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Abstract
Biomarkers that drift differentially with age between normal and premalignant tissues, such

as Barrett’s esophagus (BE), have the potential to improve the assessment of a patient’s

cancer risk by providing quantitative information about how long a patient has lived with the

precursor (i.e., dwell time). In the case of BE, which is a metaplastic precursor to esophageal

adenocarcinoma (EAC), such biomarkers would be particularly useful because EAC risk

may change with BE dwell time and it is generally not known how long a patient has lived

with BE when a patient is first diagnosed with this condition. In this study we first describe a

statistical analysis of DNAmethylation data (both cross-sectional and longitudinal) derived

from tissue samples from 50 BE patients to identify and validate a set of 67 CpG dinucleo-

tides in 51 CpG islands that undergo age-related methylomic drift. Next, we describe how

this information can be used to estimate a patient’s BE dwell time. We introduce a Bayesian

model that incorporates longitudinal methylomic drift rates, patient age, and methylation data

from individually paired BE and normal squamous tissue samples to estimate patient-specific

BE onset times. Our application of the model to 30 sporadic BE patients’methylomic profiles

first exposes a wide heterogeneity in patient-specific BE onset times. Furthermore, indepen-

dent application of this method to a cohort of 22 familial BE (FBE) patients reveals signifi-

cantly earlier mean BE onset times. Our analysis supports the conjecture that differential

methylomic drift occurs in BE (relative to normal squamous tissue) and hence allows quanti-

tative estimation of the time that a BE patient has lived with BE.

Author Summary

Barrett’s Esophagus (BE) is a metaplastic precursor to esophageal adenocarcinoma (EAC).
When a patient is diagnosed with BE, it is generally not known how long he/she has had
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this condition because BE is asymptomatic. While the question of how long a premalig-
nant tissue or lesion has been resident in an organ (dwell time) may not be of importance
for cases where curative interventions are readily available (such as adenomas in the
colon), for BE, curative interventions are either costly or carry patient risks. Knowledge of
a precursor’s dwell time may therefore be advantageous in determining the cancer risk due
to the stepwise accumulation of critical mutations in the precursor. In this study, we create
a molecular clock model that infers patient-specific BE onsets from DNAmethylation
data. We show that there is considerable variation in the predicted BE onset times which
translates, using mathematical modeling of EAC, into large variation in individual EAC
risks. We make the case that, notwithstanding other known risk factors such as chronolog-
ical age, gender, reflux status, etc., knowledge of biological tissue age can provide valuable
patient-specific risk information when a patient is first diagnosed with BE.

Introduction
There is great interest in the molecular characterization of precancerous fields and lesions (e.g.,
colorectal adenomas or ductal carcinoma in situ (DCIS) in the breast) to quantify their neo-
plastic potential, although it is generally not known how long such lesions (or fields) have
sojourned in a patient when they are discovered. This point is of particular importance in the
case of Barrett’s esophagus (BE), a variable-length metaplastic precursor of esophageal adeno-
carcinoma (EAC) that has been shown to undergo a stepwise progression to cancer involving
multiple rate-limiting events [1–3]. In spite of a generally low EAC progression risk of about
0.2–0.5% per year across BE patients [4], the progression risk is believed to be highly variable
and dependent on age, gender, histopathological grade, and personal risk factors such as sever-
ity of gastroesophageal reflux disease (GERD), body mass index (BMI), and smoking status [5].
However, since the total number of BE patients who progress to EAC is generally low for most
epidemiological studies (mostly due to limited follow-up), inter-individual variability in pro-
gression risk is difficult to specify other than by gross factors. Furthermore, the clinical assess-
ment of the BE tissue is known to be fraught with uncertainty as only a small portion of the
tissue is biopsied for pathology. Thus, there is a pressing need to develop more accurate mark-
ers (and risk stratifications) that identify BE that is more likely to progress to EAC in a person’s
lifetime versus BE that is indolent or has low neoplastic potential.

Inter-individual variability in the EAC progression risk may depend on the duration of how
long a patient has lived with BE (BE dwell time). In a large population-based study in Northern
Ireland, Bhat et al. [6] found a significant increase of the annual progression risk with patient
age (2-fold from age<50 to age 60–69) suggesting that the BE-to-EAC progression risk is not
constant but rather increases with the age of the BE tissue due to the stepwise accumulation of
genetic and epigenetic alterations that drive premalignant and malignant progressions in BE
[1, 2, 7]. Thus, a longer dwell time for BE may increase the risk for neoplasia and cancer in an
exponential manner consistent with the exponential increases observed in the age-specific inci-
dence of EAC in the general population [8, 9]. Also, in an environment of chronic inflamma-
tion analogous to that which is caused by GERD within BE, patients with ulcerative colitis have
a higher colon cancer risk that increases with earlier age of onset and disease duration [10, 11].
These risk factors unfortunately cannot be identified clinically in the case of BE because BE is
asymptomatic. Yet, the use of mathematical modeling to quantifiy the waiting (or dwell) time
of premalignant stages during carcinogenesis until the occurrence of cancer has been of consid-
erable interest [12].
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Recently identified age-related changes in DNA-methylation have led to the notion of a bio-
logical tissue age which, although highly correlated with chronological age, may differ signifi-
cantly from it [13, 14]. It is generally believed that epigenetic drift (i.e., neutral changes in DNA
methylation levels) is responsible for this process [15]. In this study we examine array-based
methylation patterns of CpG-dinucleotides across the genome to determine whether CpGs that
drift differentially between BE and normal tissue can be used to infer the relative biological age
of a patient’s BE tissue. Specifically, we identify CpGs that undergo such ‘methylomic drift’
based on array data from formalin fixed paraffin embedded (FFPE) tissue samples from two
groups of BE patients: one group of 10 patients each with 2 or more tissue samples that were
obtained at least 5 years apart (data set D1). These samples provide longitudinal information at
the individual level. A second group of 30 patients ranging in age from 21 to 88 (data set D2)
had matched tissue samples obtained from Barrett’s esophagus and adjacent normal esophagus
squamous epithelium (SQ), providing cross-sectional information as well as differential drift
information between SQ and BE tissue. The combined statistical analyses of these two data
sets, as described in Materials and Methods, suggest that numerous hypomethylated CpG sites
undergo significant differential methylomic drift in BE versus SQ. Significantly, the observed
patient-specific drift differentials appear relatively uniform across the set of identified 67
CpGs, giving rise to high correlations in the methylation differentials (against the mean drift)
between CpGs. Thus, a hallmark of methylomic drift is that the associated methylation differ-
entials between markers (across patients) are highly correlated, as are all clocks that keep time.
We also validated the computed methylomic drift rates for the 67 selected CpGs in an indepen-
dent data set of 10 additional BE patients (data set DV) each with samples at two time points.

