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Abstract
In this study, we investigate if phase-locking of fast oscillatory activity relies on the anatomi-

cal skeleton and if simple computational models informed by structural connectivity can

help further to explain missing links in the structure-function relationship. We use diffusion

tensor imaging data and alpha band-limited EEG signal recorded in a group of healthy indi-

viduals. Our results show that about 23.4% of the variance in empirical networks of resting-

state functional connectivity is explained by the underlying white matter architecture. Simu-

lating functional connectivity using a simple computational model based on the structural

connectivity can increase the match to 45.4%. In a second step, we use our modeling

framework to explore several technical alternatives along the modeling path. First, we find

that an augmentation of homotopic connections in the structural connectivity matrix

improves the link to functional connectivity while a correction for fiber distance slightly

decreases the performance of the model. Second, a more complex computational model

based on Kuramoto oscillators leads to a slight improvement of the model fit. Third, we

show that the comparison of modeled and empirical functional connectivity at source level

is much more specific for the underlying structural connectivity. However, different source

reconstruction algorithms gave comparable results. Of note, as the fourth finding, the model

fit was much better if zero-phase lag components were preserved in the empirical functional

connectome, indicating a considerable amount of functionally relevant synchrony taking

place with near zero or zero-phase lag. The combination of the best performing alternatives

at each stage in the pipeline results in a model that explains 54.4% of the variance in the
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empirical EEG functional connectivity. Our study shows that large-scale brain circuits of fast

neural network synchrony strongly rely upon the structural connectome and simple compu-

tational models of neural activity can explain missing links in the structure-function

relationship.

Author Summary

Brain imaging techniques are broadly divided into the two categories of structural and
functional imaging. Structural imaging provides information about the static physical con-
nectivity within the brain, while functional imaging provides data about the dynamic
ongoing activation of brain areas. Computational models allow to bridge the gap between
these two modalities and allow to gain new insights. Specifically, in this study, we use
structural data from diffusion tractography recordings to model functional brain connec-
tivity obtained from fast EEG dynamics occurring at the alpha frequency. First, we present
a simple reference procedure which consists of several steps to link the structural to the
functional empirical data. Second, we systematically compare several alternative methods
along the modeling path in order to assess their impact on the overall fit between simula-
tions and empirical data. We explore preprocessing steps of the structural connectivity
and different levels of complexity of the computational model. We highlight the impor-
tance of source reconstruction and compare commonly used source reconstruction algo-
rithms and metrics to assess functional connectivity. Our results serve as an important
orienting frame for the emerging field of brain network modeling.

Introduction
Resting-state brain activity represents the changes in neuroelectric or metabolic activity that
occur when a subject is not performing a specific task and sensory input is largely reduced and
stable. In this state spontaneous fluctuations emerge in the ongoing brain activity that synchro-
nize across regions to exhibit a structured spatiotemporal pattern. Emerging resting-state net-
works have provided useful information regarding functional brain states, alterations in
psychiatric or neurologic diseases, served as a basis for mapping and parceling the brain, and
have helped to explain trial-to-trial fluctuations in cognitive functions [1, 2]. Although
electrophysiological recordings of brain activity have already revealed ongoing activity a long
time ago [3–5], the first description of common and organized networks emerging from ongo-
ing activity was from functional Magnetic Resonance Imaging (fMRI)/Positron Emission
Tomography (PET) studies which capture correlated slow fluctuations (< 0.1 Hz) across
regions [6, 7]. Similarly, amplitude envelopes of alpha- and beta-frequency oscillations (*8–
12 Hz and*12–30 Hz respectively) display similar correlation patterns as the fMRI signals
and are usually oscillating at a similar slow time scale of< 0.1 Hz [8–11]. Both are here referred
to as slow-fluctuating envelope resting-state networks.

The origin of resting-state ongoing brain activity is unresolved, but much evidence points to
the anatomical skeleton shaping functional interactions between areas. A high dependency of
slowly oscillating resting-state networks (< 0.1 Hz) and long-range axonal connections has
been detected in several previous studies, indicating that local activity of segregated brain
regions is integrated by white matter pathways [12–16]. This structure-function relationship
has also been explored in task-related functional networks and confirmed using different
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methodologies [17–20]. Although structural connectivity (SC) measured by diffusion tensor
imaging (DTI) is seemingly a good predictor of functional connectivity (FC), functional con-
nections also occur where there is little or no structural connectivity [12, 13]. Honey et al.
found that some of the variance in FC that could not be related to structure could, however, be
accounted for by indirect connections and interregional distance [13]. To explain missing links
between anatomical structure and observed resting-state dynamics, bottom-up computational
models based on structural priors offer interesting insights [12–14]. Different computational
models reflecting various biological mechanisms for the emergence of the spatiotemporal
dynamics of resting-state networks have helped to explain the variance between SC and spatio-
temporally organized low-frequency fluctuations [16, 21–23]. These dynamic simulations have
robustly shown that the introduction of delays, scaling of coupling strength as well as additive
noise lead to the emergence of functional patterns which resemble empirical resting-state net-
works operating in the low-frequency range. In this study, we first probe the assumption that
computational modeling can also be successfully implemented to compare network simula-
tions with empirical connectomes based on phase-relationships at fast frequencies. Secondly,
we use our modeling framework to address several methodological issues of structural connec-
tivity preprocessing, computational modeling and construction of functional connectomes.

Prior DTI-fMRI modeling studies have faced several technical challenges. First, the choice
of computational model demands a trade off between highly simplified phenomenological
models and biologically realistic models with a high dimensional parameter space. Surprisingly,
as shown by Messé et. al (2014), a simple stationary model of functional connectivity better
explains functional connectivity than more complex models [24–26]. Second, preprocessing of
DTI data is necessary to derive a structural connectivity matrix on a given parcellation scheme
to overcome biases introduced by the latter. But the precise steps giving the most realistic struc-
tural connectome map are largely unknown.

Large-scale resting-state networks were originally described for correlated slow activity fluc-
tuations recorded by fMRI/PET, or broadband power envelopes of the magneto-/electroen-
cephalography (MEG/EEG) signal [27]. However, there is accumulating evidence that large-
scale resting-state networks are also expressed in neuronal rhythms at faster frequencies [11,
28]. Fast fluctuations in neuroelectric activity, and especially the functional linkage of regions
via phase correlations, are well known to underlie a broad variety of cognitive processes [29–
32]. Synchronization of oscillatory neuronal activity among functionally specialized but widely
distributed brain regions has been recognized as a major mechanism in the integration of sen-
sory signals underlying perception and cognitive processes [33, 34].

Regarding the spatial organization of fast oscillatory phase correlations, its quantitative rela-
tionship to SC has not been investigated yet [10, 35]. Faster timescales of neural activity com-
prise for example the alpha, beta, or gamma band which constitute the major rhythms of
spontaneous neuroelectric activity picked up by MEG/EEG. It has been argued, that compared
to networks of slow fluctuations, structural connectivity does not strictly determine frequency-
specific coupling in networks of ongoing activity at a faster timescale [10]. Indeed, phase cou-
pling between segregated areas strongly relies on cortico-cortical connections [29, 36], impli-
cating likewise a strong structure-function relationship.

