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Abstract: Multi-modal sensor fusion has become ubiquitous in the field of vehicle motion estima-
tion. Achieving a consistent sensor fusion in such a set-up demands the precise knowledge of
the misalignments between the coordinate systems in which the different information sources are
expressed. In ego-motion estimation, even sub-degree misalignment errors lead to serious perfor-
mance degradation. The present work addresses the extrinsic calibration of a land vehicle equipped
with standard production car sensors and an automotive-grade inertial measurement unit (IMU).
Specifically, the article presents a method for the estimation of the misalignment between the IMU
and vehicle coordinate systems, while considering the IMU biases. The estimation problem is treated
as a joint state and parameter estimation problem, and solved using an adaptive estimator that relies
on the IMU measurements, a dynamic single-track model as well as the suspension and odometry
systems. Additionally, we show that the validity of the misalignment estimates can be assessed
by identifying the misalignment between a high-precision INS/GNSS and the IMU and vehicle
coordinate systems. The effectiveness of the proposed calibration procedure is demonstrated using
real sensor data. The results show that estimation accuracies below 0.1 degrees can be achieved in
spite of moderate variations in the manoeuvre execution.

Keywords: extrinsic calibration; motion estimation; automotive industry; nonlinear systems; inertial
sensors; Kalman filter; odometry; autonomous driving; simultaneous state and parameter estimation;
systems and control engineering

1. Introduction

Accurate and reliable information of the vehicle ego-motion is pivotal for the proper
operation of active safety and automated driving functionalities. Hence, nowadays vehicles
are equipped with sensors devoted to the estimation of the vehicle motion. In order to
meet the high accuracy and reliability demands, multi-modal sensor fusion has become
ubiquitous in the field of vehicle motion estimation [1–3]. Sensors relying on different
technologies, with complementary benefits and deficiencies, are combined in order to
increase the overall accuracy and reliability of the motion estimation solution.

In a multi-modal sensor fusion set-up, the individual information sources supply
motion quantities that generally relate to different points within the vehicle and are ex-
pressed in different coordinate systems. A consistent fusion of the measurements demands
that the supplied motion variables relate to and are represented in a common coordinate
system. Hence, the transformations between the individual coordinate systems need to
be known. In automotive series projects, the position and orientation of the sensors is
usually precisely defined in a computer aided design (CAD) of the vehicle. Nevertheless,
tolerances in manufacturing technologies may cause the location and orientation of the
sensors to significantly differ for the real vehicles. For instance, from our experience, in car
mass production, IMU mounting errors of few millimetres and two to three degrees can
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be expected. These inaccuracies in the transformations between the individual coordinate
systems deteriorate the performance of fusion algorithms and may even cause the estimator
to diverge [4]. Therefore, many applications require calibration procedures that estimate
the transformations between the different coordinate systems. This process is also known
in the literature by extrinsic calibration [5,6].

In the last few decades, the topic of extrinsic calibration has received increasing atten-
tion due to its significance in relevant engineering fields such as robotics. A considerable
amount of literature covering the extrinsic calibration of systems involving perception sen-
sors has been produced, e.g., [7–12]. Comparatively, the extrinsic calibration of systems not
reliant on perception sensors has received considerably less attention. Motion estimation
schemes fusing information from odometers (based on wheel speed and steering angle
sensors), vehicle models and inertial sensors have been broadly used in active safety and
automated driving technologies [3,13,14]. In such a set-up, the IMU angular rates and spe-
cific forces are given in the coordinate system of the IMU while the information supplied by
the combination of odometers with kinematic [15] and dynamic models [16] is customarily
expressed in a vehicle coordinate system. The identification of the relative pose between
the IMU and the vehicle coordinate system is rarely addressed in the available vehicle
motion estimation algorithms. Instead, a perfect alignment or known extrinsic calibration
parameters are commonly assumed [15,17,18]. While, considering the low angular motion
of land vehicles, the positioning errors may be neglected, the IMU misalignment errors
have a significant impact on the motion estimates [19].

1.1. Brief Review of Previous Approaches

Although scarce, some literature has been produced to address the estimation of
the IMU–vehicle extrinsic calibration. Most of the proposed approaches rely on the non-
holonomic constraint [20–24], which assumes zero lateral and vertical velocity in the rear
axle. However, differences are found with regard to the sensor portfolio and the quality of
the sensors used, as well as the parameters identified.

The methods presented in [20] address the estimation of the mounting misalignments
of an IMU (roll, pitch and yaw) using the accelerometer signals together with GPS-derived
velocities and the non-holonomic constraint. First, the pitch and roll misalignment angles
are estimated. Then, these estimates are used for the estimation of the yaw misalignment.
Accelerometer biases, tilted roads and accelerations during the roll/pitch calibration phase
will result in errors in the estimated misalignment angles. Estimation errors of up to
2 degrees are reported, which are prohibitively large for applications requiring highly
accurate motion state estimates.

Some researchers have proposed methods to identify the misalignment angles between
the IMU and vehicle coordinate system using IMU, odometry, GNSS information and the
non-holonomic constraint [21,22]. For instance, [22] describes an approach that estimates
the IMU pitch and yaw misalignment angles using a GNSS/INS aided dead reckoning
approach. The method is experimentally tested with data obtained from typical navigation-
grade, tactical-grade and low-cost (automotive-grade) IMUs. For the navigation- and
tactical-grade IMUs, the misalignment estimates rapidly converge. However, the estimates
for the low-cost IMU display a less steady behaviour. Despite its widespread use, GNSS is
susceptible to interference and it lacks reliability in some environments. Moreover, not all
land vehicles are equipped with an accurate GNSS receiver.

Aware of these drawbacks, some research groups have developed self-contained
methods that perform the IMU–vehicle extrinsic calibration, solely reliant on odometry
and IMU signals [23–25]. In [23], Xue et al. propose an in-motion alignment algorithm
that estimates the vehicle-IMU misalignment (pitch and yaw) together with a unique
scaling factor for the entire odometry. The method relies on the non-holonomic constraint,
odometry measurements and a high-precision 6D IMU that allows north alignment via
gyrocompassing. Furthermore, it assumes perfect alignment between the road plane
and the vehicle body. A similar approach is proposed in [24], which, based on the same
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information sources, additionally estimates the IMU position with respect to the vehicle’s
rear axle. Despite the accuracy shown in the experimental results of [23,24], tactical- or
navigation-grade IMUs are prohibitively costly for car series projects, limiting their use for
research and development purposes.

The previously presented approaches rely on the non-holonomic constraint. The main
drawbacks of such methods is that when the vehicle does not comply with the non-
holonomic constraint, e.g., when a side-slip angle builds during cornering or a vertical
movement is caused by the suspension, errors are transferred to the misalignments esti-
mates [22]. Furthermore, in most cases, the roll misalignment is neglected since, due to the
non-holonomic constraint, it is unobservable. One of the few works that is not based on the
non-holonomic constraint and relies on an automotive-grade IMU is [25]. The approach
proposed in this work estimates the longitudinal and lateral accelerometer biases as well as
the IMU–vehicle yaw misalignment using FIR-Filter modulating functions and an algebraic
observer. Instead of applying the non-holonomic constraints, vertical and lateral velocity
measurements are used. These measurements are built upon suspension signals and a
single-track model. Nevertheless, the supplied estimates exhibit a relatively unsteady
behaviour, which raises questions regarding noise robustness and parameter identifiability.

All in all, there is a scarcity of methods which, not relying on accurate GNSS infor-
mation and based on an automotive-grade IMU, provide accurate estimates of all three
misalignment angles (roll, pitch and yaw). Another shortcoming of the state-of-the-art is
that most of the previous approaches assume a perfect alignment between vehicle body and
road surface. Changes in the suspension state, due to effects such as variations in the load
distribution or speed, are taken as variations in the IMU pitch misalignment, e.g., [22,24].
This demands a continuous estimation of the misalignment angles. Therefore, a method
that takes into account suspension information would be desirable. By doing so, an adjust-
ment of the IMU misalignment estimation would only be required after structural changes
in the platform, such as a replacement of the IMU or modifications in the steering system.

Besides the already discussed challenges, one of the aspects to consider is the fact
that the real IMU misalignment is usually not known. Hence, there is a lack of a ground-
truth reference against which the estimates can be directly compared. [22] proposes to
validate the estimation by checking that the estimated velocity (expressed in the vehicle
coordinate system) has no significant lateral and vertical velocity components when the
misalignments have been compensated. This validation is consistent as long as, in the
analysed data, the non-holonomic constraint is satisfied, which will not be the case when
turning or driving on a road with significant bank angles. Another option is presented
in [24], in which the correctness of the estimated calibration parameters is assessed by
analysing the improvement of the position error of the dead-reckoning solution when the
calibration parameters have been corrected. However, this approach does not provide a
direct way to assess the errors of the misalignment estimates.

1.2. Current Approach and Main Contributions

This manuscript proposes an estimation approach that addresses the identification of
the 3D rotation between the IMU and vehicle coordinate systems, which is fully determined
by three misalignment angles (roll, pitch and yaw). In order to avoid estimation inaccura-
cies stemming from the IMU biases, these are compensated in the algorithm. The approach
is aimed at automotive series projects and, hence, the use of prohibitively expensive sensors
is avoided. Therefore, the sensor portfolio is comprised by an automotive-grade 6D IMU
and series chassis sensors.

Additionally, for analysis and evaluation purposes, test vehicles are commonly
equipped with high accuracy measurement systems, which supply ground-truth motion
signals. In our test vehicle, a high-precision INS/GNSS deeply coupled inertial navigation
solution is mounted. This article also presents a method to estimate the 3D rotation be-
tween the ground-truth and both the IMU and vehicle coordinate systems. These estimates
are not only necessary to assess the performance of motion estimation algorithms but
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also serve as a validation of the 3D rotation estimate between the IMU and the vehicle
coordinate systems. Please note that the misalignment between the IMU and the vehicle
coordinate systems may be obtained from the 3D rotation between the ground-truth and
IMU coordinate systems, and the 3D rotation between the ground-truth and the vehicle
coordinate systems.