To infer patient-specific BE onset times from the measured methylation levels of identified
CpGs that drift differentially between BE and SQ tissues, we use a Bayesian model that
accounts for (CpG-specific) random effects in drift rates, measurement error, and a patient-
specific BE onset time. Furthermore, to gain insights into how the age of BE onset may influ-
ence EAC risk, we used a recently developed mathematical model for EAC incidence to com-
pute standardized lifetime risks for the individuals in data set D2 given their predicted BE
onset times [8, 16]. Additionally, we applied this methodology to methylation array data from
22 familial BE (FBE) patients (data set D3). The quantitative predictions of both BE onset
times and inferred EAC risks for BE patients without neoplasia (D2) and familial BE (D3) sug-
gest that BE onset is a useful event-marker of cancer risk. In the following we describe the data
and methodologies that support this conclusion.

Materials and Methods
All CpG-methylation data for this study were generated with the Infinium HumanMethyla-
tion450 beadchip arrays (Illumina) [17, 18] that include over 485,000 CpG-methylation sites
throughout the genome (covering 99% of Reference Sequence (RefSeq) genes (National Center
for Biotechnology Information (NCBI), Bethesda, MD, USA). Data normalization was per-
formed using the R Bioconductorminfi package, which includes background level corrections,
color adjustments and Subset-quantile Within Array Normalization (SWAN) normalization.
SWAN is specifically designed for HumanMethylation450 array data to account for systemic
differences between the Infinium I and Infinium II probe designs [19]. Next we filtered out
unreliable, gender bias, and noisy probes from downstream analysis, including probes having
the average detection p-values across samples greater than 0.05, chromosome X-associated
probes, and those containing at least one SNP with low minor allele frequency (MAF = 0) in
the probe body [20, 21]. For linear regressions of the probe-specific methylation fractions on
patient age we used M-values rather than β-values to better account for epigenetic drift that
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occurs at very low (<1%) and high levels of methylation. M-values are logit2-transformed β-
values (computed using Illumina’s formula β =M/(M + U + 100)), allowing for non-linear sat-
uration effects of methylation fractions with age at both ends of the methylation spectrum.
Note, at the molecular level, CpG-methylation is essentially a binary variable (a CpG dinucleo-
tide is either methylated or unmethylated). However, in a tissue sample, only cell population
averages can be measured across all epigenomes in that sample.

Ethics statement
The human tissues used for the analyses presented here were obtained from 72 patients with
confirmed Barrett’s esophagus (BE). Written informed consent was obtained, signed by all par-
ticipants, and conformed to institutional ethics requirements. IRB approval (protocol numbers
1989, 8137) was given by the ethical review board of the Fred Hutchinson Cancer Research
Center.

Patient data
We examined levels of DNA methylation at over 450,000 CpG sites in tissue samples from four
groups of BE patients (see S1 Table for detailed patient information). The first data set (D1) is
unique and consists of serial samples from 10 BE patients, ages 33–70 years at index biopsy
(mean age = 51.2), with 2 or more tissue biopsies each that were collected at least 5 years apart
to comprise a total of 29 samples. D1 patient data for two particular CpGs that show longitudi-
nal drift for each of these 10 patients’ serial sample sets are shown in Fig 1.

The second, cross-sectional data set (D2) includes matched BE and normal squamous
esophageal epithelium (SQ) tissue samples from 30 BE patients ages 21–88 years (mean

Fig 1. Longitudinal drift from set D1. Examples of one CpG (cg21093043) that significantly drifts up (left panel, becomes increasingly
hypermethylated) and one CpG (cg19759478) that significantly drifts down (right panel, becomes increasingly hypomethylated) among
longitudinal data points (See Step 1 of Material and Methods). Each individual from data set D1 provides serial samples denoted by color. To
illustrate significant population drift across all serial samples for these two CpGs, the black dotted lines show the aggregate regression lines
across all samples for cg21093043 (p-value = .005) and cg19759478 (p-value = .001).

doi:10.1371/journal.pcbi.1004919.g001
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age = 63.4) comprising a total of 60 tissue samples. While the D1 data provide some informa-
tion on methylomic drift in BE tissue for each patient, the aggregated cross-sectional data also
provide population-level information on the mean drift rate across all patients and ages.
Although methylomic drift may depend on various factors, here we will focus on the influence
of BE dwell time, which may be highly variable from patient to patient, even for patients of sim-
ilar age. Fig 2 shows the probability densities of BE onset for two representative D2 patients’
ages at time of biopsy (a1 = 21, a2 = 80), and the theoretical consequence their ages will have on
the statistical inference of their BE onset ages. The inter-individual heterogeneity in BE onset
times will thus affect the methylation level data around the mean population drift. An illustra-
tion for a single CpG site j for the BE samples from D2 is shown in the insert of Fig 2. Note, for
the cross-sectional group (D2), the matched BE and SQ samples originate from biopsies col-
lected during the same endoscopic exam.

The third serial data set (DV) consists of 10 BE patients from Cleveland Clinic Foundation,
ages 54–77 years at index biopsy (mean age = 51.2), with 2 serial tissue biopsies each, compris-
ing a total of 20 BE samples.

The fourth data set (D3) includes BE tissue samples from 22 familial BE (FBE) patients ages
39–84 years (mean age = 62.8) with one sample per patient. Familial Barrett’s esophagus (FBE)
was defined as having a first- or second-degree relative with long-segment BE, adenocarcinoma
of the esophagus, or adenocarcinoma of the gastroesophageal junction whose diagnosis was
confirmed by review of endoscopy and histology reports [22]. The data also include gender
and age when the tissue biopsy was collected for each patient (see S1 Table).