Performance of the Reference Model
In this study we probed this assumption of a strong structure-function relationship by simulat-
ing local node dynamics based on SC and comparing the phase relationships emerging from
the simulated neural activity with empirically measured phase relationships. To this end, we
combined SC from DTI data using probabilistic fiber tracking and FC from EEG data recorded
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during wakeful rest in 17 healthy individuals. We then used computational modeling
approaches to link SC and empirical FC at the alpha frequency range. We demonstrate that
empirical networks of resting-state fast oscillations are strongly determined by the underlying
SC and that additional variance between structure and function can be explained by modeling
dynamic activity based on white matter architecture. Specifically, the simulated FC explained
28.5% of the variance in the empirical FC that was left unexplained by SC alone. To further
understand the explanatory power of our model we investigated its performance at the local
level by assessing specific properties of ROIs (nodes) or connections (edges). We found that
the model error was highest for large highly interacting ROIs.

However, modeling large-scale brain dynamics based on structural priors brings up several
methodological alternatives, not only regarding the modeling itself, but also regarding the com-
parison of simulated and empirical data. Especially with resting-state MEG/EEG activity, the
specificity of analytic routines requires methodological decisions which potentially lead to tre-
mendous differences in modeling outcomes. We systematically assessed the effect of technical
variations on results and their influence on the interpretation of structure-function relations.
Specifically, we used our modeling framework to explore several technical alternatives along
the modeling path and evaluate the alternative processing steps based on their effect on the per-
formance of the model in simulating empirical FC. Specifically, we addressed the effects of five
critical aspects in the modeling pipeline:

Building the Structural Connectome
We used DTI and probabilistic tracking algorithms to compile a whole-brain structural con-
nectome [37]. However, several studies suggested that current fiber tracking algorithms fail at
capturing particularly transcallosal motor connections that are observed in non-human pri-
mate tracer studies [38, 39]. In addition, structural connection strength modeled by probabilis-
tic tractography algorithms is influenced by fiber length due to the progressive dispersion of
uncertainty along the fiber tract [15, 40]. Therefore, we evaluateed the effect of normalizations
for fiber length of the SC and examined the effect of weighting homotopic connections in our
model. Our results show that the correction for fiber distance leads to a small decrease in the
performance of our model. The additional weighting of homotopic transcallosal connections,
however, increased the model fit [24, 25].

Model of Functional Connectivity
Several alternative computational models of neural dynamics are available. In the choice of a
more abstract version to a more realistic description of cortical interactions, these models vary
in the complexity of their formulation and therefore might explain more or less variance in the
observed FC. The downside of complex models, however, is the increased number of free
parameters. These have to be approximated, need to be known a priori, or explored systemati-
cally. All these aproaches are problematic. For an assessment of the factor of model complexity,
we compared a simple spatial autoregressive (SAR) model to the Kuramoto model of coupled
oscillators. We find that the SAR model explains already a large portion of the variance and
that the Kuramoto model only gives a slight improvement.

Forward and Inverse Models
The comparatively few existing studies on large-scale modeling of MEG/EEG data differ sys-
tematically with respect to the comparison with empirical data. Some approaches project the
observed time series onto the cortex using an inverse solution, whereas others project the simu-
lated cortical signals into sensor space using the forward model [21, 41, 42]. We used our
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analytic framework to compare empirical and simulated FC at different spatial levels. We
found that the importance of structural information is dramatically reduced if the higher spa-
tial resolution obtained by source reconstruction is bypassed.

Source Reconstruction Algorithms
Estimating the spatiotemporal dynamics of neuronal currents in source space generating the
EEG and MEG signals is an ill-posed problem, due to the vastly larger number of active sources
compared to the number of sensors. Therefore, we assess the impact of specific source recon-
struction algorithms on the match of simulated and empirical FC. We compared three rou-
tinely used algorithms that differ regarding the assumptions made about the source signal,
such as smoothness, sparsity, norms, correlation between source signals. However, we found
no compelling superiority of one algorithm over another.

Functional Connectivity Metrics
Functional connectivity describes statistical dependencies between two signals often based on
undirected temporal averages such as correlation. In the last decades, various additional FC
metrics have been introduced. These differ with regard to the relative weighting of phase and
amplitude or concerning the removal of zero-phase lag components prior to correlation. The
theoretical superiority of one approach over another is debated [43]. However, no consensus
appears achieved and currently no single metric is dominantly used over the others. Therefore,
we compared several widely used metrics to compare empirical and simulated FC. We found
that the model fit was much better if zero-phase lag components were preserved in the empiri-
cal functional connectome.

In the following sections, we first present a reference procedure for modeling FC based on
DTI and the comparison with empirical FC as measured by EEG. After an initial short over-
view of the modeling approach (see the Workflow section), we guide the reader step by step
through the model details with the resulting outputs of each processing stage (see the Reference
Procedure section). From there, the impact of technical alternatives on the performance of the
model is presented (see the Alternative Modeling Approaches section).

Results

Workflow
We compared the simulated FC based on SC with the empirical FC derived from EEG data
(Fig 1). Our model includes the processing steps as shown in Fig 1 with the DTI measurements
on the left and the EEG measurements on the right. We address preprocessing of DTI data in
the form of homotopic reweighting. Then, the 66 ROIs of the cerebral cortex according to the
‘Desikan-Killiany’ cortical atlas made available in the Freesurfer toolbox, were individually reg-
istered for 17 healthy subjects using Freesurfer (surfer.nmr.mgh.harvard.edu) [44]. The SAR
model used in the reference procedure was selected based on simplicity (low number of param-
eters) and performance (computationally very efficient). Furthermore, the SAR model allows
to systematically evaluate the full parameter space with a high resolution grid-search, which is
necessary for an unbiased comparison of all alternatives along the modeling path. We recon-
structed source activity at the geometric center of each ROI based on the EEG time series by a
linear constraint minimum variance spatial beam former (LCMV). Then we assessed FC
between source time series band pass filtered at 8 Hz where the averaged coherence showed a
peak (see supporting material S1 Fig). Finally, we evaluated the match of simulated and empiri-
cal FC based on the correlation between all pairs of ROIs [17]. Following this modeling
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approach, several alternative ways at each processing stage arise. Choices exist, for example, for
the level of abstraction of the model type [45], metrics to compare functional connectivity and
the approach to the inverse problem in interpreting EEG data.

Reference Procedure
Reconstructing the structural connectome. The assessment of individual SCs is based on

the number of probabilistic fibers connecting the parcellated brain regions. In our reference
procedure, four preprocessing steps were applied to the raw fiber counts: First, we normalized
the total number of tracked fibers between two regions by the product of the size of both
regions. This effectively normalizes the connection strength per unit volume [46]. Second, we
excluded all self-connections by setting the diagonal elements of the SC matrix (denoted as S)
to zero. The resulting SC matrix between the 66 anatomical ROIs is presented in Fig 2A. Previ-
ous studies showed that current fiber tracking algorithms underestimate transcallosal connec-
tivity [38, 39]. Accordingly, modeling studies have revealed that specifically increasing the SC
between homotopic regions leads to a general improvement of the predictive power irrespec-
tive of the model [24, 25]. Therefore, in the reference procedure we also increased the connec-
tion strength between homotopic regions by a fraction (h = 0.1) of the original input strength
at each node.