Based upon the foregoing, the main contributions of this article are listed below.

• The proposed estimation scheme estimates all three misalignment angles while consider-
ing the IMU biases. This contrasts with most previously proposed approaches, in which
the roll misalignment is neglected.

• A calibration manoeuvre is proposed for which a persistent excitation condition for the
identification of the misalignment angles is experimentally validated. Furthermore, it is
shown that the estimation results remain consistent despite moderate variations in the
manoeuvre execution.

• The estimation scheme relies on cost-efficient automotive sensors, and it is not dependent
on neither perception nor GNSS information. Experimental results show that, in spite
of not using high-precision measurement systems, the approach supplies accurate and
reliable misalignment estimates.

• Instead of relying on the non-holonomic constraint, information from the suspension
system and a single-track model is used. Hence, the approach considers vertical move-
ments caused by the suspension and side-slip angles in the rear axle, e.g., built during
cornering or while driving on a road with significant bank angles.

• The pose of the vehicle with respect to the road plane is not seen as an IMU mis-
alignment. Hence, readjustment of the misalignment estimates is not required due to,
for instance, load redistribution or changes in the speed. This reduces the need for a
continuous extrinsic calibration. A re-estimation of the misalignment angles would
just be required after structural modifications in the platform, e.g., replacement of the
IMU or alterations in the odometry.

• An approach to directly assess the validity of the misalignment estimates is pro-
posed. This is based on the identification of the 3D rotation between a high-precision
INS/GNSS, taken as ground-truth, and the IMU and vehicle coordinate systems.

In short, the current work presents an extrinsic calibration procedure that supplies the
3D rotations between the ground-truth, IMU and vehicle coordinate systems (see Figure 1).

The paper is organised as follows. In Section 2, the required coordinate system definitions,
the used notation as well as some preliminaries are introduced. The ground-truth–vehicle,
ground-truth–IMU and IMU–vehicle extrinsic calibration procedures are presented in
Sections 3–5, respectively. Each one of the proposed estimation schemes is experimentally
validated in its corresponding section. Finally, a summary and some important remarks
conclude this article (Section 6).
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IMU CS (m)

Ground truth CS (g)

R v
g

R v
m
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g

Vehicle CS (v)

Figure 1. The present work proposes an approach to estimate the 3D rotation between the IMU and vehicle coordinate
systems (R v

m). Additionally, calibration procedures are described to determine the 3D rotation between a ground-truth
measurement system and both the IMU and vehicle coordinate systems (R m

g and R v
g, respectively). These represent a

reference to directly assess the accuracy of the estimated IMU–vehicle 3D rotation.

2. Coordinate Systems and Preliminaries
2.1. Coordinate Systems

In order to describe the position, orientation and motion of a vehicle based on the
information supplied by the available sensors and vehicle models, some coordinate systems
(CS) need to be introduced, see Figures 2 and 3. Besides coordinate systems commonly used
in the navigation literature [26], i.e., the inertial coordinate system (i), the Earth-Centred Earth-
Fixed coordinate system (e) as well as the local navigation coordinate system (East-North-Up)
(n), some additional coordinate systems are defined.

The vehicle coordinate system (v) is fixed to the vehicle sprung mass and its origin is located
on the longitudinal symmetry plane of the vehicle at the mid-wheelbase point at the height of
the center of mass (in reference loading conditions). Regarding the orientation of the axes,
the xv- and yv-axes lie on a plane defined in the CAD design of the vehicle, and the zv-axis is
normal to this plane pointing upwards. The yv-axis points to the left, and the xv-axis points
forward. Nevertheless, unlike [27], the xv-axis does not necessarily lie on the longitudinal
symmetry plane of the vehicle. This specific orientation is determined by the used dynamic
model. In the present work, it is aligned with the direction of travel while driving on a
horizontal road with no vertical angular rate, conditions under which the single-track model
supplies zero lateral velocity. Note that, due to asymmetries in the vehicle, this direction of
travel does not necessarily lie on the theoretical symmetry plane of the vehicle.

The IMU and ground-truth coordinate systems (m and g, respectively) are fixed to the
sprung mass of the vehicle. Their origins and axes orientations are determined by the
mounting position and orientation of the IMU and ground-truth systems, respectively. In the
test vehicle used in this work, the x-, y-, and z-axes point in the forward direction of the vehicle,
to the left and upward, respectively. Due to mounting errors, their axes are not aligned.

The origin of the road coordinate system (r) is located on the road plane (The road plane
is a plane that represents the road surface, on which the tyres are supported and which
produces the friction required to move the vehicle. In case of planar road surfaces, the road
plane is coincident with the road surface. Nevertheless, if the road surface contours have
a wavelength similar to or less than the size of the vehicle, an equivalent road plane is
determined, which is an approximation of the actual road surface. The road plane is
determined by a best fit approximation through the tire contact patches.) maintaining the
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symmetry with respect to the vehicle wheels. The zr-axis of the road coordinate system is
normal to the road plane and its xr-axis points in the direction of the xv-axis.
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Figure 2. Representation of the inertial (i), ECEF (e), local navigation (n), vehicle (v) and road (r) coordinate systems. For a
clear depiction, a world and vehicle perspectives are displayed, which corresponds with (a,b), respectively. The black and
yellow planes respectively represent the road plane and the plane tangent to the Earth’s ellipsoid, which is considered to be
normal to gravity. Please note that n and v share the same origin, and the origin of r lies on the road plane.
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Figure 3. Representation of the ground-truth (g), IMU (m), vehicle (v) and road (r) coordinate systems. Please note that the
origin of the ground-truth and IMU coordinate systems is not necessarily coincident with that of the vehicle coordinate
system. This representation has been chosen to highlight the misalignment between the different coordinate systems.
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2.2. Notation

The present paper adopts the notation commonly used in the navigation systems
literature [26,28]. Specifically, three indices are employed to characterize motion variables,
such as velocities v or angular rates ω. Let us illustrate this with the following angular rate:

ω v
in =

ω v
in,x

ω v
in,y

ω v
in,z

 (1)

The superscript index specifies the coordinate system in which the motion quantity is
decomposed (resolving coordinate system). The right lower index indicates the coordinate
system whose motion is described (object coordinate system). Finally, the left lower index
denotes the coordinate system with which the motion is respect to (resolving coordinate
system). Hence, ω v

in depicts the angular rate of the local navigation coordinate system with
respect to the inertial coordinate system resolved in the vehicle coordinate system.

The relative attitude between two coordinate systems may be represented via Euler
angles. Particularly, intrinsic Euler angles with the ZYX convention are adopted in the
present work. Attitude is fully described by the object and reference coordinate systems
and, therefore, Euler angles are typically denoted using two indices. For example:

ψnv =

φ nv
θ nv
ψ nv

 (2)

represents the Euler rotation from the local navigation coordinate system to the vehicle
coordinate system. Here, the first rotation, ψnv, called yaw, is performed about z n-axis;
the second rotation, θnv, known as pitch, is performed about the once rotated y-axis;
the third rotation, φnv, also named roll, is performed about the twice rotated x-axis. The cor-
responding rotation matrix R v

n transforms a motion quantity from the set of resolving axes
of the coordinate system n to those of the coordinate system v:

ω v
iv = R v

n ω n
iv (3)

For small rotations, for which the small-angle approximation holds (sin α ≈ 0,
cos α ≈ 1, sin α sin α ≈ α α ≈ 0), some approximations can be made:

R v
n ≈

 1 ψnv −θnv
−ψnv 1 φnv

θnv −φnv 1

 where

φnv
θnv
ψnv

 ≈
−φvn
−θvn
−ψvn

 (4)

2.3. Inertial Measurement Unit: Preliminaries

A 6D IMU is a sensor supplying measurements of the angular rate and specific force
of the vehicle body (at the mounting location) with respect to the inertial coordinate
system, i.e., ω m

im and f m
im. While the angular rate is the same within a rigid body (e.g.,

ω m
im = ω m

iv = ω m
ig, hereafter ω m), the specific force of a rotating body depends on the

particular point within the body (e.g., f m
im 6= f m

iv 6= f m
ig). When the relative location

between a point of interest and the mounting position of an IMU is known, the specific
force may be transformed to the point of interest using a simple kinematic equation [17].
Additionally, the signals supplied by the IMU are corrupted by different error sources
such as biases, scaling factors and non-orthogonalities [29]. This work assumes that most
errors have been corrected at an end-of-line calibration of the IMU [30]. However, for the
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automotive-grade IMU, biases are further considered due to the significant turn-on and
in-run terms [26]. Hence, the following IMU error model is considered:

f̃ m
im = f m

im + b f (5)

ω̃ m = ω m + bω, (6)

where f̃ m
im and ω̃ m denote the measured specific force and angular rates, and b f and bω the

accelerometer and gyro biases, respectively.

3. Ground-Truth–Vehicle Misalignment Estimation

As previously stated, the precise knowledge of the ground-truth–vehicle relative
pose is not only essential for analysis and evaluation purposes but, together with the
ground-truth–IMU pose, provides a reference for the IMU–vehicle misalignment estimation.
In this section, a method to estimate the misalignment angles between the ground-truth
and vehicle coordinate systems (φvg, θvg, ψvg) is proposed and experimentally validated.
The method can be divided into two parts, i.e., the estimation of the pitch and roll misalign-
ments, and the estimation of the yaw misalignment.

The employed ground-truth is a high-precision INS/GNSS deeply coupled inertial
navigation system, which provides accurate velocities, orientation angles (φng, θng, ψng),
specific forces and angular rates.

3.1. Roll and Pitch Misalignment

The roll and pitch misalignment angles (φvg, θvg) may be determined while standing
still, thanks to the high-precision IMU installed in the ground-truth system, as well as the
vehicle level measurements.