Fig 2. Population drift from set D2. The heterogeneity with age around the mean population drift rate may
be caused by the inter-individual heterogeneity of BE onset times from a tissue of origin. Illustration of cross-
sectional BE data for a certain CpGj is shown in upper right inset with mean population rate bBEj. Due to lack
of data on onset age, we assume a priori uniform, flat distributions for BE onset times. Thus, two example
patients from data set D2, who had biopsies taken at index endoscopy ages a1 = 21 and a2 = 80, would have
mean BE onset times �s1 ¼ a1=2 ¼ 10:5 and �s2 ¼ a2=2 ¼ 40, respectively. Older patients diagnosed with BE
are expected to show greater mean and variance in BE onset ages compared to younger patients.

doi:10.1371/journal.pcbi.1004919.g002
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Identification of markers of differential methylomic drift
Two concepts have so far emerged that relate alterations in DNA methylation to biological tis-
sue age. The first is based on the discovery of sets of clock-CpGs that undergo age-dependent
changes in methylation that in combination correlate strongly with chronological age [13, 14,
23]. The second concept relates to subtle changes in methylation levels due to epigenetic drift
as a result of a semi-conserved replication process of DNA-methylation patterns [24–27]. Sig-
nificantly, some CpG-islands that show very low (hypo-)methylation levels early in life are
known to undergo gradual methylation over time, presumably as a result of sporadic de novo
methylation events during DNA replication, a process commonly understood as epigenetic or
methylomic drift [15, 24, 28–31]. Therefore, to narrow the number of CpG candidates that may
serve as markers for differential tissue aging in the emerging metaplastic tissue of BE patients,
we first identified CpGs that show significant longitudinal drift among the patients of our lon-
gitudinal study D1, as described below.

The following steps summarize our discovery pipeline in more detail.
Step 1: Identify BE drift-CpGs using longitudinal data. To identify CpGs that show con-

sistent drift across all patients in D1, we examined the relationship between incremental
changes in methylation levels (M-value) and time since first biopsy for all D1 patients as
shown in Fig 1. For marker j and individuals (i = 1, . . ., 10) each with longitudinal samples
obtained at times tik, where k enumerates the individual-level samples, we fitted linear regres-
sion models for incremental M-value changes in marker j as a function of time since each indi-
vidual’s first biopsy. Specifically, we model ΔMijk = bj(tik − ti1) + �ijk across all individuals in set
D1, in aggregate, with biopsy collection at times tik. We thus identified candidate CpGs that
undergo concordant incremental drift across these patients and determined the drift rates, bj,
j = 1, ..,M (regression slopes) for all available markers in the batch. We applied a highly per-
missive false discovery rate (FDR) of q = 0.20 for the incremental drift analysis to avoid exces-
sive pruning of potentially informative candidates. To ensure that these CpGs that appear to
drift incrementally (with time-since-first-biopsy) also drift cross-sectionally with age, we
simultaneously tested each CpG for concomitant cross-sectional drift across all samples in D1
together using a nominal p-value = 0.01 (illustrated by black dotted lines in Fig 1). Ultimately,
this testing identified 2,950 CpGs out of a total of 456,579 CpGs that drift upward and 1,781
CpGs that drift downward across the 10 D1 patients. While the ‘in-aggregate’ regressions for
incremental and population drift clearly ignore the inter-individual variability in the estimated
drift rates, bj, j = 1, ..,M for theM candidates we were able to identify, there appears to be some
heterogeneity in the drift rates between markers. However, for simplicity and because of the
relatively small number of samples available in D1, we assume homogeneity of the associated
drift rate distributions, i.e., the drift rates are assumed to have prior distributions of the form of
single (positively or negatively centered) normal distributions during Bayesian inference.

Step 2: Identify SQ vs BE differential drift in cross-sectional data. Next, we examined
which of the candidate CpGs identified in Step 1 show significant differential drift between the
matched SQ and BE tissues of data set D2. We used Analysis of Covariance (ANCOVA) regres-
sion modeling to test whether the methylomic drift rates (or regression slopes) differed
between SQ and BE tissues among the 30 patients in set D2. Specifically, for each marker j, we
regressed M-values derived from SQ and BE samples onto patient age with histology (SQ or
BE) as a categorical variable, i.e., M-valuej* age � histology. We divided the candidate CpGs
discovered in Step 1 into two subgroups: CpGs that are essentially hypomethylated in SQ tissue
with βSQ < 0.25 (400 CpGs), and those that can be considered hypermethylated in SQ tissue,
i.e., βSQ > 0.75 (274 CpGs) for all SQ samples in D2. See example CpGs from the hypomethy-
lated subgroup in Fig 3. As we will show, this categorization distinguishes positive and negative
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methylomic drift in BE tissue, respectively for hypo- and hypermethylated CpGs in the refer-
ence SQ tissue. This particular choice is less confounded by heterozygous methylation where
drift could occur in opposite directions (e.g., when the paternal allele is unmethylated, but the
maternal allele is methylated). Using ANCOVA, we found 75/400 CpGs to drift differentially
between BE and SQ in the first group (nominal p-values<0.05), while only 14/274 CpGs
appeared to drift differentially between the two tissues in the second group. As expected, the
majority (67) of the 75 differential, upward drifting CpGs have estimated BE drift rates that are
in fact larger than the corresponding SQ drift rates, while only 3 out of 14 differential, down-
ward drifting CpGs have estimated BE drift rates that are lower than the corresponding SQ
drift rates. Thus, we will continue our analysis and selection using the larger subset of 75 posi-
tively drifting CpGs.