Last, we normalized the input strength of each region to 1, as done in previous simulation
studies [22, 24]. This normalization of the total input strength per region is based on the
assumption that the DTI structural connectivity only informs about relative contributions to
the input of each individual brain region. Or, stating it differently, DTI data does not contain
information about how much total input strength each individual region receives, but only rel-
ative input contributions per region.

Fig 1. Workflow from DTI to the model of functional connectivity and comparison with empirical EEG data. Each processing step in the reference
procedure can be replaced by several alternative methods. From left to right: Probabilistic tracts derived from DTI are preprocessed to give the structural
connectivity matrix. From there we simulate functional connectivity and optimize free model parameters to maximize the global correlation with the
empirical functional connectivity. The empirical functional connectivity is calculated between all pairs of ROIs after projecting EEG scalp recordings to
source space using spatial filters. Alternatively, the comparison between simulated and empirical connectomes can be done in sensor space by projecting
the simulated functional connectivity into sensor space using the leadfields.

doi:10.1371/journal.pcbi.1005025.g001
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Model of functional connectivity. Several computational models of neural dynamics have
been presented previously, varying in complexity regarding cellular and circuit properties [24,
47, 48]. In the reference procedure, we chose a model of FC which is as simple as possible while
still explaining a substantial fraction of the variance in the empirical data. For resting-state FC
derived from fMRI data, it was shown that the simple SAR model generates good matches at
low computational expense [25, 26]. Therefore, we used the SAR model as a reference to evalu-
ate just the static higher order dependencies in the FC.

The SARmodel assumes that the time series of each region is a linear combination of the fluc-
tuations of the time series of all other regions with added Gaussian noise, where only instanta-
neous effects are modelled. The activation of all ROIs~y in the steady state condition is given by

~y ¼ k � S �~y þ s �~n: ð1Þ

where S is set to the preprocessed SC matrix averaged across subjects as explained in the previ-
ous section. k is a global parameter describing the scaling of the coupling strengths.~n is uncorre-
lated Gaussian noise that is added at each node individually and is scaled by σ. This equation
describes the equilibrium state of the autoregressive model.

The covariance between the time series of the SAR model can be solved analytically by
substituting [49]

Q ¼ ðI� k � SÞ�1
; ð2Þ

so that

~y ¼ sðI� k � SÞ�1
~n: ð3Þ

The covariance matrix between sources is then given by

Cov :¼<~y �~yT>t ¼< ðs �Q �~nÞðs �Q �~nÞT>t ¼ Q � S �QT ; ð4Þ

Fig 2. Comparison of empirical and simulated FC in the reference procedure. A: Structural connectivity among 66 cortical regions after normalization
for ROI size and excluding self-connections (see chapter Reference Procedure, section Reconstructing the structural connectome). B: The correlation of the
simulated network based on structural connectivity using the SARmodel with optimal global scaling parameter k = 0.65 and homotopic connection strength
h = 0.1. C: Upper: The respective simulated (k = 0.65, h = 0.1) and empirical connection strengths are z-transformed and plotted for each connection.
Correlation is used as a global performance measure. The local model error per connection is evaluated as the distance (red arrow) to the total-least-
squares fit (green line). Lower: Color indicates the correlation strength at a range of different global connection strength scaling parameters k, and fraction of
added homotopic connections (h). The black cross indicates the parameters with the maximum correlation. D: The empirical functional connectivity as the
coherence between source reconstructed time series at the cortical regions. All connectivity matrices (A, B, D) were normalized to have strengths between 0
(no connection) and 1 (strong connection).

doi:10.1371/journal.pcbi.1005025.g002
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where<>t denotes the average over time and S ¼ s2 <~n �~nT>t ¼ s2I the noise covariance.
Due to the assumption of uncorrelated Gaussian noise S is the identity matrix.

A FC matrix is constructed based on all pairwise correlations between network nodes. This
can be calculated using the standard definition of correlation given the covariance from eq 4:

Corrij ¼
Covijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Covii �Covjj

p : ð5Þ

This step normalizes for different variances in the time series of different network nodes. The
resulting correlation matrix, as shown in Fig 2B, is the predicted FC generated by the model
given SC. The distribution of modeled FC is less sparse than the raw structural connection
strength values: In the SC (Fig 2A), many pairwise connections are close to zero and only few
pairwise connections are large. To quantitatively evaluate the difference between the SC and
the model output, we calculated the kurtosis of the values in the connectivity matrices:

Kurt½X� :¼ < X4
ij>ij

< X2
ij >

2
ij

; ð6Þ

where<>ij denotes the average over all upper triangular matrix elements without the diagonal
(i.e. i< j). In this definition we divide the fourth raw moment by the second raw moment,
where raw means that the moment is about the origin in contrast to central moments about the
mean. The SC has a very high kurtosis (Kurt[S] = 62.83), whereas the FC predicted by the SAR
model has a much smaller kurtosis (Kurt[Corr] = 5.77), indicating reduced sparsity.

Source reconstruction algorithms. The spatiotemporal dynamics of neuronal currents in
source space can be estimated using various source reconstruction techniques applied to the
MEG/EEG signal. The algorithms differ regarding the assumptions made about the source sig-
nal (i.e. smoothness, sparsity, norms, correlation between source signals). These assumptions
about the signals to be reconstructed are a prerequisite to make the ill-posed inverse problem
of distributed sources treatable. As a reference, we used a LCMV spatial beamformer, which
reconstructs activity with unit gain under the constraint of minimizing temporal correlations
between sources [50]. This approach has been applied in large-scale connectivity and global
modeling studies before [17, 21, 51]. Multichannel EEG data was projected to source locations
based on individual head models. The spatial filter was calculated for the optimal dipole orien-
tation corresponding to the direction of maximum power, thus giving one time series per ROI.
As a priori source locations we used the geometric center of each of the 66 ROIs individually
registered on T1 images. See supplementary material (S1 Text) for details on data acquisition,
preprocessing and analysis of EEG data.

Functional connectivity metrics. FC can be assessed using several methodologies which
differ with regard to the relative weighting of phase and amplitude or concerning the reduction
of zero-phase lag components prior to correlation [52]. The choice of metric may have an
influence on the match between empirical and simulated FC. In the reference procedure, we
calculated ordinary coherence as a metric for FC due to its original and prepotent implementa-
tion in synchronization studies [33, 53–59]. The time series at each source were bandpass fil-
tered and then Hilbert transformed. Functional importance of resting state phase coupling
networks at different frequencies has been demonstrated [9, 21], motivating a correlation of
simulated FC with empirical FC at different frequencies (see supporting material S1B Fig). We
found a comparably high model performance across several frequencies, highlighting that our
main finding of simple computational models being able to explain missing variance between
structure and function holds across several frequency bands. In the reference procedure we
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chose the alpha band since a broad spectrum (3–30 Hz) exploration showed a peak of the
mean coherence across all connections at around 8 Hz (see supporting material S1 Fig).

