mentioned above, AI is begin-
ning to make contributions for healthcare improvement us-
ing Big Data healthcare sets. AI tools are tireless, and they 
are scalable across thousands of computers, too. AI tools 
can be used to separate sets of data on an as-needed basis, 
and multiple sets of AI tools can be deployed to identify 
either anomalous or simultaneous patterns and display them 
to human operators for interpretation and action.

One interesting application being developed and de-
ployed at Stanford is using NLP tools to analyze retrospec-
tive pharmaceutical drug research and clinical records to 
identify new drug application patterns and opportunities. In 
simple terms, if Drug A and B successfully treat Diseases 1 
and 2, and Disease 3 is much like Diseases 1 and 2, Drugs 
A and B might not be beneficial for Disease 3? What if there 
are some small numbers of cases where, indeed, Disease 
3 was improved by Drug A and/or Drug B, but those had 
never been formally part of a clinical trial because the cases 
and research happened on different continents and was re-
ported in different languages?

Another very interesting and actively discussed body of 
research is emerging from IBM’s Watson Health programs. 
IBM has partnered with many clinical centers of excellence 
to explore ML AI systems trained by “the experts.” Clinical 
partners have been chosen in fields like cancer (Memorial 
Sloan Kettering), cardiology (Cleveland Clinic), and pri-
mary care medicine (Kaiser Permanente and Mayo Clinic). 
In the early stages, such tools are expected to help each 
group of experts learn more about their own practices and 
to possibly help discover new opportunities they have not 
yet noticed independently. Watson Health’s tools can also 
assist those expert teams to retrospective research studies 
by looking more carefully for patterns in past patient care 
that may have been overlooked.

Watson health also represents a possible business op-
portunity for IBM and each clinical partner, because each 
trained and validated ML system could be sold or rented 
to other clinical users who want to leverage the embedded 
expert knowledge. A challenge, of course, is the match-
ing of the new client’s patients, environment, and docu-
mentation standards to the particular Watson Health model 
they wish to use. If, for example, a national health system 
would like to implement Cleveland Clinic’s ML model, 

but has not integrated, well-developed, or roughly similar 
hospital, home-care, or emergency care programs, the cli-
ent may not find the ML system initially valuable or use 
of the model may initially increase cost and workload for 
the nation.

In time, however, such experiments have the potential of 
training growing numbers of hospitals, health systems, and 
even national healthcare programs how to replicate or cus-
tomize Cleveland Clinics expertise to improve the safety, 
effectiveness, and cost of prior programs.

A latent challenge in Big Data AI systems is discovering 
and implementing systems to retrain the knowledge tools 
to incorporate new best practices. For example, in 2017 the 
American College of Cardiology and the American Heart 
Association revised the guidelines for high blood pressure 
diagnosis and treatment. Patients who previously had blood 
pressures of 130/80 were considered “OK,” but under the 
new guidelines, such patients should be diagnosed and 
treated for high blood pressure (Perry, 2017)!

The pattern of significant periodic revision of scientific 
and medical knowledge, and best practices has a long his-
tory in health care. In fact, the latency in healthcare adop-
tion of new, better practices has been quite long (e.g., it took 
many, many decades for penicillin to be recognized as the 
standard of care to treat infections.) When new tools are 
developed to retrain ML AI systems, perhaps the delays can 
be significantly reduced, so that medical care and outcomes 
can be optimized more quickly.

In addition, the growing availability of Big Data from 
electronic medical record-keeping is allowing retrospective 
review of patient care patterns to more readily discern ben-
efits of potential paradigm changes like reducing the high 
blood pressure limit for diagnosis and treatment. Large 
population retrospective analysis can identify clusters of 
potential improvements that bear more careful research and 
challenge prior assumptions.

Potential benefits/challenges of AI
As with many technologies, there is a two-edged sword ef-
fect. Beneficial features are often offset by unanticipated 
side effects, unintended consequences, and/or “emergent 
behaviors.” An emergent behavior is often observed when 
people interact with technologies in unexpected ways. Cell 
phones, for instance, provided unheralded mobility, but tex-
ting while driving was/is a dangerous emergent behavior 
that was not planned or anticipated.

For providers, future AI/ML tools could help support or 
protect patients who may need assistance before emergency 
conditions occur. For example, patients who forget to take 
their medicine, or who take them at the wrong time or in un-
desirable combinations, could be prioritized for nurse visits 
or calls, or for counseling and education during routine vis-
its (Hsu, 2016; Sloane, 2016).
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Similarly, patients with CHF can be given an electronic 
“safety net” to enable safer, more affordable, and poten-
tially better quality of life using remote AI/ML monitor-
ing systems (Guidi, 2015; Guidi, 2016). Also, in 2017, the 
first prescription-only app was approved by the US FDA 
(Software as a Medical Device) to support patients with 
substance abuse management (Waltz, 2017). This is an in-
teresting app. Lastly, another 2017 FDA approval was for 
a medication/device combination that allows monitoring 
when a medication has been ingested (U.S. Food and Drug 
Administration, 2017).