A principal component analysis (PCA) of residuals from the BE methylation age regression
(which are hypothesized to reflect BE tissue age differences) for the selected 75 differential,
upward drifting CpGs confirms the clustering of these CpGs into one group (67 CpGs) with
cross-sectional BE drift rates that are estimated to be higher than those estimated for SQ tissue,
which tend to be flat. Only a few outliers (8 CpGs) show the opposite behavior and likely repre-
sent false positives from the initial candidate selection in Step 1 (see Fig 4). Thus, we consider
the remaining 67 differential drift CpGs as an admissible subset that provides the desired

Fig 3. Cross-sectional data and BE clock CpGs.Cross-sectional patient data D2, in which matched squamous (SQ) M-values (black points) and BE M-
values (red points) are plotted at corresponding age of biopsy. (A-D) Top row shows 4 of 400 total hypomethylated CpG sites, in which the regression rates
of SQ and BE across individuals is not significantly different (p-value = 0.5). In contrast, (E-H) the bottom row shows 4 of the 67 BE clock CpGs with highest
p-values for significant individual BE drift from the longitudinal data set D1. The BE clock CpGs are chosen to have significant BE drift differing from SQ drift
(p-value = 0.05 with ANCOVA) and large heterogeneity around the population average due to heterogeneous BE onset ages (see Material and Methods).
BE data for the longitudinal patients in data set D1 (designated by ‘+’ signs, as in Fig 1) show consistency between the two data sets. Corresponding
regression lines for cross-sectional data D2 are also plotted.

doi:10.1371/journal.pcbi.1004919.g003
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differential methylation information for a quantitative estimation of BE onset times. Additional
information on each of the 67 CpGs is provided in S2 Table. In the following we will refer to
this specific subset as BE clock CpGs. We also find that the qualities of our 67 BE clock CpGs
are robust in terms of number of CpGs used for the BE onset estimation (see S2 Fig).

Fig 3E–3H shows data (M-values) from patient data sets D1 and D2 for 4 of the 67 BE clock
CpGs. Next, we show how the individual BE onset times can be estimated from the methylomic
drift observed in these clock CpGs using a Bayesian model that allows for measurement error
and uncertainty in marker-specific BE drift rates.

Bayesian BE clock model for estimating onset times and drift
Here we show how information about methylomic drift characteristic of BE and differential
between BE tissue and normal squamous (SQ) tissue can be combined with individual-level
methylation data at a given age to predict when a patient developed BE assuming there is a sin-
gle time point of origin for BE. Our model (described below) employs Bayesian inference to
derive dates of BE onset via initial differential drift away from squamous methylation values,
and in this way our method can be considered somewhat analagous to dating divergence times
in phylogenies with a relaxed molecular clock [32]. In the following we assume that methylo-
mic drift is essentially linear with age (at the logit scale), although there is also evidence that
age-associated variation in methylation levels may be better modeled by a function of logarith-
mic age for younger individuals [23]. However, this approach has the flexibility to accommo-
date non-linear drift.

For patient i, i = 1, . . ., N, the data consist of measurements yBEi,j(ti) for BE clock CpGj

(j = 1, . . ., 67) at observation time (age) ti = ai. We consider the following linear drift model for
the conditional expected methylation values of variable YBEi,j(ti), taken from patient i at time ti

Fig 4. Principal Component Analysis. PCA analysis of regression residuals for 75 differential drift CpGs
identified from data set D2. The green points designate the 67 BE clock CpG set. See text for details.

doi:10.1371/journal.pcbi.1004919.g004
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for each clock CpG, given the onset of BE occurred at time si� ti,

E½YBEi;jðtiÞ� ¼ a
SQj

þ b
SQj
si þ bi;jðti � siÞ; ð1Þ

for j = 1, . . ., 67. Thus, given the following parameters—the onset of BE at time TBE = si, the
rate (bSQj) and intercept (αSQj) of the SQ population regression lines obtained from individuals
with matched samples in data set D2, and the patient-specific, CpG-specific BE drift rate bi,j—
we observe 67 independent measurements for N independent individuals. Furthermore, we
used the linear regression slopes and intercepts provided by the ANCOVA procedure using the
normal squamous sample group in D2 to impute αSQj and bSQj in D3 for each BE clock CpG, as
implemented in the model shown in Eq (1). For this data set, we did not have matched SQ sam-
ples but because the methylation values in normal squamous tissue show little variation for our
selection of BE clock CpGs, we assumed that the normal squamous tissues behave similarly for
non-familial and familial patients. We show that this approach for imputing SQ M-values for
non-matched samples is robust in a sensitivity analysis given in Results. Allowing for patient-
specific drift rates for the BE clock CpGs, we explicitly model the inter-individual differences in
BE drift rates between ‘slow’ and ‘fast’ aging BE tissues relative to the standard clock, which are
measured from means and standard deviations of the serial samples.

Again, the observation from a single patient i, for i = 1, . . ., N, observed at time ti, is of the
form

yi ¼ fyBEi;j; j ¼ 1; � � � ; 67g: ð2Þ

In the Bayesian BE clock framework defined by Eq (1), the likelihood contribution from a
single patient observed at time ti is given by

Y67

j¼1

f ðyBEi;jÞ

¼
Y67

j¼1

fNðyBEi;j; mBEi;j ¼ aSQj þ bSQjsi þ bi;jðti � siÞ; sBEiÞ;
ð3Þ

where fN is the normal density function. For the Bayesian model we further assume uniform
priors ps(si) for the BE onset times si (due to the fact that the distribution of BE onset times in
the general population is essentially unknown), conjugate gamma priors pσ(σBEi) for the stan-
dard deviation σBEi of methylation measurement values using shape and scale parameters fitted
to the distribution of non-drifting CpG measurements, and normal prior distributions pb(bi,j)
for the drift rates bi,j, j = 1, . . ., 67, which were derived from the longitudinal data sets with
empirical mean and standard deviation (see S1 Text for full expressions of prior distributions).

In order to ultimately simulate the BE onset times s1, . . ., sN from the corresponding
patient-specific posterior distributions, let us define the vectorCi = (si, bi,1, . . ., bi,67, σBEi) for
patient i. Samples ofCi under its posterior distribution for patient i will be obtained using Mar-
kov Chain Monte Carlo (MCMC). The posterior distribution ofCi given the observation yi
comprised of patient-specific data of the form in Eq (2), for i = 1, . . ., N, is given by

pðCijyiÞ / likelihood � prior ð4Þ

¼
Y67

j¼1

f
N
ðyBEi;j; mBEi;j

; s
BEi
Þ � p

s
ðsiÞ � pb

ðbi;jÞ � ps
ðs

BEi
Þ: ð5Þ
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To estimate the model parameters of this Bayesian BE clock model we used MCMC with
Gibbs sampling [33]. All the full conditionals are known distributions. Specifically, for each
individual i, i = 1, . . ., N, we estimated the posterior means, medians, and other quantiles of the
BE onset time si, patient-specific, CpG-specific drift rates bi,j, j = 1, . . ., 67, and patient-specific
standard deviation of measurements parameter, σBEi. All MCMC simulations were run for
100K cycles and allowing 1K cycles for burn-in.