The FC metrics are based on the analytic signal representation

AmðtÞ ¼ rmðtÞ � expðiφmðtÞÞ ð7Þ

of regionm. Furthermore, we calculated the cross-spectrum between two regions of interest m
and n as

sm;nðtÞ ¼ AmðtÞ � AnðtÞ: ð8Þ

Given the analytic signal, the auto- and cross-spectra were computed and the coherence
derived as the normalization of the cross-spectrum by the two auto-spectra [54]. This gives a
FC index ranging from 0 to 1 between all pairs of ROIs:

Cohm;n ¼ h sm;nðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sm;mðtÞ � sn;nðtÞ

q it: ð9Þ

The resulting mean empirical FC matrix across the group is depicted in Fig 2D and was
compared with the modeled FC matrix. Intrahemispherically, we found high connectivity
within frontal and temporal areas in both hemispheres. Interhemispherically, the insular and
cingulate areas were strongly connected.

Performance of the reference model. The SAR model yields a FC of the 66 parcellated
brain regions in accordance with the empirical FC. Since both these matrices are symmetric,
only the triangular parts are compared to assess the match between simulated and empirical
FC.

We calculate the performance of the model as the correlation between all modeled and
empirical pairwise interactions (Fig 2C). This performance metric is also commonly used in
other studies [24, 47]. We found a high correlation between the FC from the model and EEG
coherence values (r = 0.674, n = 2145, p< .0001) for the parameters k = 0.65 (global parameter
describing the scaling of the coupling strengths) and h = 0.1 (additional weighting of the homo-
topic connections in the SC matrix) marked in Fig 2C below).

To put this into context, we first compared these results with the match between the empiri-
cal SC and FC without modeling (r = 0.4833, n = 2145, p< .0001) and found a shared variance
of 23.4% (variance explained is 100 � r2). Modeling FC based on this SC backbone increased the
global correlation to 45.4% (square of r = 0.674). In other words, the modeled FC explains
roughly 28.8% of the variance in the empirical FC that is left unexplained by SC alone.

As a comparison to these results obtained from the average subject data, we also calculate
the performance of the reference model based on the DTI and EEG data of individual subjects.
The average correlation between modeled and empirical single-subject functional connectivity
is (r = 0.53408, n = 2145, p< .0001) for matching DTI and EEG subjects. As a comparison, we
evaluated the performance when comparing nonmatching DTI and EEG subjects, which leads
to a similar value (r = 0.53362, n = 2145, p< .0001). This small difference between matching
and nonmatching subjects was statistically non-significant (p = 0.48, tested using a linear
mixed effects model), probably due to the low sample size and a low signal-to-noise ratio at the
level of individual subjects.

To further understand the explanatory power of our model we investigate its performance
at the local level by assessing specific properties of ROIs (nodes) or connections (edges). We
defined for each connection the local model error as the distance (example shown as red arrow
in Fig 2C, upper) between each dot and the total-least-squares fit (green line in Fig 2C, upper).

Modeling Functional Connectivity: From DTI to EEG
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Specifically, the question arises whether the high correlation between modeled and empirical
FC is driven more by long or short edges. For example, the FC estimation between very close
ROIs (in Euclidean space) might be spuriously inflated by volume conduction. Alternatively,
there might be an overestimation of the SC between specifically close regions which could
cause a higher model error [60]. To address this question we compared for each edge the
model error with the fiber distance (Fig 3A). The average fiber distance between connected
ROIs was negatively correlated with the logarithm of the local model error of each connection
(r = -0.32, n = 2145, p< .0001). A similar dependence was calculated between Euclidean dis-
tance between ROI locations and local model error (r = -0.33, n = 2145, p< .0001). Both results
indicate that the SAR model performed worse in simulating FC for closer ROIs in topographic
space (measured in fiber lengths) and Euclidean space (measured as distance between ROI
locations). This can be attributed to a higher variance in the SC and empirical FC matrices for
close ROIs (as shown in supporting S2 Fig).

The empirical structural and functional connectivity are both dependent on the interre-
gional distance between nodes with higher connectivity for short-range connections and lower
connectivity for long-range connections [61, 62]. Therefore, we also calculate the model perfor-
mance of our reference procedure after regressing out the distance between regions. The
remaining partial correlation between modeled and empirical functional connectivity is
r = 0.36 after regressing out the euclidean distance. A similar partial correlation r = 0.38 was
calculated after removing the effect of fiber distance.

We further evaluated the performance in relation to certain node characteristics and averaged
the errors of all edges per node. The node performance in terms of model error is shown in Fig
3B–3D dependent on different node characteristics. First, we looked at the influence of ROI size
on the model error. We hypothesized that due to larger sample sizes and more precise localiza-
tion, the model error would be smaller for large ROIs. As expected, the model error for each
ROI is negatively correlated with the corresponding size of the ROI (r = -0.37, n = 66, p< .005)
as shown in Fig 3B. Then we hypothesized, that due to the sparseness of SC, some ROIs in the
SC have a very high connectedness compared to functional data, leading to a larger model error.
To address this aspect we calculated several graph theoretical measures that assess the local con-
nectedness in different ways and related this to the average model error. As a first measure we
calculated for each node the betweenness centrality, defined as the fraction of all shortest paths
in the network that pass through a given node [63]. The absolute model error is positively

Fig 3. Dependence of residual andmodel error (absolute value of residual) on edge and node characteristics. A: linear fit
of the log of the model error per connection showing a negative correlation with fiber distance. B: linear fit of the average model
error per ROI showing a negative correlation with the size of the ROI. C: linear fit of the average model error per ROI showing a
negative correlation with the betweenness centrality of the ROI. The angle brackets <> denote the average over all edges of the
corresponding ROI. Residuals in A-C are calculated from the total least squares fit, negative values (blue dots) indicate that the
average modeled functional connectivity per node was higher than the empirical functional connectivity, positive values (yellow
dots) indicate that the the modeled functional connectivity per node was smaller than the empirical functional connectivity.

doi:10.1371/journal.pcbi.1005025.g003
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correlated with the betweenness centrality (r = 0.58, n = 66, p< .0001) as shown in Fig 3C. A
similar indicator of a nodes connectedness in the network is the sum of all connection strengths
of that node. Also for this metric, we find a linear relationship between the total connection
strength of a node and the model error (r = 0.35, n = 66, p< .005). In addition, the dependence
between the model error and the eigenvalue centrality, which measures how well a node is linked
to other network nodes [64], was evaluated (r = 0.26, n = 66, p< .05). The local clustering coeffi-
cient, which quantifies how frequently the neighbors of one node are neighbors to each other
[65], did not show significant relations with the local model error (r = 0.06, n = 66, p = .65).