The spring deflections, supplied by the vehicle level sensors, together with the tyre
deflections, provided by a simple tyre vertical model, are used to compute the vehicle levels
over-road zi [3]. Here, i ∈ [FL, FR, RL, RR], where FL, FR, RL, and RR denotes to the front
left, front right, rear left and rear right wheels, respectively. Therewith, the pitch and roll
angles with respect to the road plane are obtained (see Figure 4). In most vehicles, these an-
gles remain very small during standstill phases. Hence, the small-angle approximation is
valid, sin α ≈ α and cos α ≈ 1:

θ rv =
z RL + z RR − z FL − z FR

2 l

φ rv =
1
2

(
z FL − z FR

t f
+

z RL − z RR

tr

)
(7)

where l, tF and tR are respectively the wheel base and the front and rear track-widths.

(a) (b)

zg
zv

yv

yg

zr

yr

zv zg

xv
xgzr

xr

ziL zRi

ziR φ rv
zFi θ rv

φvg θvg

Figure 4. Vehicle-to-road pose [3]. (a) shows the roll model, where i ∈ [F, R]; (b) depicts the pitch model where i ∈ [L, R].
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Assuming that the vehicle is standing on a road plane with small bank and slope
angles (φnr, θnr), and bearing in mind that the misalignment angles and the vehicle angles
with respect to the road plane are small, the following relationship holds:

φng = φnr + φrv + φvg

θng = θnr + θrv + θvg, (8)

where φng and θng are obtained from the ground-truth, and φrv and θrv from the vehicle
levels according to (7). If the vehicle stands on a horizontal road (θnr, φnr = 0), the mis-
alignment angles may be directly obtained using the following relationships:

φvg = φng − φrv

θvg = θng − θrv (9)

However, horizontal road surfaces are not always available. In such case, the unknown
slope and bank angle can be cancelled out by using two standstill phases at the exact same
position but with the vehicle facing opposite directions (see Figure 5, where Figure 5a
corresponds with pose 1 and Figure 5b with pose 2):

φng,1 = φnr,1 + φrv,1 + φvg (10)

φng,2 = φnr,2 + φrv,2 + φvg = −φnr,1 + φrv,2 + φvg (11)

θng,1 = θnr,1 + θrv,1 + θvg (12)

θng,2 = θnr,2 + θrv,2 + θvg = −θnr,1 + θrv,2 + θvg (13)

Adding (10) and (11), as well as (12) and (13), and reorganising the terms yields

φvg =
φng,1 + φng,2 − φrv,1 − φrv,2

2
(14)

θvg =
θng,1 + θng,2 − θrv,1 − θrv,2

2
(15)

(a) (b)

zv
zg

zr

yg
yv

yr

φ

+

φ

+

g g

zv
zg

yg
yvzr

yr

Figure 5. Calibration procedure on non-horizontal road (roll angle perspective). (a) depicts the first standstill pose and (b)
the second, which is equal to the first pose but facing the opposite direction. g, v and r denote the ground-truth, vehicle and
road coordinate systems, respectively. (a,b) correspond with (10) and (11), respectively. The yellow line represents the
horizontal plane. The circle on the upper left shows the direction of positive roll angles, and the arrows in it represent the
y-axes of the corresponding coordinate systems. Note that, in the circles, the angle between the yellow line and the black
arrow correspond with φnr. It can then be seen that φnr,2 = −φnr,1. The corresponding pitch angle perspective would be
equivalent. It is omitted for the sake of conciseness.
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3.2. Yaw Misalignment

Unlike for the pitch and roll cases, vehicle motion is required to determine the yaw
misalignment between the ground-truth and the vehicle coordinate systems (ψvg). Note that
the used single-track model partially defines the vehicle coordinate system (see Section 2):

vr
er,y ≈ lr ωr

z − SG vr
er,x f r

ir,y, (16)

where vr
er,x, ωr

z and f r
ir,y represent the over-road lateral velocity, vertical angular rate and

lateral specific force, respectively, and SG and lr are the sideslip angle gradient and the
distance between the center of gravity and the rear axle. Using the roll angle with respect to
the road plane, the velocity of the vehicle coordinate system resolved in vehicle coordinates
may be expressed as follows:

v v
ev,y = v r

er,y + v r
rv,z φrv − hr φ̇rv (17)

When driving straight ahead with constant speed over a well-paved horizontal road,
we have ω r

z , v r
rv,z, φ̇rv, f r

ir,y ≈ 0, and, hence, v v
ev,y ≈ 0. Therefore, under these conditions,

the projection of the velocity vector onto the zv-plane (plane normal to the zv vector) is
completely aligned with xv (see Figure 6). Please note that, due to asymmetries in the
vehicle, the xv-axis does not necessarily lie on the longitudinal symmetry plane. In such
situation, ψvg can be determined by the direction in which the ground-truth perceives the
velocity vector:

ψvg = −βg, (18)

where βg , arctan
vg

ev,y

vg
ev,x

can directly be obtained from the ground-truth velocity measure-
ments.

yg

xg

yv

xv

ψvg

v

Figure 6. Velocities of a vehicle while driving straight ahead with constant speed over a well-paved
horizontal road.

Unfortunately, not all test tracks possess a perfectly horizontal road. Most seemingly
horizontal roads have some kind of bank angle for water drainage purposes. Due to gravity,
even small road bank angles cause f r

ir,y 6= 0, which in turn, through the term−SG f r
ir,y v r

er,x
causes v v

ev,y 6= 0. If neglected, the lateral velocity caused by the bank angle is taken as a
yaw misalignment.

In order to compensate the sideslip angle (βv , arctan
v v

ev,y
v v

ev,x
) caused by the road bank,

one can drive on the same lane twice, but in opposite directions (see Figure 7). In each
drive, the sideslip angle caused by the gravity takes opposite directions:

ψvg = −βg,1 + βbank (19)

ψvg = −βg,2 − βbank, (20)

where βbank ≈ f r
ir,y SG, and 1 and 2 refer to the first and second drive, respectively. Hence,

adding (19) and (20) yields
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ψvg = −
βg,1 + βg,2

2
, (21)

where βg,1 and βg,2 are obtained from the ground-truth measurements.

v
yg

yv

xg

xv

xg
xv

yvyg

ψ

+

ψ

+

βbank

βg

−βg

v

βbank

(1) (2)

Figure 7. Yaw calibration procedure on a non-horizontal road. The dashed and continuous lines respectively represent
the visual division between lanes and the road limit. The vehicle drives on the same lane twice but in opposite directions.
The upper left and right circles show the direction of positive yaw angles for the corresponding driving directions. The red,
green and blue arrows in the circle depict the directions of the velocity vector, the x-axis of the vehicle CS and the x-axis of
the ground-truth CS, respectively. βbank is the side-slip angle stemming from the road bank and βg the direction in which
the ground-truth perceives the velocity vector.

3.3. Results

The calibration to determine the relative pose between the ground-truth and vehicle
coordinate systems was performed on a test-track three times (on different dates). The road
bank and slope angles were below 2 degrees. For the pitch and roll angle misalignment
procedure, the vehicle was kept at a standstill for at least 30 s in each direction. In order
to avoid movement in the car, the driver and passengers got out of the car in both stand-
still phases. The values θng,1, θng,2, θrv,1 and θrv,2 were obtained by averaging over the
standstill phase.

For the yaw misalignment manoeuvre, the vehicle was accelerated to 30 km/h and
kept at constant speed for at least 100 m. Afterwards, the vehicle was turned 180 deg and
driven back along the same lane at the same velocity (see Figure 7). The values βg,1 and βg,2
were obtained by averaging over the samples corresponding to the constant speed phase.
The results are depicted in Table 1:

Table 1. Estimation results of the v–g misalignment obtained from three calibration procedures
performed on different dates. Results expressed in degrees.

Parameter M1 M2 M3 Mean

φ̂vg 0.100 0.128 0.122 0.117
θ̂vg −1.178 −1.158 −1.177 −1.171
ψ̂vg 0.265 0.292 0.320 0.292

The maximum difference among the misalignment estimates within the three cali-
bration procedures lies below 0.03 deg for both the roll φ̂vg and pitch θ̂vg misalignment
angles. A bit larger is the variability of the yaw misalignment estimate ψ̂vg, presenting
a maximum difference of 0.055 deg. In any case, the variability remains low and, hence,
it can be concluded that the estimation results are consistent.

4. Ground-Truth–IMU Misalignment Estimation

One of the main challenges faced when addressing the estimation of the misalignment
between an automotive-grade and a ground-truth IMU is the fact that the biases of the
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automotive-grade IMU must be considered. Hence, the complexity of the problem rises
to that of estimating both the biases and misalignment angles. In the present section,
an approach is presented that addresses the misalignment estimation between the IMU (m)
and the ground-truth (g) coordinate systems while considering the biases of the automotive-
grade IMU.

4.1. Method

The proposed calibration procedure consists of two successive phases, in which the
outputs of both the automotive-grade and ground-truth IMUs are used. First, during a
standstill phase, the angular rate biases are determined and linear constraints between
the accelerometer biases and the misalignment angles are identified. Then, a calibration
manoeuvre is performed, which provides enough excitation to estimate the misalignment
angles (see Figure 8). The fact that the automotive-grade and ground-truth IMUs are
physically mounted at different positions within the vehicle body is taken into account.
The ground-truth specific force signals ( f g

ig) are transformed to the mounting position of

the automotive-grade IMU ( f g
im) in a pre-processing step.

Standstill
Phase

bω Calibration
Manoeuvre

b f = f linear(ψmg)

ψ̂mg = (φ̂mg, θ̂mg, ψ̂mg)

Figure 8. Calibration procedure for the estimation of the misalignment between the ground-truth
and IMU coordinate systems.