Validation of methylomic drift
The Bayesian BE clock model requires specification of a prior distribution pb(bi,j) for the drift
rates bj, j = 1, . . ., 67 of the BE clock. In the preselection pipeline described above (Step 1), we
obtained mean drift rates (slopes) and standard deviations for each arrayed CpG in the longitu-
dinal study D1. To illustrate the degree of variability and uncertainty in the estimated drift
rates we show normal distributions with those means and standard deviations individually (in
Fig 5, light dashed green curves) and aggregated as a single normal distribution (solid green
curve). To validate the methylomic drift associated with these 67 BE clock CpGs in an indepen-
dent longitudinal data set (denoted as DV), we used the procedure described in Step 1 to evalu-
ate the drift rates (regression slopes) for each of the 67 CpGs. The results are shown in Fig 5,
analogous normal distributions for each of the 67 CpGs in the clock set individually (light
dashed purple curves) and in aggregate (solid purple curve) for the validation set DV. S3 Fig
shows a scatterplot of mean drift rates between data sets D1 and DV. As expected, overall we
observe slightly decreased means and increased variances in the drift rates of the clock CpGs in

Fig 5. Validation of methylomic drift. Normal distributions derived from regressions using M-values from
serial data set D1 across 67 CpGs individually (light dashed green curves) and combined (solid green line).
Similar normal distributions derived from regressions using M-values from serial data set DV across these 67
CpGs individually (light dashed purple curves) and combined (solid purple line) are also plotted. Both prior
choices from D1 and DV (solid lines) are shifted to the right of zero (vertical dashed black line) depicting
validated positive drift in BE tissue for the BE clock CpG set.

doi:10.1371/journal.pcbi.1004919.g005
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the validation set DV, a phenomenon commonly referred to as “winner’s curse”, reflecting the
typical overestimation of effect sizes in discovery samples (see Fig 5). Ultimately, there was
minimal effect of this bias conferred on posterior parameter estimates (see S1 Text).

Testing significance of BE dwell time differences
In Results, we will apply the Bayesian BE clock model to estimate model parameters for 2
patient data sets independently—cross-sectional (D2) and FBE (D3). To formally assess differ-
ences between different patient groups, we use Bayes factors to statistically test if the BE onset
ages estimated for one group si, i = 1, .., Nk, lead to BE dwell times that are significantly differ-
ent from those of a second patient set with estimated BE onset ages s0i, i = 1, .., Nl, for k, l 2 {2,
3}. For two specified data sets Dk, Dl, we compare the average fraction of life until age at biopsy
(ai) during which the patient harbored BE. This quantity is given for two data sets by the fol-
lowing variables,

gk ¼
1

Nk

XNk

i¼1

ai � si
ai

; gl ¼
1

Nl

XNl

i¼1

a0i � s0i
a0i

: ð6Þ

Thus, we are interested in testing hypotheses H0: γk > γl versus H1: γk � γl. For this test, we
consider data y� ¼ fy1; . . . ;yNk

;y0
1; . . . ;y

0
Nl
g comprised of patient-specific observations of

the form in Eq (2) and compute the Bayes factor

B01 ¼
Pr ½y�jH0�
Pr ½y�jH1�

¼ Pr ½H0jy��=Pr ½H0�
Pr ½H1jy��=Pr ½H1�

¼ Pr ½H0jy��=Pr ½H0�
ð1� Pr ½H0jy��Þ=ð1� Pr ½H0�Þ

ð7Þ

to quantify the evidence in favor of the null hypothesis H0 and against the alternative H1 [34].
To compute Pr[H0|y*], we apply the ergodic theorem and approximate the posterior probabil-
ity by the fraction of MCMC samples satisfying γk > γl. The prior Pr[H0] is computed similarly
except we sample onset times si for the two groups of patients being compared directly from
the uniform prior distributions si * Uniform(0, ai).

Open source code
The methods outlined in this section are implemented by the Bayesian BE clock model. All
necessary tools to employ this model via the Gibbs sampler are available in documented R code
at https://github.com/yosoykit/BE_Clock_Model.

Results

Bayesian BE clock model estimates for BE patients in D2
First, we used the Bayesian BE clock model to obtain posterior estimates of parameters for data
set D2 (size N2 = 30 patients) with the BE clock set of 67 CpGs. See Materials and Methods for
modeling details and CpG selection. Fig 6 depicts the wide inter-individual variability in the
predicted BE onset ages among the 30 patients in D2, with interquartile and 95% credible inter-
vals (CIs) denoted by box and whisker, respectively, for each Markov Chain Monte Carlo
(MCMC) parameter estimate of BE onset age si, i = 1, .., N2. For these 30 patients, median
MCMC estimates for BE onset ages ranged from 2.0 to 59.0 years of age, with a median of 33.6
years of age. The model also estimates CpG specific drift rates bi,j, j = 1, .., 67 for the BE clock
set and a measurement standard deviation parameter, σBEi for each individual i (see Materials
and Methods for details).
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The BE onset age estimates for the patients in D2 were obtained using prior pb(bi,j) derived
from data set DV (purple curve in Fig 5). We provide MCMC results when using this prior
because 1) the estimates of BE onset times si, i = 1, . . ., N, using the DV prior are very similar to
those when using the D1 prior, and 2) the DV prior introduces no bias (i.e., more realistic over-
all population drift distribution) because it was not used for the BE clock CpG marker set
selection.

Sensitivity analyses. To investigate the sensitivity of the estimated BE onset ages on the
number of CpGs used in the MCMC algorithm we randomly subsampled smaller sets (n = 5
and 20) from the full set of 67 identified BE clock CpGs. We found our estimates of BE onsets
to be robust in terms of the number of BE clock CpGs needed to discriminate among patients
of similar chronological age who reveal rather distinct (early versus late) BE onset estimates
(see the example given in S2 Fig).