Overall, the reference model can explain much of the variance in the empricial FC. The
error in the predicted FC of the reference model appears to be highest for small highly interact-
ing ROIs. This might be due to the more heterogeneous structure of small highly interacting
ROIs. On the other side, interactions between more distant and large ROIs are better predicted
by the model, probably due to the more homogenous connectivity.

Alternative Modeling Approaches
The modeling of large-scale brain dynamics based on structural priors brings up several meth-
odological alternatives. As a principal choice, the model may be evaluated either in source or in
sensor space. In the baseline model that was presented above, we made specific choices at each
processing stage based on simplicity and good explanatory performance. Especially with rest-
ing-state EEG activity, a lack of analytic routines requires methodological decisions to be made
heuristically, which could potentially lead to substantial differences in the conclusions drawn. In
the following section we systematically compare different alternatives of the procedural stages
delineated above and compare the outcome regarding global correlation between simulated and
empirical FC. First, we assessed the influence of distance normalization and weighting of homo-
topic connections in the structural connectome on simulated FC. Second, we tested if a more
complex simulation model of coupled oscillators is able to capture a larger part of the variance
of the empirical data that is not explained by the simple SARmodel. Third, we evaluated an
alternative comparison in the sensor space using a forward projection of the source time series
in contrast to source reconstruction. Then, we compared different source reconstruction meth-
ods. Finally, we tested the impact of removing zero-phase lags in functional interactions.

Reconstructing the structural connectome. The structural connectome was compiled
using global probabilistic tractography. Interregional connections (edges) of the brain are rep-
resented by the number of “probabilistic streamlines” between these regions (nodes). We tested
the performance of several alternative modifications of the SC (Fig 4).

The pooled connectivity results obtained by the probabilistic fiber tracking are directly pro-
portional to the size of the seed and target regions. The size of the regions, determined by the
parcellation scheme, vary [13]. They are parcellated based on standard gyral-based neuroana-
tomical regions [44]. In order to account for a bias of stronger connectivity of larger regions,
SC was normalized using the size of the regions. However, the exact method of normalization
for ROI size is currently a matter of debate and no operational routine has emerged yet [66].
Therefore, we compared different normalizations regarding the quality of the model. In the ref-
erence procedure, we normalized the number of tracked fibers between two regions by the
product of the region sizes. We found that this approach (Fig 4A) gives the best model perfor-
mance (r = 0.674, n = 2145, p< .0001) in comparison with alternative normalizations that are
presented in the following paragraphs.

First, instead of the normalization by the product of the two ROI sizes it is possible to nor-
malize using the sum [24]. However, the performance decrease in comparison to the reference
procedure is very small (r = 0.66, n = 2145, p< .0001) as shown in Fig 4B.
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Second, an additional weighting was applied to correct for the influence of fiber length on
the probabilistic tracking algorithm. Therefore, the streamlines connecting two regions were
weighted by the corresponding fiber length. This normalization (Fig 4C) leads to a small
decrease in performance (r = 0.65, n = 2145, p< .0001).

Third, we tested the influence of homotopic transcallosal connections by omitting the addi-
tional weighting applied in the reference procedure. As a result, the correlation between mod-
eled and empirical FC drops from r = 0.674 to r = 0.65 (Fig 4D).

As a fourth alternative, we replaced the normalization by the product of region sizes by a
normalization just by the target region in the simulation model [22]. This leads to a further
small reduction of the performance to r = 0.64 (Fig 4E).

As a last alternative we also evaluate the performance using just the normalized streamline
counts as input to the model without any further preprocessing (no additional homotopic
weights and no input strength normalization per region). This baseline without further prepro-
cessing has a lower performance with a correlation of r = 0.55 (Fig 4F), suggesting that the nor-
malization of the total input strength per node plays an important role for a good match with
the empirical data.

These results demonstrate that our reference method of reconstructing the SC is superior to
all the evaluated alternative approaches. Overall, the performance of the simulation based on
the SC is rather robust with respect to the choices of preprocessing as long as the total input
strength per region is normalized.

Model of functional connectivity. In the previous sections we showed that a considerable
amount of variance in empirical FC can be explained even with a simple SAR model that cap-
tures only stationary dynamics. Several alternative computational models of neural dynamics
have been presented that vary regarding their complexity. More complex models can

Fig 4. Structural connectivity preprocessing. The correlation between modeled and empirical functional
connectivity for different preprocessing steps of structural connectivity. In the reference procedure, the
number of tracked fibers between two regions was normalized by the product of the region sizes. The model
based on the original structural connectivity is shown in blue and the baseline model which is based on
shuffled structural connectivity in yellow. The gray box marks the reference procedure.

doi:10.1371/journal.pcbi.1005025.g004
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incorporate aspects of cortical processing at the microscopic scale such as cellular subpopula-
tions with differing membrane characteristics or, at the macroscopic scale, time delays between
nodes [45, 47, 67]. The downside of complex models is the increased number of free parame-
ters whose values need to be approximated, have to be known a priori, or explored systemati-
cally. We hypothesized that a more complex model which incorporates more parameters in
order to simulate neural dynamics more realistically might explain more variance in FC. We
decided to use the Kuramoto model of coupled oscillators as an alternative to investigate
whether this holds true [22, 68, 69]. In contrast to the SAR model, the Kuramoto model can
incorporate delays between nodes and thus becomes a model of dynamic neural processes [48,
70]. At the same time the Kuramoto model is simple enough to systematically explore the
parameter space. The progression of the phase of each neuron is modeled by the differential
equation

@φjðtÞ
@t

¼ 2po� k
X
i6¼j

Sij � sin φjðtÞ � φiðt � d � Dij=vÞ
� �

; ð10Þ

where d is a fixed delay at each node and v is the transmission velocity which is weighted by the
distance Dij (see S1 Text), which leads to a connection-specific delay. The Kuramoto model
was simulated using the Euler integration method in time steps of 0.1 ms. In contrast to the
SAR model, which does not reflect temporal dynamics, in the Kuramoto model we used the
same bandpass filters and coherence estimation method as described in eqs 7, 8 and 9.

An additional alternative to the SAR model is an even more simple direct comparison
between the empirical SC and FC. The simple structure-function comparison gave a 23.4%
match between structural and functional connectivity alone (r = 0.4833, n = 2145, p< .0001).
The SAR model and the Kuramoto model both explain more variance of the functional con-
nectivity than this direct comparison of structural and functional connectivity (Fig 5A). Using
the SAR model we simulated a functional connectome with a 45.4% match to the empirical
data (r = 0.674, n = 2145, p< .0001). With the Kuramoto model however, the match could be
further increased to 54.0% (r = 0.735, n = 2145, p< .0001). In other words, the modeled FC
using the Kuramoto model explains 40.0% of the variance in the empirical functional connec-
tivity that is unexplained by structure alone. In addition, demonstrating the importance of the
underlying structural network, all three variants have a significantly higher correlation than for
the randomly shuffled SC.

The Kuramoto model showed the best performance for a connection strength scaling of
k = 700 (Fig 5B). Important to note is that the constant delay can be neglected without a large
performance drop (Fig 5C). In contrast, the velocity introduces a connection specific delay that
is modulated by the DTI fiber lengths and the model performance has a considerable peak
around v� 1.7 m/s.