4.1.1. Standstill Phase

During standstill, the angular rate biases can be determined relatively easily [31].
However, this is not the case for the accelerometer biases. On the one hand, the pitch and
roll angles of the IMU coordinate system m with respect to the local navigation coordinate
system n are not perfectly known and, on the other hand, the discrepancies between the
outputs of the ground-truth and the automotive-grade IMUs stem from a combination of
bias and misalignment errors. Even though the accelerometer biases cannot be directly
identified during standstill, a relationship between the bias and misalignment errors can
be identified.

The misalignment angles are assumed to be small. Hence, using the small angle
approximation, the rotation matrix R g

m is defined by

R g
m =

 1 ψmg −θmg
−ψmg 1 φmg

θmg −φmg 1

 (22)

Furthermore, using the coordinate transformation of the specific forces from the
resolving coordinate system g to the resolving coordinate system m yields: f m

im,x
f m
im,y

f m
im,z

 =

 1 −ψmg θmg
ψmg 1 −φmg
−θmg φmg 1


 f g

im,x
f g
im,y

f g
im,z

, (23)

where ( f g
im,x, f g

im,y, f g
im,z)

T represents the specific force resolved in ground-truth coordinates,

obtained from the ground-truth measurement system, and ( f m
im,x, f m

im,y, f m
im,z)

T the spe-
cific force resolved in IMU coordinates, which is not directly accessible due to the IMU
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accelerometer biases. Instead, the bias-corrupted specific force signals ( f̃ m
im,x, f̃ m

im,y, f̃ m
im,z)

T

are available:

f̃ m
im,x = f m

im,x + b fx

f̃ m
im,y = f m

im,y + b fy

f̃ m
im,z = f m

im,z + b fz . (24)

Combining (24) and (23), the biases are expressed as a function of the misalignment
angles as follows:b fx

b fy

b fz

 =

 f̃ m
im,x

f̃ m
im,y

f̃ m
im,z

−
 f g

im,x
f g
im,y

f g
im,z

+

 0 − f g
im,z f g

im,y
f g
im,z 0 − f g

im,x
− f g

im,y f g
im,x 0


φmg

θmg
ψmg

. (25)

This relationship between the accelerometer biases and misalignment angles is ex-
ploited during a standstill phase in order to set the following constraints:

b fx

b fy

b fz

 =

 f̃ m
im,x 0

f̃ m
im,y 0

f̃ m
im,z 0

−
 f g

im,x 0
f g
im,y 0

f g
im,z 0

+

 0 − f g
im,z 0 f g

im,y 0
f g
im,z 0 0 − f g

im,x 0
− f g

im,y 0 f g
im,x 0 0


φmg

θmg
ψmg

, (26)

where ( f̃ m
im,x 0, f̃ m

im,y 0, f̃ m
im,z 0) and ( f g

im,x 0, f g
im,y 0 and f g

im,z 0) respectively represent the mean
of the IMU and ground-truth specific force measurements during the standstill phase.

Despite the time-varying nature of the biases, it can be assumed that, in the absence of
sensor malfunctions and strong changes in the environment, the biases practically remain
constant within intervals of several minutes. Hence, it is a sensible assumption that the
biases and constraints hold during the subsequent calibration manoeuvre.

4.1.2. Calibration Manoeuvre

The misalignment angles between the IMU and ground-truth coordinate systems are
estimated during a calibration manoeuvre using an estimator based on the recursive least
squares (RLS) algorithm. The estimator exploits both the bias-corrected angular rates from
the automotive-grade IMU, as well as the constraints identified during the standstill phase.

Applying the coordinate transformation of the angular rates and specific forces from
the set of resolving axes m to the set of resolving axes g leads to the following equations:ω

g
x

ω
g
y

ω
g
z

−
ωm

x
ωm

y
ωm

z

 =

 0 −ωm
z ωm

y
ωm

z 0 −ωm
x

−ωm
y ωm

x 0

φmg
θmg
ψmg

 (27)

 f g
im,x

f g
im,y

f g
im,z

−
 f m

im,x
f m
im,y

f m
im,z

 =

 0 − f m
im,z f m

im,y
f m
im,z 0 − f m

im,x
− f m

im,y f m
im,x 0


φmg

θmg
ψmg

, (28)

where (ω
g
x , ω

g
y , ω

g
z )

T and (ωm
x , and ωm

y , ωm
z )

T respectively correspond with the bias-free
angular rates, supplied by the ground-truth, and the bias-corrected angular rates of the
automotive-grade IMU.

Substituting (24) and (26) in (28) yields


f g
im,x − f̃ m

im,x + f̃ m
im,x 0 − f g

im,x 0

f g
im,y − f̃ m

im,y + f̃ m
im,y 0 − f g

im,y 0

f g
im,z − f̃ m

im,z + f̃ m
im,z 0 − f g

im,z 0

 =


0 − f̃ m

im,z + f g
im,z 0 f̃ m

im,y − f g
im,y 0

f̃ m
im,z − f g

im,z 0 0 − f̃ m
im,x + f g

im,x 0

− f̃ m
im,y + f g

im,y 0 f̃ m
im,x − f g

im,x 0 0




φmg

θmg

ψmg

, (29)
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where the terms corresponding to the multiplication of the biases and misalignment angles
have been assessed to be negligible.

The combination of (27) and (29) leads to

ω
g
x −ωm

x
ω

g
y −ωm

y
ω

g
z −ωm

z
f g
im,x − f̃ m

im,x + f̃ m
im,x 0 − f g

im,x 0
f g
im,y − f̃ m

im,y + f̃ m
im,y 0 − f g

im,y 0
f g
im,z − f̃ m

im,z + f̃ m
im,z 0 − f g

im,z 0


=



0 −ωm
z ωm

y
ωm

z 0 −ωm
x

−ωm
y ωm

x 0
0 − f̃ m

im,z + f g
im,z 0 f̃ m

im,y − f g
im,y 0

f̃ m
im,z − f g

im,z 0 0 − f̃ m
im,x + f g

im,x 0
− f̃ m

im,y + f g
im,y 0 f̃ m

im,x − f g
im,x 0 0


φmg

θmg
ψmg

, (30)

which may be treated as a linear identification problem of the following form:

yk = Hk ρ + wk, (31)

where wk represents the measurement noise, which is assumed to be Gaussian, white,
zero-mean and independent with a constant covariance matrix R. Please note that the
first three diagonal elements of the measurement noise covariance R are directly linked
to the ground-truth and IMU gyro noises, while the last three elements relate to the noise
characteristics of the accelerometers.

The well-know recursive least squares (RLS) algorithm represents a logical choice
to solve this identification problem. Exponential convergence in estimation algorithms
is a relevant property since it generally leads to enhanced robustness against noise and
modelling errors, as well as an improved performance in the non-stationary case [32].
The integration of an exponential forgetting factor λ ∈ (0, 1) in the RLS algorithm is
necessary to achieve exponential convergence and, additionally, it prevents the loss of
estimation capability [33]. Therefore, the incorporation of an exponential forgetting factor
in the RLS algorithm is common practice. Nevertheless, a sufficient excitation property is
usually required to guarantee exponential convergence.

Definition 1. The sequence Hk is persistently exciting if there exist an integer h > 0 and a real
constant α > 0 such that, for all integer k ≥ 0

h−1

∑
s=0

Hk HT
k ≥ α I. (32)

If the sequence Hk is persistently exciting, the estimates of the RLS with forgetting
factor converge exponentially to the true parameters [33]. However, if the excitation is poor,
the estimation problem becomes ill-conditioned, leading to unreliable estimates strongly
affected by noise and model uncertainties.

In order to increase the robustness of the estimator against periods of poor excita-
tion, a regularised recursive least squares algorithm with exponential forgetting factor is
used for the identification of the misalignment between the ground-truth and the IMU
(see Algorithm 1).

Algorithm 1: Regularised recursive least squares [34].

1 k = k + 1;
input : Hk, Pk|k−1, λ, ΣR

2 Kk = Pk|k−1 HT
k (R + Hk Pk|k−1 HT

k ) %Gain as in RLS

3 Pk|k = Pk|k−1 + Kk Hk Pk|k−1 %Covariance update as in RLS

4 P̄k+1|k =
1
λ Pk|k %Covariance after forgetting

5 Pk+1|k = P̄k+1|k [I + (1− λ) ΣR P̄k+1|k]
−1 %Covariance after regularization

6 ρ̂k = ρ̂k−1 + Kk (yk − Hk ρk−1) %Update parameter estimate
output : ρ̂k, Pk+1|k
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The suggested calibration manoeuvre is a figure eight drive since it provides a high
level of excitation and stimulates the individual IMU elements equally in both directions.
However, other manoeuvres that satisfy the persistent excitation condition of Defination 1
may also lead to satisfactory estimation results.

4.2. Experimental Validation

The performance of the algorithm is evaluated using data collected from figure eight
drives. The ground-truth angular rates and specific forces are supplied by the INS/GNSS
deeply coupled measurement system. This accurate equipment contains a high-precision
IMU with MEMS accelerometers and fibre optic gyros (FOG), with biases specified as low
as 0.01 m/s2 and 1 deg/h, respectively. As for the IMU angular rates and specific forces,
they are obtained from a significantly less accurate automotive-grade IMU.

Please note that the real misalignment between the INS/GNSS system and the
automotive-grade IMU is not known. Hence, the efficacy of the algorithm is analysed
based on the following three criteria:

• The algorithm ability to follow artificially introduced misalignment errors.
• The misalignment estimation robustness against noise.
• The consistency of the misalignment estimates obtained from a set of different mea-

surements.

The algorithm ability to track the misalignment angles can be illustrated by introduc-
ing artificial misalignment errors in the original data and validate whether these errors are
tracked. As for the second aspect, the addition of different noise sequences with similar
characteristics as the original measurement noise should not imply a significant change
in the estimation results. Finally, since the misalignment angles do not change as long as
the equipment is not unmounted, the variability of the estimates obtained from datasets
collected during manoeuvres performed at different points in time should be low.