Such innovations may have much higher adoption po-
tential in the future, as US Accountable Care Organization 
(ACO) reimbursement models provide financial incen-
tives for improved patient outcomes and satisfaction. To 
the extent that such tools allow patients’ diseases to be 
successfully remotely monitored and managed outside of 
the expensive hospital environment, providers may have 
significant motivation to adopt and deploy them. Also, if 
patient-focused compliance incentives or penalties catch 
on, patients may actively seek them out.

There is a hidden challenge in each of these technolo-
gies, including matching appropriate physicians, patients, 
and devices to assure beneficial outcomes without adding 
inadvertent risks and costs. For all mobile monitoring and 
support systems, for example, there is threshold infrastruc-
ture expectation that must be met, including reliable and 
secure communication and cloud resource availability. 
Remote rural areas, or highly congested urban areas, may 
introduce unacceptable risks to patient care.

Emergent behaviors by patients—or caregivers—may 
harm the success, safety, or reliability of a remote app to 
support substance abuse app or medication ingestion moni-
toring system. Patients who wish to fool the system, or 
other honesty or cognition limitations of the patient, could 
harm, delay, or derail widespread adoption and deployment. 
If the patient experiments with ways to fool such systems, 
by either lying to the app or feeding the self-reporting pill to 
a pet, the intended systemic benefits may fail.

Provider incentive misalignment can provoke unin-
tended consequences, too. In an ACO, for example, the 
community of providers must share the fixed per-patient re-
imbursement. This, in turn, can result in overloading lower-
cost home-care providers with supervisory responsibilities 
they cannot or will not fulfill correctly. To make matters 
worse, many current patient discharge quality monitoring 
schemes focus on eliminating re-admission or -treatment 
within 30 days. A dishonest or incompetent provider partner 
could inappropriately hold patient care off until the 30-day 
period has expired despite patient discomfort or deteriora-
tion (Wadhera et al., 2018).

Possibly the most widely heralded potential future 
benefits fall under the rhetoric of “precision medicine,” or 
medical care that can optimally tease out or fine-tune the 

best pathways of care based on unique personal differences. 
Each patient often has unique side effects and limitations of 
benefits for every available medicine, and for every com-
bination medicine. The differences could be related to ge-
netic make-up but may also be related to novel allergies and 
the interaction of multiple simultaneous illnesses. There is 
also a growing body of knowledge about human chrono-
biologic variations of drug responses throughout the 24-h 
day (McEachron, 2012). In theory, at least, an AI/ML-based 
patient care optimization tool could help track and identify 
personally optimized treatments offering the most cost-, 
quality-, risk-, and efficacy-focused care (De Sonis, 2017).

Potential benefits/challenges for payers

In a growing number of situations, payers are being pressed 
to manage the costs and outcomes for every-larger patient 
populations based on fixed per-patient revenues. Broadly 
speaking the aggregation of risk and costs across large pa-
tient pools would be expected to allow cost averaging. In 
other words, though some patients are more expensive, oth-
ers are less expensive, so the costs and savings might bal-
ance each other out. However, large-scale population trends 
like aging, obesity, and diabetes can move the average costs 
higher year by year. In addition, many older patients de-
velop multiple simultaneous diseases (multimorbidity) as 
they age, which can add significant complexity, risk, and 
cost to the overall population.

On the one hand, AI- and ML-enhanced technologies 
hold the promise of improving—or at least managing—
growing patient care complexity and cost. By 2050, how-
ever, more than half of the population will allegedly be older 
than 65, and continued life-sustaining success is expected to 
shift the average US age higher and higher.

The payers are in the unenviable role of trying to drive 
down short-term costs without simultaneously driving up 
long-term costs and risks. There is no historic precursor 
data to draw on to predict the ultimate costs and complexity 
of rapidly aging communities, though, so much future effort 
may necessarily be reactive instead of proactive.

An emergent behavior by patients is being witnessed by 
payers, too: healthier, more active patients are actively pur-
suing activities like adventure vacations and active sports, 
both of which can increase overall rates of injuries, compli-
cations, and costs!

Potential benefits/challenges for consumers/
patients

Consumers, patients, and family/community caregivers are 
faced with ever-growing out-of-pocket expenses. Rising 
insurance rates, changes in deductibles, copays, and phar-
maceutical benefits restrictions are among the causes, 
along with the ever-increasing age and multimorbidity of 
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patients. Consumers and patients find themselves deferring 
medical visits, using over-the-shelf alternatives, and simply 
going without. AI/ML-based clinical decision tools could 
benefit the consumer by helping clarify their needs and as-
sess treatment alternatives more effectively. Though there 
are many fact-based online sources available, like PubMed, 
consumer sites provided by leading health centers like 
Cleveland Clinic, Johns Hopkins, Mayo Clinic, and others, 
and advertising-funded sites like WebMD and RxList.com, 
there is no effective way to integrate the information and/or 
match it to individual needs.