Forward and inverse models. In the comparatively few studies on large-scale modeling of
MEG/EEG data, a discrepancy exists to whether simulations are compared with empirical data
in the source or sensor space [21, 41, 42]. In other words, the measured time series are either
projected onto the cortex using an inverse solution or the simulated cortical signals are pro-
jected into sensor space using a forward model. Here we compare both approaches, source
reconstruction vs. forward projection, with respect to the global correlation strength between
modeled and empirical FC. The source reconstruction approach has been described above (see
chapter Source reconstruction algorithms and S1 Text).

For the inverse solution and forward projection, we computed as a forward model a bound-
ary element method volume conduction model based on individual T1-weighted structural
MRI of the whole brain and comprising 8196 dipoles distributed over 66 regions [71]. Each
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dipole has six degrees of freedom defining its position, orientation, and strength in the cortex.
The positions for each vertex are defined to be lying equally spaced within the parcellated brain
regions of the cortical sheet. The electric source activity can be approximated by the fluctuation
of equivalent current dipoles generated by excitatory neurons that have dendritic trees oriented
perpendicular to the cortical surface [41]. For the inverse solution, the dipoles orientation was
assessed according to its maximal power. For the forward projection of simulated time series,
the dipole orientations were defined by the normal vector of the cortical surface of the corre-
sponding region in the segmented MRI image. Since each of the parcellated brain regions
extends over several surface vertices, all dipole normals within each region are averaged. This
results in one average direction vector per region (average length over all regions: 0.52) which
is used to project into the EEG sensor space.

In the previous sections we showed that the underlying SC had a large impact on the rela-
tively good match between simulated and empirical FC. Figs 4 and 5A show large drops in cor-
relation when the simulation is based on shuffled SC (yellow bars) instead of the original SC
(blue bars). By comparing the source reconstruction with the forward model approach, we find
that the comparison in sensor space using the forward projection yields higher correlations
between simulated and empirical data (Fig 6A). If, however, the underlying structural connec-
tivity is shuffled before applying the SAR model, the correlation of simulated and empirical FC
remains equally high in sensor space. This indicates that the importance of structural informa-
tion is dramatically reduced if the higher spatial resolution obtained by source reconstruction
is bypassed. The forward projection of the simulated time series leads to a very low spatial spec-
ificity of the functional connectivities in sensor space (Fig 6B).

Since several inverse methods are routinely used without a clear superiority of one over
another, we aimed to assess the impact of the specific source reconstruction algorithm on the
fit between simulated and empirical FC. We compared three prominent and widely used
inverse methods which make fundamentally different assumptions (Fig 7). As a reference, we
used an LCMV spatial beamformer which reconstructs activity with the constraint of minimiz-
ing temporal correlations between sources [50]. For comparison we calculated the inverse solu-
tion by using exact low resolution brain electromagnetic tomography (ELORETA) which
reconstructs activity by spatial smoothness constraints and in this sense it emphasizes local
temporal correlations in comparison to beamforming approaches [72]. It is also widely used in

Fig 5. Model of functional connectivity. A: Performance comparison between the SARmodel (reference model), the Kuramoto model and directly
between the empirical and structural connectivity. The model based on the original structural connectivity is shown in blue and the baseline model
which is based on shuffled structural connectivity in yellow. The gray box marks the reference procedure based on the SARmodel. B: Performance of
the Kuramoto model for different parameters k and h close to the optimal point with fixed velocity = 1.7 m/s and delay = 1.25 ms. C: Same as B but with
varying velocity v and delay d with fixed k = 700 and h = 0.12. In panels B and C the X marks the parameter that was selected for the corresponding
other panel.

doi:10.1371/journal.pcbi.1005025.g005
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Fig 6. Comparisons of forward projection and source reconstruction. A: Global correlation between
simulated and empirical functional connectivity in sensor space by applying the forward projection to the SAR
model, or in source space by applying the LCMV beamformer to the EEG time series. Blue bars show
simulations based on original structural connectivity and yellow bars simulations for randomly shuffled
structural connectivity. The gray box marks the reference procedure. B: EEG functional connectivity
measured by coherence (left) and the forward projected modeled functional connectivity (right), both in
sensor space.

doi:10.1371/journal.pcbi.1005025.g006

Fig 7. Source reconstruction. The correlation between modeled and empirical functional connectivity for
different source reconstruction algorithms. The model based on the original structural connectivity is shown in
blue and the baseline model which is based on shuffled structural connectivity in yellow. The gray box marks
the reference procedure.

doi:10.1371/journal.pcbi.1005025.g007

Modeling Functional Connectivity: From DTI to EEG

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005025 August 9, 2016 15 / 28



source connectivity analyses [73, 74]. Additionally we calculated the minimum-norm estimate
(MNE) which recovers source activity by reducing overall energy [75] which is based on the
assumption that the data gives no information about the null space component of the leadfield
which is thus set to zero. Fig 7 shows the global correlation values resulting from these three
alternative inverse solutions. It can be seen that all of them have a similar performance level
(LCMV:r = 0.674, n = 2145, p< .0001), ELORETA: (r = 0.728, n = 2145, p< .0001), MNE:
(r = 0.676, n = 2145, p< .0001). The connectivity matrices of time series of the inverse solu-
tions were highly correlated (LCMV-ELORETA: r = 0.84, LCMV-MNE: r = 0.95, MNE-ELOR-
TEA: r = 0.84; all p< .0001).

Functional connectivity metrics. We compared several widely used FC metrics regarding
the global relation between empirical and simulated functional connectivity. Previous model-
ing studies implemented different metrics, and clear superiority of one over another has not
been shown [43, 52, 76]. In the reference procedure, empirical FC was calculated as ordinary
coherence and compared to the FC matrix derived from the SAR model. In addition, we inves-
tigated several alternative FC metrics [43, 52, 54, 76–78].

All metrics were based on the same analytic signal representation as shown in eq 7 and the
cross-spectrum as defined in eq 8. The different metrics are listed in Table 1 with their corre-
sponding equations, characteristics and results. Comparing the performances based on all five
measures (see Fig 8), we found a high correspondence in model performance between coher-
ence and PLV. In contrast, PLI, WPLI, and LPC all showed a significantly lower match between
simulated and empirical FC, with correlation coefficients between 0.10 and 0.18. ICOH showed
the smallest correlation between modeled and empirical data with a non-significant p-value
(r = 0.103, n = 2145, p = .37). For all metrics, the global correlation essentially vanished if the
underlying SC was shuffled prior to simulation.

In summary, there are substantial decisions to be made at each stage of the processing
pipeline. We selected the reference procedure prior to the evaluation of all alternatives in all
these processing stages. Then, we evaluated the combination of all best performing

Table 1. Functional Connectivity Metrics.