The angular rate and specific force measurements supplied by the automotive-grade
IMU and the high-performance INS/GNSS system are displayed in Figure 9. Table 2 out-
lines the parameters from Algorithm 1 employed to produce the presented experimental
results. The misalignment estimates are presented in Figure 10. The figure displays the
results based on the original data (φ̂mg1, θ̂mg1, ψ̂mg1) as well as the estimates obtained from
the data corrupted by artificially added misalignment errors (φ̂mg2, θ̂mg2, ψ̂mg2). The ar-
tificially added errors are 0.7 deg for φmg, 0.5 deg for θmg and 1.2 deg for ψmg. Addi-
tionally, the IMU specific force signals are corrupted by artificial accelerometer biases
of (b fx , b fy , b fz) = (0.1,−0.1,−0.2) m/s2. This aims at showing that the misalignment
angles are correctly estimated despite the accelerometer biases. As shown in Figure 10,
the estimator is able to track the artificially added misalignment errors despite the added
accelerometer biases, presenting increments between the estimates obtained from the
misalignment-non-corrupted and misalignment-corrupted data of 0.71, 0.50 and 1.22 deg.

Furthermore, the determinant of the excitation matrix Wp,k = Hk HT
k is far from

zero, which experimentally shows that the persistence excitation condition is satisfied
and the estimation problem is well-conditioned. This is confirmed by the analysis of
the robustness against noise (see Figure 11). The original IMU angular rates and specific
forces have been corrupted by 100 different sequences of additive Gaussian white noise with
standard deviation σ = 0.001 rad/s and σ = 0.05 m/s2, respectively. One can see that
the misalignment estimates remain consistent despite the use of different additive noise
sequences, which shows the algorithm robustness against noise. This claim is also supported
by the variability of the misalignment estimates obtained from a set of different figure eight
manoeuvres (Table 3). The estimation results are consistent throughout the different datasets,
presenting the maximum differences in the estimated φ̂mg, θ̂mg and ψ̂mg of 0.008, 0.007 and
0.067 deg, respectively.
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Figure 9. Measurements during a figure eight manoeuvre. The ground-truth angular rates (ωg
x , ω

g
y , ω

g
z ) and specific forces

( f g
im,x, f g

im,y, f g
im,z) obtained from the high-performance INS/GNSS system and transformed to the mounting position of the

automotive-grade IMU, and the bias-corrected angular rates (ωm
x , ωm

y , ωm
z ) and bias-corrupted specific forces ( f̃ m

im,x, f̃ m
im,y,

f̃ m
im,z) supplied by the automotive-grade IMU.

Table 2. Parameter choice, units according to the International System of Units.

Parameter Value

R diag([2 × 10−6, 2 × 10−6, 2 × 10−6, 1 × 10−3, 1
× 10−3, 1 × 10−3])

P0
diag([3.0625 × 10−4, 3.0625 × 10−4, 3.0625 ×

10−4])
ρ̂0 [0, 0, 0]
ΣR diag([3.2653 × 103, 3.2653 × 103, 3.2653 × 103])
λ 0.9998
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Figure 10. Estimation results for the figure eight manoeuvre of Figure 9. φ̂mg1, θ̂mg1, ψ̂mg1 are the parameter estimates
obtained based on the original data. φ̂mg2, θ̂mg2, ψ̂mg2 are the parameter estimates obtained based on the data corrupted
by the artificial misalignment error (0.7, 0.5, 1.2) deg for φmg, θmg and ψmg, respectively. Finally, the determinant of the
excitation matrix Wp = Hk HT

k is depicted in the last sub-plot.
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Figure 11. Estimation robustness against noise. One hundred different sequences of additive Gaussian white noises with
standard deviations 0.001 rad/s and 0.05 m/s2 have been added to the original IMU angular rate and specific force data,
respectively. The estimator has been run for each sequence. The last estimated values of each run have been collected in
these histograms. The red curves represent the corresponding best Gaussian distribution fits. The corresponding mean µ

and standard deviation σ are added on top of each plot.

Table 3. Variability misalignment estimation with angular rates and specific forces. Results expressed in degrees.

Parameter M1 M2 M3 M4 M5 M6 M7 Max. Diff. Mean

φ̂mg −0.187 −0.188 −0.193 −0.193 −0.191 −0.193 −0.195 0.008 −0.192
θ̂mg 0.011 0.012 0.006 0.006 0.007 0.008 0.005 0.007 0.009
ψ̂mg 0.434 0.373 0.367 0.367 0.402 0.401 0.394 0.067 0.396

5. IMU–Vehicle Misalignment Estimation

This section presents the main contribution of the paper, i.e., a method for the estima-
tion of all three IMU–vehicle misalignment angles, which relies on series chassis sensors,
an automotive-grade IMU and a single-track model.

On the one hand, the IMU specific forces and angular rates are motion variables
expressed in the IMU coordinate system (m). On the other hand, the information stemming
from the odometry, suspension and single-track model constitutes a 3D velocity information
source, which can be expressed in the defined vehicle coordinate system (v). Unlike for the
ground-truth–IMU (g–m) and ground-truth–vehicle (g–v) extrinsic calibration, there is not
a direct correlation between the measurements expressed in the IMU coordinate system (m)
and the information represented in the vehicle coordinate system (v). Note that the specific
forces and angular rates are not directly related to the velocities but to their time derivatives.
This entails a significant increase in complexity, for which the previous approaches are
no longer suitable. Notwithstanding this, the IMU–vehicle extrinsic calibration can be
addressed as a joint parameter and state estimation problem. An adaptive estimator,
i.e., the regularized adaptive Kalman filter, is proposed to estimate the vehicle velocities
and attitude angles (states) as well as the IMU accelerometer biases and the IMU–vehicle
misalignment angles (parameters). Furthermore, in order to bolster the performance of
the estimator, additional standstill information is included in the form of constraints, see
Figure 12.

The rest of this section is organized as follows. First, the model is derived, upon which
the adaptive estimator is built. Afterwards, the estimator design is thoroughly described
and the conditions that guarantee the convergence of the estimates are discussed. Finally,
the validity of the proposed calibration procedure is experimentally exemplified.

5.1. Model

As in the case of the ground-truth–IMU (g–m) misalignment estimation, when ad-
dressing the IMU–vehicle extrinsic calibration, the IMU biases must be taken into account.
Hence, the estimation problem of the IMU–vehicle misalignment also extends to that of
estimating both the IMU biases and the misalignment angles. Please note that, in the
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absence of sensor faults and drastic changes in the environment, the biases remain nearly
constant within intervals of few minutes. Furthermore, since the angular rate biases can
easily be determined during standstill phases, the challenge is to estimate the accelerometer
biases together with the misalignment angles.

In the derivation of the system equations, the following considerations are taken
into account:

• Misalignment angles and IMU biases are small, which implies that second-order
products involving these variables are negligible.

• Bearing in mind that the car angular motion remains small, particularly for pitch and
roll movements, α φ̇ rv and α θ̇ rv may be neglected (where α represents a small angle).

• The misalignment angles remain within the range of [−3, 3] deg and, hence, the small-
angle approximation holds (sin α ≈ α, cos α ≈ 1).

Keeping in mind that the vehicle and IMU coordinate systems are not aligned, the kine-
matic differential equations based on the 6D IMU signals are expressed in the IMU coordi-
nate system [3]:

ẋ1 = ωm
y x6 −ωm

z x2

ẋ2 = ωm
x x6 + ωm

z x1

ẋ3 = ωm
z x4 −ωm

y x5 + g x1 + f̃ m
iv,x − bm

f ,x

ẋ4 = −ωm
z x3 + ωm

x x5 − g x2 + f̃ m
iv,y − bm

f ,y

ẋ5 = ωm
y x3 −ωm

x x4 − g x6 + f̃ m
iv,z − bm

f ,z

ẋ6 = −ωm
y x1 −ωm

x x2,

(33)

where

x =
(

sin θ nm, sin φ nm cos θ nm , vm
ev,x , vm

ev,y , vm
ev,z , cos θ nm cos φ nm

)T
(34)

As in [3], considering the accuracy of automotive-grade IMUs, the rotation of the
Earth as well as the transport rate are neglected. Note that ωm = ωm

iv instead of ωm
nv is used.

Furthermore, the IMU specific force signals are transformed to the origin of the vehicle
coordinate system, note that f̃ m

iv instead of f̃ m
im is used.

Additionally, using the IMU–vehicle misalignment angles (φmv, θmv, ψmv), the vehicle-
to-road orientation (φrv, θrv), the single-track model, and the over-road longitudinal and ver-
tical velocities (vr

er,x, vr
rv,z), the following measurement model is obtained

(see Appendix A for a thorough derivation):

y1 =
[
ṽv

x + hp θ̇ rv
]
=vm

ev,x + ψmv

[
ṽv

y

]
− θmv [ṽv

z ]

y2 =
[
ṽv

y − hr θ̇ rv

]
=vm

ev,y − ψmv
[
ṽv

x + SG vr
er,x f̃ m

iv,x
]
+ φmv

[
ṽv

z + SG vr
er,x

(
f̃ m
iv,z + f̃ m

iv,y φ rv

)]
− θmv

[
SG vr

er,x
(

f̃ m
iv,z φ rv

)]
− b fy

[
SG vr

er,x
]
+ b fz

[
SG vr

er,x φ rv
]

y3 = [ṽv
z ] =vm

ev,z + θmv

[
ṽv

x + SG vr
er,x f̃ m

iv,x φ2
rv

]
− φmv

[
ṽv

y + SG vr
er,x

(
f̃ m
iv,z φ rv + f̃ m

iv,y φ2
rv

)]
+ ψmv

[
SG vr

er,x f̃ m
iv,x φ rv

]
,

(35)

where SG is the side-slip angle gradient, hr and hp are the height of the origin of the vehicle
coordinate system with respect to the roll and pitch axes, and

ṽv
x = vr

er,x − vr
rv,z θ rv (36)

ṽv
y = lr ωm

z − SG vr
er,x

(
f̃ m
iv,y − f̃ m

iv,z φ rv

)
+ vr

rv,z φ rv (37)

ṽv
z = vr

rv,z + vr
er,x θ rv −

(
lr ωm

z − SG vr
er,x

(
f̃ m
iv,y − f̃ m

iv,z φ rv

))
φ rv (38)
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In (35), the terms in the square brackets ([...]) are known, and the unknown states and
parameters are highlighted in blue and red, respectively.