Future of AI
Given the progress of autonomous devices like industrial ro-
bots, airplanes, drones, and self-driving cars, it would seem 
likely that more autonomous diagnostic and therapeutic 
measurements, products, and services are likely to emerge. 
Some could be simple, such as self-service eyeglass or im-
munization screening and dispensing, drone and/or robotic 
delivery of medicines and med/surg supplies like needles 
and bandages, and self-managed clinical care (Waltz, 2017).

However, AI observers should always be aware of the 
classic hierarchy of data, which progresses from raw data 
to information to knowledge, and then wisdom. Modern 
AI seems to be encroaching more and more into areas of 
“knowledge” by leverage ever-increasing computing and 
memory capacity. Imparting or deriving wisdom into or 
from AI, however, lies beyond the horizon for now. For ex-
ample, an AI-based babysitter may be able to “see” a child 
putting a fork or spoon in its mouth, and “know” that is safe. 
It may even “know” that a pocket knife does not belong in a 
child’s hands, let alone near its mouth or eyes. A wise parent, 
however, will anticipate that a child may try to put virtually 
anything into its mouth, including toxic chemicals, nearby 
animals, or virtually any mobile object, and will add a razor, 
broken piece of pottery, or nearby worm into the threat cat-
egory without delay. That same wise parent will apply the 
same rules to a grandparent with dementia without much 
prompting, too. Current AI programs are hampered by sev-
eral constraints, including limitation of its learning to past 
events and rules, dependence on direct success and failure 
experiences, and an absence of “awareness.” When humans 
say, “I could see that child was in danger,” or even more 
abstractly, “I could see that child was upset,” we include a 
massive amount of personal and collective knowledge into 
our wisdom, judgment, and awareness. To date, AI has not 
demonstrated that capacity, nor the senses of compassion 
and fear that are part of our biologic heritage.

Adding to the philosophical and scientific debate about 
potential AI risks is the concern that computed AI could 
erroneously identify a person as a risk to him/herself or 
the system, and constrain or harm a person in destructive 
or dangerous ways. Taking that electronic babysitter, for 

example, a “perfect AI babysitter” might reasonably put 
a child in a box or cage to keep it from harming itself or 
the environment. Although that action might be logical and 
even at some level justified, human parents and caretakers, 
know that children learn from falling, scraping their knees, 
bumping their heads, cutting their fingers, and numerous 
other mistakes. Teenagers and adults, unfortunately, some-
times must learn from much, much more disastrous mis-
takes. Creativity and innovation come along with significant 
measures of risk. Great leaders and thinkers like Elon Musk 
and Stephen Hawking have spent a good deal of time and 
energy analyzing and presenting such concerns about AI’s 
risks and limitations to modern scientists and policymakers, 
hopefully opening the dialog to better future AI.

Another considerable challenge to AI is that medical, sci-
entific, technical, and engineering knowledge do not remain 
constant. In fact, facts and knowledge change as time, expe-
rience, and circumstances evolve. At one time, for example, 
antibiotics were mixed in soaps and product surfaces to 
eradicate germs, but we have come to realize that excessive 
or incomplete use of antibiotics has given rise to danger-
ous generations of antibiotic-resistant germs. Even rules of 
thumb, like the IV Therapy’s “Five Rights” may inevitably 
be reconsidered as we realize we have overlooked, or might 
improve outcomes if we add more rights (Federico, 2015)!

Perhaps last, but certainly not least, there are signifi-
cant ethical and societal issues being exposed in the devel-
opment and deployment of AI systems in all applications 
(health care included). One of the simplest medical ethics 
issue is the right of the patient to choose to accept, decline, 
or cooperate with treatment. How, for example, should an 
AI healthcare system deal with a patient with liver disease 
who cannot/will not stop drinking alcohol or injecting il-
legal narcotics? Or consider the conundrum that faces the 
self-driving car industry: no-win choices and decisions pro-
voked by circumstances. For example, if a car must choose 
from harming a child on one side of the street, a group of 
adults crossing the street, a pregnant mother on the other 
side of the street, or risk harming the passenger by running 
into an oncoming bus, what is the “best” decision (Silva, 
2019)? Is this dilemma much different than the choices fac-
ing a late-stage cancer patient, for whom chemotherapy, ra-
diation therapy, surgery, and/or morphine all have complex 
risks, consequences, costs, suffering, and ultimately death?
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