Name Abbreviation Equation Characteristic Ref Result

coherence COH
Cohm;n ¼ h sm;nðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sm;mðtÞ�sn;nðtÞ
p it

����
���� Normalization of the cross-spectrum by the two auto-

spectra
[54] (r = 0.674,

n = 2145,
p < .0001)

phase locking
value

PLV PLVmn ¼ hei�ðφmðtÞ�φnðtÞÞitj j Relative stability of the relative phase between two
signals and thereby avoiding amplitude as a
confounding factor

[76] (r = 0.678,
n = 2145,
p < .0001)

imaginary part
of the
coherency

ICOH
Icohm;n ¼ I h sm;nðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sm;mðtÞ�sn;nðtÞ
p it

� �����
���� Discarding the real part of the cross-spectrum, in

which zero-phase lag volume conduction artifacts are
exclusively represented

[77] (r = 0.103,
n = 2145, p =

.37)

phase lag index PLI PLIm;n ¼ hsgnðIðsm;nðtÞÞÞit
�� �� Completely robust to volume conduction but without

incorporation of the amplitude of the signal
[43] (r = 0.138,

n = 2145,
p < .05)

weighted phase
lag index

WPLI wPLIm;n ¼ jhIðsm;nðtÞÞit j
hjIðsm;nðtÞÞjit ¼

jhjIðsm;nðtÞÞj�sgnðIðsm;nðtÞÞÞit j
hjIðsm;nðtÞÞjit

Similar to PLI, but more robust to noise in case of
weak synchronization

[52] (r = 0.170,
n = 2145,
p < .0001)

lagged phase
coherence

LPC LPCm;n ¼ Iðsm;nðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�<ðsm;mðtÞÞ2

p Zero-lag contribution partialled out by a quotient of
residual variances conditional on the real and
imaginary part or on the real part only; preserves
parts of the real valued coherency which incorporate
a phase lag

[78] (r = 0.179,
n = 2145,
p < .0001)

< and I denote the real and imaginary part of the complex number.

doi:10.1371/journal.pcbi.1005025.t001
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alternatives along the pipeline. This best performing combination consists of the reference
preprocessing of DTI data to construct SC, the Kuramoto oscillator network to simulate FC,
PLV as a FC metric, and ELORETA as source reconstruction method from EEG. This combi-
nation results in a match of 54.4% between simulated and empirical functional connectivity
(r = 0.7377, n = 2145, p< .0001).

Discussion
With this study we contribute to resolving the structure-function relationship in global connec-
tomics. We simulated fast neural dynamics based on a realistic structural connectivity back-
bone and compared it to empirical functional connectivity derived from phase coupling of
oscillatory brain waves. For the empirical data collected in 17 subjects we found a 23.4% match
between structural and functional connectivity alone. Using a simple SAR model to simulate
FC based on SC, this match was increased to 45.4%, showing that the model can capture about
28.8% of the variance in the empirical FC that is unexplained by the structure alone. We dem-
onstrate several technical alternatives in the modeling procedure and derivation of empirical
connectomes that are commonly used, but only few gave noticeable improvements. Of note,
introducing additional model parameters by using the Kuramoto model of coupled oscillators
improved the simulation (Fig 5). Our results show that resting-state networks emerging from
phase coupling at a fast timescale largely resembles structural connectivity, as it has been

Fig 8. Functional connectivity metrics. The bars show the correlation between the empirical functional
connectivity and the simulated functional connectivity obtained using the SARmodel. The model based on
the original structural connectivity is shown in blue and the baseline model which is based on shuffled
structural connectivity in yellow. The gray box marks the reference procedure.

doi:10.1371/journal.pcbi.1005025.g008
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previously shown for slow fluctuations of BOLD-signal or broad-band power envelopes [12,
13, 16, 21].

Modeling Fast Dynamics
It has been assumed that for the resting-state networks based on fast dynamics the underlying
anatomical skeleton is less important compared to the slow resting-state networks, but this
issue has not yet been systematically investigated [10]. We calculated the performance of the
reference model as the correlation between all modeled pairwise interactions and all empirical
pairwise interactions in an empirical functional phase relation connectome of the alpha rhythm
and found a good match of 45.4% (Fig 2C). This finding is in contrast to the prior assumptions
and shows that the anatomical skeleton is equally crucial for fast timescale functional interac-
tions [29, 36].

To better understand the reference model performance we investigated the model error in
relation to node and edge characteristics (Fig 3). In general, the model error decreased with
longer fiber distance and Euclidean distance. Specifically, for short fiber distances, the model
overestimated FC (negative residuals blue in Fig 3). Why are short connections in general more
difficult to model based on white matter tracts? The empirical connectome was extracted from
resting-state alpha topographies in which propagating waves play an important role for adja-
cent and remote brain areas to communicate with each other. Cortico-cortical axons in the
white matter tracts are considered as the major route for traveling waves. However, a recent
study presented compelling evidence for intracortical axons accounting for spatial propagation
of alpha oscillations [79]. Such a mechanism would enable high local synchrony in the relative
absence of structural connectivity measured by DTI.

We used a stepwise linear model to extract node characteristics explaining most of the
model error and found that ROI size and betweenness centrality play an important role.
Regarding ROI size, the smaller model error for larger ROIs could be attributed to the measure-
ments of structural as well as functional connectivity being more reliable for larger ROIs: In the
case of the SC measurements using DTI, a larger parcellated cortical region allows to track
more streamlines with different initial conditions (i.e. for more voxels) and thereby allows a
more reliable estimation of the connection probabilities between regions. In EEG as well as
DTI, the localization and inter-subject registration of large ROIs can be assumed to be less
effected by small deviations because a small spatial shift of a large ROI still allows a large over-
lap with the correct ROI volume whereas a small spatial shift of a small ROI could displace it
completely outside of the original volume. For betweenness centrality, the opposite scenario
was the case: the smaller the betweenness centrality the smaller was the model error. Central
hubs in a structural network offer anatomical bridges which enable functional links between
regions that are structurally not directly related [63]. Hard-wired connections do not necessar-
ily contribute at all times to FC in the network and, vice-versa, functionally relevant connec-
tions do not necessarily have to be strongly hard-wired [13]. Possibly, the simple SAR model,
which captures only stationary dynamics, has weaknesses at these central hub nodes. In order
to capture the empirical FC at these nodes, a more complex dynamical model able to capture
non-stationary dynamics with context switches at slower time scales is needed. Nodes with a
high betweenness centrality can be expected to communicate with certain cortical modules
only at certain times in specific dynamical regimes. We hypothesize that a more complex
dynamical model of neural activity could capture this behavior more accurately. Therefore we
suggest that further research could especially improve the model in these cases of dynamical
context switches in central hub nodes, which cannot be captured by simple models such as the
SAR model.
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Reconstructing the Structural Connectome
Using our modeling framework to compare different alternatives of reconstructing the struc-
tural connectome, we found that the best match between simulated and empirical FC was
obtained when an additional weighting of connections between homotopic transcallosal
regions was applied. Additional weighting for fiber distances did not improve the simulation
performance significantly. Overall, the differences were very small proving the modeling
approach to be rather robust regarding the evaluated choices of reconstruction as long as the
total input strength per region is normalization prior to the simulation.