6-D IMU

Odometry and suspension
systems

Single-track model

Regularized adaptive
Kalman filter

Standstill constraints

ω̃m
im

φ rv, θ rv, vr
rv,z

vr
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er,y = f (vr

er,x, ωr
z, f r

ir,y)

φ̂mv, θ̂mv, ψ̂mv

b f = f linear(φmv, θmv, ψmv)

g

Standstill bias compensation

f̃ m
im ωm

im

Figure 12. Estimation approach for the IMU–vehicle misalignment estimation. The proposed regularized adaptive Kalman
filter relies on the specific forces ( f̃ m

im) supplied by an automotive-grade 6D IMU, its bias-compensated angular rates (ωm
im) as

well as over-road longitudinal, lateral and vertical velocity information (vr
er,x, vr

er,y, vr
rv,z) mainly provided by the odometry,

single-track model and suspension, respectively. Furthermore, the vehicle-to-road orientation (φrv, θrv), computed from the
suspension signals, is used to relate the over-road velocities to the vehicle velocity (vv

ev), see Figure 4. Finally, constraints
stemming from a standstill phase are used to enhance the performance of the estimator.

Combining the differential equations in (33) with the measurement model (35), the sys-
tem can be represented in a state-affine form as follows:{

ẋ = A(u)x + b(u) + Φρ
y = Cx + Ψ(y) ρ

, (39)
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where

x =
(

sin θ nm, sin φ nm cos θ nm , vm
ev,x , vm

ev,y , vm
ev,z , cos θ nm cos φ nm

)T
(40)

y =
(

ṽv
x + hp θ̇ rv, ṽv

y − hr θ̇ rv, ṽv
z

)T
(41)

u =
(

ωm
x , ωm

y , ωm
z , f̃ m

iv,x, f̃ m
iv,y, f̃ m

iv,z

)T
(42)

ρ =
(

φmv, θmv, ψmv, b fx , b fy , b fz

)T
(43)

5.2. Estimator Design

In this section, an adaptive estimator, i.e., the regularised adaptive Kalman filter [35,36],
is proposed to address the extrinsic calibration between the IMU and vehicle coordinate
systems. First, a discretisation is applied to transform the continuous-time system into a
discrete-time system and, then, the adaptive estimator is designed based on the discretized
system. Furthermore, the conditions that guarantee the convergence of the estimates are
outlined. Finally, the integration of additional information beyond the one explicitly de-
scribed in the system model is discussed. Specifically, the use of constraints determined
during a standstill phase is proposed in order to improve the performance of the estimator.

5.2.1. Discrete-Time Implementation

Most systems in the real world are characterized with continuous-time dynamics.
Nevertheless, estimators are customarily run in digital computers and, hence, continuous-
time system are frequently discretised. Bearing in mind that the car body motion com-
monly lies within the range of 1–2 Hz [37], 100 Hz is chosen as the sampling frequency.
Assuming that the specific force and angular rates remain constant between samples,
the exact discretisation of (39) may be obtained as described in [3]. However, in order to
reduce the computational load, the discretisation may be simplified in practice by using a
first-order approximation or a lookup table.

The resulting discretised system is presented below:{
xk = Ad(uk) xk−1 + bd(uk) + Φd(uk) ρ
yk = C xk + Ψ(yk) ρ

, (44)

where Ad, bd and Φd are the matrices that describe the discrete-time system, and xk = x(tk),
uk = u(tk) and yk = y(tk).

Note that uk and yk are known at any tk and, therefore, the system can be considered
as a discrete-time linear time-varying system [38]:{

xk = Ad,k xk−1 + bd,k + Φd,k ρ
yk = C xk + Ψk ρ

(45)

5.2.2. Algorithm Description

The proposed algorithm to estimate the misalignment between the IMU and the
vehicle coordinate systems is built upon the discrete-time state-space representation in (45).
On the one hand, the angular rates and specific forces supplied by the IMU are used for
the state propagation, based on the kinematic differential equations from (33). On the other
hand, the measurement model (35) uses the IMU–vehicle misalignment in order to relate
the information provided by the over-road longitudinal and vertical velocities, as well as
the single-track model to the propagated velocities. The resulting discrete-time system
is represented in a state-affine form, allowing thereby the application of the regularised
adaptive Kalman filter.

The structure of the regularised adaptive Kalman filter can be broken down into
two parts. First, the algorithm is built upon a linear Kalman filter, which carries out the
estimation of the states assuming known parameters. Second, the estimator is bolstered by
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an RLS-based adaptation law, which addresses the estimation of the parameters. The algo-
rithm is shown in Algorithm 2. The state propagation, (a.1)–(a.2), is equivalent to that of
the linear Kalman filter. In this part, the IMU signals are used to compute the predicted
state estimates. The computation of the Kalman gain and updated error covariance takes
place in (a.3)–(a.4), which is identical to the Kalman filter. The RLS-based adaptation law
can be found in (a.5)–(a.13), where the gain Γk for the parameter correction is computed.
Finally, the state and parameter estimates are updated based on the measured signals in
(a.14)–(a.16). Then, the recursion repeats using the next measurement.

Algorithm 2: Regularised Adaptive Kalman Filter (RAKF)

INITIALIZATION
1 P+

0 = P0; Υ0 = 0; S0|0 = S1|0 = S0; x̂0|0 = x̂0; ρ̂0 = ρ̂0;

RECURSION
2 k = k + 1;

Prediction
3 x̂k|k−1 = Ak x̂k−1|k−1 + Bk uk + Φk ρ̂k−1 %State prediction as in the KF (a.1)
4 Pk|k−1 = Ak Pk−1|k−1 AT

k + Qk %Covariance prediction as in the KF (a.2)

Innovation
5 Σk = Ck Pk|k−1 CT

k + Rk %Predicted measurement covariance as in the KF (a.3)
6 Kk = Pk|k−1 CT

k Σ−1
k %Kalman Gain as in the KF (a.4)

7 Pk|k = [In − Kk Ck] Pk|k−1 %Covariance innovation as in KF (a.5)

8 Ωk = Ck Ak Υk−1 + Ck Φk + Ψk %Aux. var. (represents excitation for parameter estimation) (a.6)
9 Λk = [Σk + Ωk Sk|k−1ΩT

k ]
−1 %Var. for simplification of (a.8) and (a.9) (a.7)

10 Γk = Sk|k−1 ΩT
k Λk %Parameter gain as in RLS (a.8)

11 Sk|k = Sk|k−1 − Sk|k−1 ΩT
k Λk Ωk Sk|k−1 %Parameter covariance update as in the RLS (a.9)

12 S̄k+1|k =
1
λ Sk|k %Parameter covariance after forgetting (a.10)

13 Sk+1|k = S̄k+1|k [I + (1− λ) ΣR S̄k+1|k]
−1 %Parameter covariance after regularization (a.11)

14 Υk = [I − Kk Ck] Ak Υk−1 + [I − Kk Ck] Φk − Kk Ψk%Aux. var. (a.12)

15 ỹk = yk − Ck x̂k|k−1 −Ψk ρ̂k−1 %Measurement error (meas-pred) (a.13)
16 ∆ρk = Γk ỹk %Parameter correction (a.14)
17 ρ̂k = ρ̂k−1 + ∆ρk %Parameter update (a.15)
18 x̂k|k = x̂k|k−1 + Kk ỹk + Υk ∆ρk %State update (a.16)

x̂k|k−1, x̂k|k: A priori and a posteriori state estimates.

Pk|k−1, Pk|k: A priori and a posteriori state error covariance matrices.

The exponential convergence of the state and parameter estimates is guaranteed

provided that the [Ak, Ck] pair is uniformly completely observable, the [Ak, Q
1
2
k ] pair is

uniformly completely controllable [39], and the system is being persistently excited:

Definition 2. The matrices Ak, Ck, Φk and Ψk are persistently exciting if there exist an integer
h > 0 and a real constant α > 0 such that, for all integer j ≥ 0, the matrix sequence Ωk driven by
Ak, Ck, Φk and Ψk through the linear system (a.6) and (a.12), satisfies

j+h

∑
k=j+1

Wp,k ≥ α I , where Wp,k , ΩT
k Σ−1

k Ωk (46)
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The regularization algorithm integrated in the adaptation law (a.10) enhances the ro-
bustness of the estimator so that, despite poor excitation, acceptable estimates are supplied.
More precisely, it prevents the so-called covariance wind-up phenomenon. During phases
of poor excitation, when the information is insufficient to determine all parameters,
some elements of Sk|k tend to grow unlimited, which may lead to an aggressive behaviour
and large estimation errors. The regularization algorithm sets bounds to this growth while
keeping the exponential convergence properties of the system when excitation is available.
This results in a more reliable and accurate estimation of both states and parameters.

In [3], it was already shown that, assuming known parameters, the system is always
observable. Hence, the [Ak, Ck] pair is uniformly completely observable. Furthermore,

it was also shown that, since Qk is a positive definite matrix, the [Ak, Q
1
2
k ] pair is uniformly

completely controllable. In spite of regularization, sufficient excitation is required for
the parameter convergence. Ensuring that, during a calibration manoeuvre, the persis-
tent excitation condition is met guarantees the convergence of the parameter estimates.
This may easily be investigated by computing the excitation matrix Wp,k online and
analysing how close it is to singularity. For this purpose, the determinant is used. A det(Wp,k)
close to zero indicates that the excitation is poor while large values of det(Wp,k) imply that
the information is sufficient to estimate all the parameters.