Note, Eq (3) assumes independence of the observations given the BE onset time s. This
assumption may in fact be violated within CpG islands due to non-local effects in DNA meth-
ylation maintenance. To test whether the presence of multiple CpGs on the same CpG-island
leads to a bias or significant deflation of the posterior CIs of the BE onset estimates, we
completely removed island-level multiplicities by randomly selecting a single CpG per island
(including shore and shelf). There are 51 unique islands and one category for CpGs that are
not associated with an island that contribute to our clock set. A comparison of the posterior
means and CIs of the BE onset times (data set D2) using this construct against randomly cho-
sen control sets of the same size (i.e., 52 CpGs), we find no evidence of bias in the BE onset esti-
mates, nor any significant inflation of the CIs (Welch’s two-sample t-test: p-value>0.9).

Lastly, we tested whether our approach of using the inferred SQ drift from linear regression
rather than the patient-specific SQ-matched samples themselves would lead to any loss of
information with respect to the estimated BE onset ages. To do this, we used the difference in

Fig 6. Predicted BE onset times for 30 BE patients in D2. Boxplots depict the MCMC simulated posterior BE onset time distributions for all 30
patients, si, i = 1, . . ., 30, in data set D2. The MCMC estimates suggest large inter-individual heterogeneity in BE onset times (median onset
age = 33.6, range = [2.0, 59.0]), which translates into widely varying EAC risk predictions between patients.

doi:10.1371/journal.pcbi.1004919.g006
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M-values between BE and SQ, Δ, as the observations in an analogous model (see S1 Text for
full analysis) and found that the root-mean-square error in BE onset age estimates was less
than one year across D2 patients (see S4 Fig). Thus, our method is robust and suitable for use
with BE patient data that does not include SQ-matched tissue, such as data set D3.

BE onset predictions for familial BE cases in D3
To quantify the aggregation of BE and EAC in families, Chak et al. performed a study with 411
patients with BE and/or its associated cancers, and found that familial BE (FBE) can be deter-
mined in 7.3% of patients, comprising 9.5% of EAC cases [22]. One hypothesis is that FBE
patients have a stronger predisposition to develop BE compared to non-familial individuals,
possibly due to inherited susceptability gene(s). We estimated the Bayesian BE clock model
parameters for the independent data set D3 (size N3 = 22 patients) with FBE, with age range
39–84 at time of biopsy (mean age = 62.7). Fig 7 depicts the posterior median BE onset ages
estimated for the 22 patients in D3, with interquartile and 95% credible intervals denoted by
box and whisker, respectively. For these 22 patients, median MCMC estimates for BE onset
ranged from 0 to 46.4 years of age, with a median of 26.1 years of age. The youngest FBE
patient is shown to have onset at birth due to the incongruence of the standard clock drift rate
distribution with his methylation values for the molecular clock set and thus we were unable to
obtain positive posterior estimates of his onset age.

Because a younger age of disease onset is often considered a surrogate marker for a genetic
or environmental predisposition, we tested the hypothesis that the FBE patients of data set D3
had been living with their BE for longer than the general BE patients in data set D2, which in
our notation translates to H0: γ3 > γ2 (see Materials and Methods for details). The Bayes factor
(see Eq (7)) was conservatively estimated to be 100K. This result provides decisive support in
favor of the hypothesis that the FBE patients indeed harbored BE (relative to their ages when

Fig 7. Predicted BE onset times for familial BE patients in D3. Boxplots depict the MCMC simulated posterior BE onset time distributions for
all 22 patients, si, i = 1, . . ., 22, in data set D3. Testing via the Bayes factor suggests that the difference between average BE dwell times for FBE
patients versus average BE dwell times for BE patients in data set D2 (see Fig 6) is highly significant.

doi:10.1371/journal.pcbi.1004919.g007
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biopsies were removed for analysis) longer than the general BE population harbored BE (see
left panel of Fig 8 for violin plot depicting this result).

Predicted EAC risks for BE patients
With the BE onset predictions provided in the previous results, we are in a position to associate
a patient-specific risk of developing EAC before a certain age. We computed the cumulative
risk of developing EAC for each patient before age 88 (age of the oldest patient in our data sets)
by using tissue age biomarker data to inform the modeling of the neoplastic progression to
EAC. Such an integrated perspective for cancer risk management has recently been suggested
by Li and colleagues [35]. To this end, we employ a mathematical model for EAC progression,
termed the multistage clonal expansion for EAC (MSCE-EAC) model, that was previously cali-
brated to EAC incidence in the US by birth cohort, to obtain EAC risk estimates for each
patient assuming that all patients share similar risk factors (e.g., unknown dysplasia status at
time of biopsy) for EAC progression [8, 16]. Specifically, for each BE patient who has not been
diagnosed with EAC by age a, given estimated BE onset time TBE = s, we computed the follow-
ing risk

Pr ½T
EAC

< 88jT
BE
¼ s;T

EAC
> a� ¼ S

MSCE
ða� sÞ � S

MSCE
ð88� sÞ

S
MSCE

ða� sÞ ; ð8Þ

where SMSCE is the EAC survival probability for the multistage clonal expansion (MSCE)
model after BE initiation (see S1 Text for a derivation and S1 Fig for a model schematic) [8, 16,
36]. Alternatively, we may use summary (constant) risk estimates of progressing from non-dys-
plastic BE to EAC using published annual risk estimates across individuals of different age and
different BE onsets. Note, however, for general s< a our mathematical EAC model implies the

Fig 8. Comparison of Predicted BE onset times and dwell times. (Left panel) Violin plot depicts distributions of median posterior estimates
for BE onset times for N2 = 30 sporadic BE patients in D2 and N3 = 22 familial BE patients in D3, respectively. The boxplots for similar age-at-
diagnosis (i.e., age-at-biopsy) for the two groups is also provided (grey boxplots). (Right panel) Violin plot depicts distributions of EAC risk given
median BE onset age estimates for general BE patients in D2 and FBE patients in D3, respectively.

doi:10.1371/journal.pcbi.1004919.g008
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following inequality,

Pr ½T
EAC

< 88jT
BE
¼ s;T

EAC
> a� 6¼ Pr ½T

EAC
< 88jT

BE
< a < T

EAC
�; ð9Þ

which demonstrates that a patient’s BE onset adds information to refine blanket risk stratifica-
tions that do not consider this information.