5.2.3. Estimator with Constraints

The specific force during standstill corresponds with the reaction to the acceleration
due to gravity:

f v
iv = −gv (47)

Hence, if the attitude angles (pitch and roll) of the vehicle coordinate system are
known, the values of each specific force component can be deduced. This relationship can
be exploited during the calibration procedure to incorporate additional information to the
estimator. Before or after the calibration manoeuvre, the vehicle could remain stationary in
an area where it is feasible to identify its attitude angles. An option would be to stand still
on a horizontal surface (normal to gravity) and infer the specific force components in the
vehicle coordinate system from the vehicle levels:

f v
iv,x 0 = −g sin θ rv

f v
iv,y 0 = g sin φ rv cos θ rv

f v
iv,z 0 = g cos φ rv cos θ rv (48)

Another option could be to identify the attitude angles of the vehicle coordinate
system using perception sensors.

This information yields a relationship between biases and misalignment angles:b fx

b fy

b fz

 =

 f̃ m
iv,x 0

f̃ m
iv,y 0

f̃ m
iv,z 0

−
 f v

iv,x 0
f v
iv,y 0

f v
iv,z 0

+

 0 − f v
iv,z 0 f v

iv,y 0
f v
iv,z 0 0 − f v

iv,x 0
− f v

iv,y 0 f v
iv,x 0 0


φmv

θmv
ψmv

, (49)

which can be integrated in the estimator in the form of constraints to improve the estimation
performance. One way of doing this is to integrate the parameter equality constraint as an
artificial measurement [40]:

y4 = f̃ m
iv,x 0 − f v

iv,x 0 = f v
iv,z 0 θmv − f v

iv,y 0 ψmv + b fx

y5 = f̃ m
iv,y 0 − f v

iv,y 0 = − f v
iv,z 0 φmv + f v

iv,x 0 ψmv + b fy

y6 = f̃ m
iv,z 0 − f v

iv,z 0 = f v
iv,y 0 φmv − f v

iv,x 0 θmv + b fz (50)
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Please note that these additional equations are affine with respect to the parame-
ters. Hence, their integration in the system will not distort the system structure of (45).
The resulting system will therefore take the following form:{

xk = Ad,k xk−1 + bd,k + Φd,k ρ
yc,k = Cc xk + Ψc,k ρ

, (51)

where yc,k =
(

ṽv
x,k + hp θ̇ rv,k , ṽv

y,k − hr θ̇ rv,k , ṽv
z,k , y4,k , y5,k , y6,k

)
.

5.3. Experimental Results

In order to evaluate the performance of the described algorithm, an experimental
validation is conducted. The test vehicle is a rear-wheel drive car equipped with the ground-
truth system (described in Section 1.2), an automotive-grade MEMS 6D IMU and series
chassis sensors. The analysed data have been generated during figure eight manoeuvres,
which provide a high level of excitation and stimulate the individual axes equally in both
directions. Unlike for the ground-truth–IMU relative orientation estimation, a restriction
for the maximum lateral excitation is set in the execution of the manoeuvre so that the
vehicle remains within the validity region of the single-track model (| f̃ m

iv,y| / 4 m
s2 ).

Two different estimator designs are compared:

(A) The regularized adaptive Kalman filter (Algorithm 2) with artificial measurement
constraints, according to (51).

(B) The regularized adaptive Kalman filter (Algorithm 2) without constraints, according
to (45).

The aim is to illustrate the benefits of exploiting the additional standstill information,
which is not explicitly given by the original system model.

Regarding the parametrisation of the estimator, the choice of the regularized adaptive
Kalman filter parameters (Algorithm 2) is shown in Table 4. The parametrisation was se-
lected based on the sensor specifications as well as data-driven evaluations of the proposed
adaptive estimator. Moreover, a first-order approximation has been used to obtain the
discretised system.

Table 4. Estimator scheme parameter choice, units according to the International System of Units.

Parameter Value

Q diag([2× 10−6, 2× 10−6, 1× 10−3, 1× 10−3, 1×
10−3, 1× 10−8])

R (A) diag([1× 10−2, 1× 10−1, 1× 10−2, 1× 10−4, 1×
10−4, 1× 10−4])

R (B) diag([1× 10−2, 1× 10−1, 1× 10−2])

P0
diag([1.2× 10−3, 1.2× 10−3, 4× 10−3, 4× 10−3, 4×

10−3, 1.2× 10−3])

S0
diag([8× 10−3, 8× 10−3, 8×

10−3, 1× 10−2, 1× 10−2, 1× 10−2])
x̂0 (0, 0, 0, 0, 0, 1)T

ρ̂0 (0, 0, 0, 0, 0, 0)T

ΣR diag([1250, 1250, 1250, 125, 125, 125])
λ 0.9996

In order to validate the results of the misalignment estimates, these are compared
against the misalignment angles obtained from the ground-truth–IMU and –vehicle extrin-
sic calibration, shown in Table 5.
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Table 5. Misalignment angles computed from the identified m-g and v-g misalignments in Sections 3
and 4 (see Tables 1 and 3). Results expressed in degrees.

Misalignment Angle mg vg mv

φ −0.192 0.117 ≈−0.309
θ 0.009 −1.171 ≈1.180
ψ 0.396 0.292 ≈0.104

The inputs of the estimator are depicted in Figure 13. Please note that the plotted
angular rates (ωx, ωy, ωz) are bias-compensated. Furthermore, note that the lateral specific
force mostly remains within the region of | f̃ m

iv,y| < 4 m
s2 . The corresponding estimation

results are shown in Figure 14.
First, let us focus on the estimator without constraints, i.e., (B). Especially conspicuous

in the plot is the fact that the determinant of the persistence excitation matrix is close to
zero for this estimator (see last sub-plot), indicating that there is not sufficient information
in order to properly infer all parameters. This may explain the unsteady behaviour of
the misalignment estimates. Furthermore, the parameter estimates do not converge to
the values computed from the ground-truth–IMU and –vehicle extrinsic calibration from
Table 5. Hence, one can conclude that the outputs of (45) do not carry sufficient information
to reach a satisfactory estimation of all the parameters, additional knowledge is required.
In view of these results, estimator (B) is not considered in further analyses.

−0.5

0

0.5

ω
[r
a
d
/
s]

ωm
x ωm

y ωm
z

−5

0

5

10

f
[m

/
s2
]

f̃m
iv,x f̃m

iv,y f̃m
iv,z

0

2

4

6

y
[m

/
s]

y1 y2 y3

Figure 13. Estimator inputs during a figure eight drive. The bias-free angular velocities (ωx, ωy, ωz), the uncorrected
specific forces ( f̃iv,x, f̃iv,y, f̃iv,z), the measurements (y1, y2, y3).

Things look different for the estimator with constraints, i.e., (A). Particularly note-
worthy is the determinant of the persistence excitation matrix, which is not close to zero
any more. This indicates that the estimator has enough information to properly infer
all parameters. This may well be the reason for the steady behaviour exhibited by the
parameter estimates, which stands in stark contrast with the results of the estimator with-
out constraints, i.e., (B). As for the comparison of the results with respect to the values
computed from the ground-truth–IMU and –vehicle extrinsic calibration (Table 5), the final
estimated parameters are fairly close. The differences in φmv, θmv and ψmv are as low as
0.004, 0.056 and 0.067 deg, respectively. Hence, one can conclude that the integration of the
additional standstill information in the form of constraints has improved the estimation
results by making the system persistently excited during the calibration manoeuvre.

Additionally, in order to assess the ability of (A) to follow artificially introduced
misalignments, the algorithm has also been run on corrupted data, where misalignments
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of (0.7, 0.5, 1.2) deg and accelerometer biases of (0.1,−0.1,−0.2) m/s2 have been added
to the original data. For the corrupted dataset, the misalignment estimates increased by
0.670, 0.503 and 1.212 deg for φmv, θmv and ψmv, respectively. Hence, the results show that,
despite the artificial biases, the algorithm is able to track the added misalignments.

Finally, the estimator (A) has been run using two additional data sets collected on
different days: a less dynamic figure eight drive with | f̃ m

y max| ≈ 3 m
s2 (M2) and a more

dynamic one in which | f̃ m
y max| ≈ 5 m

s2 (M3). This aims at analysing the variability of the
misalignment estimates within a collection of different figure eight drives and, moreover,
at assessing the effect of moderate deviations in the manoeuvre execution. The resulting
misalignment estimates from these manoeuvres together with the ones obtained from
the manoeuvre in Figure 13 (M1) are displayed in Table 6. The maximum differences are
as low as 0.035, 0.0530 and 0.021 deg for φmv, θmv and ψmv, respectively. Furthermore,
all results remain very close to the misalignments obtained from the m − g and v − g
extrinsic calibration. Hence, one concludes that the estimation results remain consistent in
spite of variations in the manoeuvre execution.
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Figure 14. Estimation results during the figure eight manoeuvre of Figure 13 for both estimators (A) and (B). Additionally,
in green, the parameter estimates obtained with estimator (A) based on the data corrupted by the artificial misalignment
error (0.7, 0.5, 1.2) deg for φmv, θmv and ψmv, respectively, and the artificial bias errors (0.1, 0.1,−0.2) m/s2 for b fx , b fy and

b fz , respectively. Finally, the determinant of the excitation matrix Wp,k = ΩT
k Σ−1

k Ωk is depicted in the last sub-plot.

Table 6. Estimation results of (A) for three different figure eight manoeuvres driven on different days.
M1 is the manoeuvre displayed in Figure 13 with | f̃ m

iv,y max| ≈ 4 m
s2 , M2 represents a less dynamic

Figure 8 drive with | f̃ m
iv,y max| ≈ 3 m

s2 and M3 corresponds with a more dynamic Figure 8 drive with

| f̃ m
iv,y max| ≈ 5 m

s2 .

Misalignment Angle M1 M2 M3

φ mv −0.313 −0.278 −0.300
θ mv 1.236 1.184 1.183
ψ mv 0.037 0.058 0.045

6. Conclusions

The present paper addresses the extrinsic calibration of a vehicle equipped with
series chassis sensors and an automotive-grade IMU. Specifically, it proposes a method to
estimate the misalignment between the IMU and vehicle coordinate systems. Unfortunately,
due to tolerances in the manufacturing processes, the transformation between the IMU and
vehicle coordinate systems is not perfectly known—while, due to the low angular motion
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of land vehicles, the positioning errors may be neglected, and misalignment errors have a
significant impact on the motion estimates.

One of the challenges that arises when evaluating the performance of such an extrinsic
calibration procedure is the fact that there is no simple way to measure the real misalign-
ment. In this work, a reference is proposed based on a high-precision INS/GNSS system,
which is taken as a ground-truth for the motion variables. Two calibration procedures to
estimate the 3D rotation between the ground-truth and both the IMU and vehicle coor-
dinate systems have been described and experimentally validated. The combination of
these two rotations yields a reference for the 3D rotation between the IMU and vehicle
coordinate systems.

The IMU–vehicle misalignment estimation has been addressed as a joint state and
parameter estimation problem represented in a state-affine form. The approach relies
on measurements from odometry, suspension and an automotive-grade IMU fused in a
regularised adaptive Kalman filter. It has been experimentally shown with figure eight
drives that the sole use of odometry, suspension and a single-track model does not supply
enough excitation to determine all states and parameters. Additional information is
required. In order to improve this aspect, a standstill phase, in which the vehicle attitude is
known, is used to incorporate further information in the form of artificial measurements.
Experimental results show that integrating this additional information decisively improves
the performance of the estimator. The persistence excitation condition is satisfied and the
estimated misalignments are consistent with the results obtained in the ground-truth–IMU
and –vehicle calibration procedures. Additionally, the estimator is able to follow artificial
variations in the misalignment angles and the variability of the estimates remains low
despite alterations in the manoeuvre execution.

The results presented in this article show that the proposed calibration procedure
is a robust and industrially viable method for the IMU–vehicle misalignment estimation.
Unlike other errors, such as the time-varying IMU biases, the misalignment between the
IMU and the vehicle is unlikely to change over time. In a series product, not equipped
with a ground-truth system, the proposed IMU–vehicle misalignment estimation may
be integrated into the end-of-line calibration of the vehicle. The calibration manoeuvre
can be standardized and driven manually or automatically at the end of the production
process. Moreover, the same method may also be used as a re-calibration procedure in
the case of structural modifications in the vehicle or its sensors, such as after replacing
the IMU. The identified misalignment angles may then be incorporated as parameters in
a vehicle motion estimation module, which, based on misalignment-compensated IMU
signals, supplies estimates of motion quantities during operation. It is left to the vehicle
motion estimation algorithm running online to account for time-varying errors, such as the
IMU in-run biases or the biases induced by ageing. This topic takes up a central question
in [3], in which a method for the simultaneous estimation of the vehicle motion states and
IMU biases is proposed and experimentally validated.

The usefulness of the knowledge of the 3D rotation between the ground-truth and
both the IMU and vehicle coordinate systems goes beyond that of supplying a reference
for the IMU–vehicle misalignment estimates. These transformations are required for a
consistent evaluation of motion estimation algorithms based on the ground-truth.

In the proposed calibration procedure, GNSS and perception sensor information have
not been used. However, if the vehicle is equipped with cameras, lidars, radars or accurate
GNSS receivers, their information may be integrated in the calibration procedure in order
to enhance its performance. However, this would come at a cost. A considerable increase in
complexity and quite some effort in guaranteeing the reliability of the information supplied
by these additional sensors is to be expected.

One of the limitations of the proposed approach is the fact that not all IMU systematic
error contributions are considered, such as scaling factor, non-orthogonality or nonlin-
earity error components. Certainly, if these contributions are significant, the accuracy of
the misalignment estimates may degrade. In order to mitigate the effects of these error
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contributions, an IMU end-of-line calibration procedure should be conducted by the sensor
supplier prior to the IMU assembly in the vehicle [41,42]. Furthermore, the specific orien-
tation of the vehicle coordinate system within the vehicle body may slightly vary due to
effects such as tire wear, load distribution or suspension warp. These uncertainties have
been neglected in this work since significant changes are not expected in normal operation
conditions (no faults nor extreme wear), which has also been supported by the analysed
data. However, a thorough analysis on a relatively large vehicle fleet over a large time span
could be carried out to investigate these effects. Conclusions may be drawn regarding the
frequency in which a misalignment calibration is needed and the particular events that
should trigger it. This may be the subject of future work.
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Appendix A. Derivation of (35)

Using the pitch and roll angles (θ rv, φ rv) with respect to the road plane and bearing in
mind that they remain small, the vehicle velocities may be obtained from the over-road
velocities as follows [3]:

vv
ev,x = vr

er,x − vr
rv,z θ rv + hp θ̇ rv

vv
ev,y = vr

er,y + vr
rv,z φ rv − hr φ̇ rv

vv
ev,z = vr

rv,z + vr
er,x θ rv − vr

er,y φ rv

(A1)

where hr and hp are the height of the origin of the vehicle coordinate system with respect
to the roll and pitch axes, respectively.

Both vr
er,x and vr

rv,z are primarily obtained from the odometry and suspension signals,
respectively. vr

er,y could be provided by a sensor measuring the over-road lateral velocity,
such as an optic sensor. Nevertheless, in the current work, we assume that such sensor is not
available. Instead, this information is obtained from a single-track model, which provides
a simplified but plausible description of the vehicle lateral motion within the region of
lateral accelerations up to 4 m/s2 under dry road conditions [37]:

vr
er,y = lr ωr

z − SG vr
er,x f r

ir,y, (A2)

where the relationship between f r
ir,y and f v

iv may be expressed as follows

f r
ir,y = f v

iv,y − f v
iv,z φ rv + φ̈ rv hr (A3)

Bearing in mind the low angular motion of land vehicles, particularly in the pitch and
roll direction:

ωr
z ≈ ωm

z (A4)

φ̈ rv ≈ 0 (A5)

f r
ir,y ≈ f r

iv,y = f v
iv,y − f v

iv,z φ rv (A6)

Due to the misalignment error, the specific forces and angular rates supplied by the
IMU are not expressed in v but in m. Using the rotation matrix R m

v , the specific force is
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transformed from the set of resolving axes of coordinate system m to the set of resolving
axes of coordinate system v

f v
iv,y = f m

iv,y − ψmv f m
iv,x + φmv f m

iv,z

f v
iv,z = f m

iv,z − φmv f m
iv,y + θmv f m

iv,x (A7)

Furthermore, substituting (A7) in (A6) results in

f r
iv,y = ( f m

iv,y − ψmv f m
iv,x + φmv f m

iv,z)− ( f m
iv,z − φmv f m

iv,y + θmv f m
iv,x) φ rv, (A8)

Now, substituting (A8) in (A2) yields

vr
er,y = lr ωm

z − SG vr
er,x

(
f m
iv,y − ψmv f m

iv,x + φmv f m
iv,z − f m

iv,z φ rv + φmv f m
iv,y φ rv − θmv f m

iv,x φ rv

)
, (A9)

and combining (A9) and (A1) gives

vv
ev,x = vr

er,x − vr
rv,z θ rv + hp θ̇ rv

vv
ev,y = lr ωm

z − SG vr
er,x

(
f m
iv,y − ψmv f m

iv,x + φmv f m
iv,z − f m

iv,z φ rv + φmv f m
iv,y φ rv − θmv f m

iv,x φ rv

)
+ vr

rv,z φ rv − hr φ̇ rv

vv
ev,z = vr

rv,z + vr
er,x θ rv

−
(

lr ωm
z − SG vr

er,x

(
f m
iv,y − ψmv f m

iv,x + φmv f m
iv,z − f m

iv,z φ rv + φmv f m
iv,y φ rv − θmv f m

iv,x φ rv

))
φ rv , (A10)

On the other hand, using the rotation matrix R m
v and applying the small-angle ap-

proximation, the following relationship is obtained:

vm
ev,x = vv

ev,x − ψmv vv
ev,y + θmv vv

ev,z

vm
ev,y = vv

ev,y + ψmv vv
ev,x − φmv vv

ev,z

vm
ev,z = vv

ev,z − θmv vv
ev,x + φmv vv

ev,y, (A11)

Rearranging (A11) yields

vv
ev,x = vm

ev,x + ψmv vv
ev,y − θmv vv

ev,z

vv
ev,y = vm

ev,y − ψmv vv
ev,x + φmv vv

ev,z

vv
ev,z = vm

ev,z + θmv vv
ev,x − φmv vv

ev,y (A12)

Substituting (A10) in (A12) results in

vv′
x + hp θ̇ rv = vm

ev,x + ψmv vv′
y − θmv vv′

z

vv′
y − hr φ̇ rv − SG vr

er,x

(
−ψmv f m

iv,x + φmv f m
iv,z + φmv f m

iv,y φ rv − θmv f m
iv,x φ rv

)
= vm

ev,y − ψmv vv′
x + φmv vv′

z

vv′
z + SG vr

er,x

(
−ψmv f m

iv,x + φmv f m
iv,z + φmv f m

iv,y φ rv − θmv f m
iv,x φ rv

)
φ rv = vm

ev,z + θmv vv′
x − φmv vv′

y , (A13)

where

vv′
x = vr

er,x − vr
rv,z θ rv (A14)

vv′
y = lr ωm

z − SG vr
er,x

(
f m
iv,y − f m

iv,z φ rv

)
+ vr

rv,z φ rv (A15)

vv′
z = vr

rv,z + vr
er,x θ rv −

(
lr ωm

z − SG vr
er,x

(
f m
iv,y − f m

iv,z φ rv

))
φ rv, (A16)

Finally, after taking into account the accelerometer biases, neglecting second-order
error terms and rearranging, the measurement equations of (35) are obtained.
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