As a demonstration, we used this model to compute the patient-specific risk of developing
EAC by age 88 assuming a standardized 1950 birth cohort, allowing for gender-specific model
parameters, by inputting the BE onset age estimate s for each patient into Eq (8). See S1 Table
for the MCMC BE onset median estimates (with 95% credible intervals) of the 2 BE data set
groups. Fig 8 shows the distributions of median MCMC estimated BE onsets for the 2 patient
data sets (green violin plots) and their age-at-biopsy distributions (grey boxplots), alongside
the corresponding EAC risk estimates for these onset ages. Of the two patient groups, the FBE
patients in data set D3 have a significantly higher predicted median EAC risk estimate of 0.47
compared to the sporadic BE population with a median risk of 0.11. Because EAC risk is pre-
dicted by our model to increase monotonically with BE dwell time for patients of the same age,
the correlation between estimated BE onset age and predicted EAC risk by age 88 is very high
across patients (corr = .92 for data set D2, corr = .97 for data set D3, see S5 Fig).

Discussion
A fundamental problem in predicting the risk of esophageal adenocarcinoma (EAC) in patients
with BE continues to be the difficulty in assessing the neoplastic potential of BE, which is con-
sidered the premalignant field in which EAC arises. Several lines of evidence and theoretical
considerations support the notion that both BE segment length and the duration of how long
BE has been present in a patient (i.e., BE dwell time) are important determinants of EAC risk
in addition to environmental and genetic risk factors [16, 37, 38]. While endoscopic surveil-
lance with systematic biopsy sampling is the standard clinical care to screen BE patients for
dysplasia and early cancer, most BE patients never develop esophageal cancer in their lifetimes.
Priority has therefore been given to novel approaches to identify the molecular signatures of
EAC progression and biomarkers in an attempt to more precisely define EAC risk at an indi-
vidual level. However, because chronological age is recognized as one of the strongest predic-
tors of cancer risk, renewed attention has been given to exploring the roles of biological tissue-
age and cellular senescence in the progression to cancer [39].

Unfortunately, a clinical determination of when a patient first developed BE is presently not
possible because BE is mainly asymptomatic (over 90% of EAC cases do not present with a
prior history of BE [40]). For this reason we made an attempt to validate our BE onset predic-
tions indirectly through two lines of evidence. First, we validated the longitudinal drift rates
with an independent data set (DV). Although the drift rates for the BE clock set were generally
lower in the validation set DV compared with the rates seen in set D1 (which we attribute to
selection bias in D1), we found very similar estimates of the BE onsets using either drift-rate
prior distribution in our Bayesian model. Secondly, we considered previous efforts to identify
tissue-based indicators that accurately reflect the biological age of a tissue using regularized
regression techniques by directly regressing age on the levels of methylation at a large number
of CpGs to identify subsets of CpGs that are predictors of chronological age [13, 14]. Although
we cannot use these techniques in this context because the BE onset times are unknown, we
find that our predictions are at least broadly consistent with the straightforward application of
these clock models to estimate absolute tissue-age differences between BE and SQ tissue. Spe-
cifically, using the published elastic net coefficients by Horvath [14] and by Hannum et al. [13]
we computed the predicted biological age of the BE tissue and subtracted the predicted
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biological age of the normal squamous (SQ) esophageal tissue to arrive at crude estimates of
the BE dwell time for the 30 patients in D2 (the cross-sectional cohort of patients). By subtract-
ing these estimates from the chronological ages of the patients we obtained corresponding BE
onset times that correlated well with our predictions (r = 0.77 for the Horvath 110 clock-CpG
model, r = 0.84 for the 89 clock-CpG model by Hannum et al.).

Finally, we tested our clock model using methylation array data from 22 familial BE patients
(set D3). Patients from both groups D2 and D3 have similar age distribution (see Fig 8 and S1
Table). However, compared to the onset ages estimated for the patients in data set D2, the
familial group show increased BE dwell times; Bayes factor testing for the FBE study suggests
that the inferred BE onset times, although heterogeneous (Fig 8), tend to occur significantly
earlier in life for FBE patients compared to nonfamilial BE cases implying a possible heritable
predisposition to develop BE metaplasia. Given that the predictions of BE onsets among FBE
cases are significantly earlier than the predictions for the sporadic cases, it is perhaps surprising
that the age distribution for the familial cases is not dissimilar to the age distribution for the
sporadic cases (see grey boxplots in Fig 8). One possible explanation is that, next to symptom-
atic reflux, heartburn and other common risk factors, family history may not have been an
indicator for referral to endoscopy as familiarity of this disease was only discovered in the past
couple decades [22]. Therefore, if reflux frequency and other indicators for referral are similar
for familial and non-familial patients, we expect the mean ages of BE diagnosis to be similar
between the two groups. Specifically, we found the median estimates of BE onset age for the
FBE patients to be 7.4 years earlier on average than the sporadic BE cases in study D2. This
result is consistent with the result of a large study by Chak et al. that concluded that multiplex
FBE families (multiplex being defined as having at least 2 confirmed FBE cases among family
members) develop EAC at an earlier age compared with nonfamilial EAC cases [38]. Similar to
the conclusions drawn by these authors, our result suggests that FBE patients may need earlier
and possibly more frequent endoscopic screening for neoplastic lesions in BE tissue before
EAC develops.

Given the theoretical implications of our proposed model of BE initiation and progression to
EAC, we propose that once a patient’s BE onset has been estimated from his/her methylomic
drift profile, his/her risk of developing EAC can be estimated more precisely. We have used a
previously validated multistage clonal expansion model for EAC incidence which explicitly con-
siders the uncertainty of the timing of BE onset in the general population and describes, condi-
tional on when BE develops, the stochastic process of neoplastic progression frommetaplastic
to dysplastic tissue to cancer [8, 16]. These theoretical predictions show a strong dependence of
EAC risk on the BE dwell time (see Fig 8). Importantly, we found that the lifetime risks for the
individuals in study D2 vary widely, with an interquartile range of 0.01 to 0.44. It is important
to recognize that these EAC risk predictions do not consider the effects of interventions and
therefore may be overestimates. Although this predicted variability in risk stands unconfirmed,
our median risk prediction of 0.11 for the D2 patients (see Fig 8) is consistent with empirical
estimates of the EAC lifetime risk in BE patients found in the range 0.07–0.13 [41]. Therefore,
the finding that the lifetime risks for the individuals in study D2 vary widely with an interquar-
tile range of 0.01 to 0.44 translates into relative EAC risks (for the 4th quartile relative to 1st
quartile) of> 40, assuming an otherwise homogenous population. For comparison, we found
positive correlations between our D2 EAC risk predictions based on BE onset and D2 EAC risk
estimates using previously reported risk factors based on gender (corr = 0.57, p = .001), histo-
pathological grade (corr = 0.53, p = .003), and chronological age (corr = 0.49, p = .006) [6].
However, each of those risk factor estimates led to much lower relative EAC risks of<3. This
suggests that BE onset, as determined by methylomic drift, can be considered a potential bio-
marker for EAC risk, although further validation via properly powered prospective studies or
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case-control studies in BE patients are needed to confirm this. Such studies may provide the req-
uisite data to further test how well BE tissue-age performs in identifying individuals that likely
progress to HGD or EAC in their lifetime so that endoscopic surveillance and available interven-
tions can be utilized more effectively.

Supporting Information
S1 Text. Mathematical details of clock model and predicted patient-specific EAC risk.
Explicit distributions used in the Markov Chain Monte Carlo (MCMC) inference and an analy-
sis for robustness of imputing normal squamous M-values is provided. For the multistage
clonal expansion for EAC (MSCE-EAC) model, we derive the equation for EAC risk given a
patient’s BE onset age from the backward Kolmogorov equations corresponding to the multi-
type branching process [16].
(PDF)

S1 Fig. The multistage clonal expansion for EAC (MSCE-EAC) model. Normal squamous
epithelium may transform to BE with an exponentially distributed onset time with rate ν(t),
followed by a ‘two-hit’ tumor initiation process with Poisson initiation rates μ0, μ1, which leads
to the stochastic appearance of premalignant progenitor cells in the tissue. Premalignant cells
undergo a first clonal expansion described by a birth-death-migration process with cell division
rate αP, cell death-or-differentiation rate βP, and malignant transformation rate μ2. Malignant
cells, in turn, undergo a second clonal expansion by a birth-death-detection process with cell
division and death rates αM and βM, respectively, allowing for stochastic growth and possibly
extinction of the malignant tumor. Clinical detection occurs through a size-based detection
process with parameter ρ. TSG, tumor suppressor gene [16].
(TIFF)

S2 Fig. Robustness of the number of CpGs in the BE clock set. Comparison of the posterior
distributions of BE onsets for two 84 year old BE patients (pt. 21 and pt. 28) in study D2 using
the identified set of 67 BE clock CpGs (thin solid line). To test the relative robustness of the
estimated mean BE onsets, we also generated random subsamples (without replacement) of
size 5 and 20 from the 67 clock CpGs. Shown are the distributions of the median BE onset esti-
mates using MCMC (5K cycles) for n = 5 CpGs (thick solid lines) and n = 20 CpGs (dashed
line).
(TIF)

S3 Fig. Scatterplot of mean drift rates between data sets D1 and DV. Between the entire sets
D1 and DV, we see relatively low correlation for mean marker-specific drift rates calculated via
linear regression (see Methods). However, this plot does suggest that there are outliers (nega-
tive bj rates in DV colored in red) that hide an interesting correlation. Rather than homogenous
drift, the correlation between longitudinal drift rates in D1 and DV (with outliers removed,
corr = 0.45, p-value< 0.05) suggests the presence of heterogeneity in marker-specific drift
rates. Ultimately, there was minimal effect conferred on posterior parameter estimates due to
“winner’s curse” bias inherent in the D1 drift rates calculated during BE clock marker selection
versus validation DV drift rates when used as two candidate priors in the MCMC (see S1 Text).
(TIFF)

S4 Fig. Robustness of BE onset estimation using imputed squamous drift. For the
unmasked (grey boxplots) and masked (purple boxplots) implementations of inferring BE
onset ages, we found that using an imputation of the intercept and drift rates of SQ tissue val-
ues across the D2 patients rather than exact matched SQ values is a robust approach (see S1
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Text for details). Specifically, the correlation of median estimates between the two methods
was .98, and the root-mean-square error between onset ages was 0.08 years.
(TIFF)

S5 Fig. Predicted EAC risk by age 88 given BE onset age estimates. Across patients in data
sets D2 (blue points) and D3 (black points), there is high correlation between the median
MCMC posterior estimates for BE onset age and the corresponding EAC risk before age 88 as
predicted by the multistage clonal expansion model (S1 Fig) that utilizes BE onset as an input.
The stochastic model predicts that risk increases exponentially with earlier BE onset ages for
patients of similar age. Square points designate males, triangle points designate females.
(TIFF)

S1 Table. BE patient information for 5 independent data sets. Patient-specific information
(72 total) for 10 serially sampled BE patients (D1), 10 serially sampled patients in an indepen-
dent validation cohort (DV), 30 cross-sectional BE patients (D2), and 22 familial BE (FBE)
patients (D3). Age at biopsy, sex, and whether a matched normal squamous (SQ) tissue sample
was obtained at time of biopsy is recorded for all patients. Also, median MCMC estimates
(with 95% credible intervals) for BE onset times are provided for cross-sectional patients.
(XLSX)

S2 Table. (Epi)genetic information for BE clock CpG set. For 67 total CpGs in BE clock set,
columns of this table (in order) correspond to CpG name, gene location of CpG (IGR: inter-
genic region), chromosome location of CpG, CpG island type location (“‘OpenSea” indicates
that the CpG does not lie in a CpG island), CpG island name, whether the CpG is on a pro-
moter region, the CpG-specific population rate from linear regression over 30 D2 samples, and
the drift rates for each CpG derived from the D1 and DV patients, respectively. The DV prior
drift rates were used as prior information in the BE clock model.
(XLSX)
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