Currently, there is no common approach to correct for the influence of fiber distance on the
probabilistic tracking algorithm [16, 40, 80]. Although we found that the model error was larg-
est for small fiber distances (modeled FC higher than empirical FC), a correction for fiber
lengths did not improve the result of the simulation. This suggests that the high local connec-
tion strength of SC obtained by DTI reflects actual structural connectivity. Methodically, this
finding is supported by the fact that accuracy of probabilistic fiber reconstrunction decreases
with distance, whereas short-distance connections are reconstructed with high reliability [38].
However, it remains a challenge to correct probabilistic tracking results for the impact of fiber
distance and further work is needed to address this methodological limitation.

Our model improved with an additional added weight of homotopic connections, which is
supporting the data by Messé et al. [24]. This finding points to a related limitation of the proba-
bilistic tracking algorithms to correctly assess long distance and lateral transcallosal fibers. In
agreement with previous studies, we show that this limitation can be addressed by adding a
preprocessing step to the structural connectome reconstruction.

Lastly, we want to point out that the parcellation scheme, especially the spatial resolution,
has a strong effect on the SC and FC, as shown in previous studies [81–83]. We did not include
other parcellation schemes as alternatives in this work because a different parcellation effects
all steps in the processing pipeline at the same time. Most importantly, a different parcellation
also changes the predefined space in which the model prediction is evaluated, so that the result-
ing correlation values are not directly comparable to the results of our presented reference pro-
cedure. We chose a parcellation scheme which has been used in several previous studies [16,
22, 40, 44, 84] and implemented in Freesurfer. The effect of parcellation schemes on structure-
function relationships is a very important topic that is currently under investigation.

Model of Neural Activity
We show that our SAR model already explains much of the variance in the empirical EEG data.
Our results indicate that the Kuramoto model moderately improved results compared to the
reference model. The SAR model has a small number of parameters allowing a fast exploration
of the parameter space [49] and the SAR model served several studies in which complexity and
information-theoretical measures characterizing FC were explored [49, 85, 86]. As a downside,
the SAR model has a smaller number of parameters and therefore lacks the modeling capacity
to further optimize the dynamics to better fit to the empirical data. Furthermore, the SAR
model cannot model individual frequencies and their interactions, making the Kuramoto
model a viable alternative. It has been shown that the Kuramoto model features complex syn-
chronization dynamics which can be related to the explanation of oscillatory phenomena in
the human cortex, such as fluctuating beta oscillations [48] or metastable synchronization
states [21]. A more detailed analysis of the synchronization properties of the Kuramoto model
in the human connectome was done by Villegas et al. [87], where frustration and the transition
between synchronous and asynchronous phases were analyzed [88]. The Kuramoto model
was also used to study the effects of lesions on cortical dynamics and binding by synchrony
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[69, 89]. However, it has been shown that more complex models with more parameters are
usually not better in explaining fMRI functional connectivity from structural data [24–26].
Highly parameterized models which require the numerical integration of differential equations
take several orders of magnitude more computational time to obtain a reliable estimate of FC
than the simple model used here. For certain neurophysiological questions however, the wider
parameter space of complex models can be used to explore neural processing properties. The
relative benefit of a dynamical model has to counterbalance the higher computational demand.
Therefore, the choice of model depends on the investigated scientific question [26, 45]. In this
study we used the simpler SAR model as a reference because the focus was to investigate alter-
natives also in many other stages of the processing pipeline and a more complex simulation
model would impede identifying the best alternative in the other stages of the processing pipe-
line, due to the high dimensional parameter space.

Source Reconstruction versus Forward Projection
The inverse problem is ill-posed since the higher number of possible active neuronal sources is
higher than the number of recording channels. Thus, the ground truth of brain activity patterns
generating the measured signal is impossible to infer. A variety of alternative methodological
approaches have been developed regarding source imaging. Particular caution should be exer-
cised concerning the influence of different inverse solutions on the resulting data [90]. Here,
we presented a comparison of the performance of three commonly used inverse methods
regarding the global correlation between empirical and simulated FC in our technical frame-
work (Fig 7). All source reconstruction algorithms perform in a similar range with resembling
r-values between 0.674 and 0.728. Although the algorithms differ regarding the assumptions
made about the source signal, the high correspondence in performance of the three source
reconstruction techniques mutually validates their respective inverse solutions.

Next, we aimed to investigate the best approach for comparing empirical and simulated FC
particularly in sensor and source space, see Fig 1. In the sensor space scenario, the simulated
signal, as the mean field source activity generated by the SAR model, was projected into sensor
space to generate a simulated EEG signal by applying the leadfield (i.e. forward model). For
this approach we found slightly higher correlations between simulated and empirical data (Fig
6A). However, we also found that the high correspondence between empirical and simulated
EEG sensor space FC was independent of the underlying SC: Shuffling SC before the simula-
tion did not abolish the correlation between the empirical and simulated FC as was the case
when the comparison was done at the source space level. This lack of specificity of the simu-
lated FC regarding the anatomical skeleton strongly suggests that the sensor level connectivity
matrix is shaped mainly by the leadfield (Fig 6). In fact, the leadfield can already explain most
of the variance (81.9%) in the empirical FC of the sensor space. In contrast, the inverse solution
in the source reconstruction procedure removes much of these volume conduction correlations
so that the comparison of coherence in source space appears reasonable. We conclude that the
volume conduction model of the head is mixing the source time series such that the coherence
in sensor space reflects to a high degree the structure within this mixing matrix and the sensor
space is a suboptimal stage for investigating structure-function relationships by large-scale
modeling approaches. Thus, one should refrain from such a comparison in sensor space with
metrics that do not exclude zero-lag interactions. In order to assess the accuracy of simulated
global network characteristics, the comparative spatial level should be at source space in order
to avoid signal mixing by the leadfield matrix and allow to include zero-lag interactions. The
results offer an important ground for modeling studies using source connectivity analyses for
MEG/EEG data.
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Connectivity Metrics and the Role of Phase Lags
One of the main differences between fMRI/PET and MEG/EEG connectivity studies is that for
MEG/EEG a multitude of different metrics to quantify FC are currently available and no single
metric is predominantly employed or has emerged as being superior [91, 92]. This issue ham-
pers comparability between studies and physiologic interpretation. It was our aim to use our
theoretic framework for a systematic comparison of different functional connectivity metrics.
We compared six commonly used metrics that differ regarding their sensitivity towards zero-
phase lag coupling and amplitude variations. The definition of PLV, PLI, WPLI and LPC theo-
retically renders those metrics insensitive to amplitude variations. We found no major differ-
ence in performance between COH and PLV and no major difference between ICOH, PLI,
WPLI, and LPC. This result is easily understood on the basis that the SAR model presents the
steady state solution including a small noise component only. An important finding is the high
correspondence in model performance between coherence and PLV. Coherence is the cross-
spectrum between two sensors normalized with the auto-spectra whereas PLV quantifies the
consistency of a phase difference between two signals across time. Both measures are high if
there is a consistent phase difference regardless of whether the latter is near zero, 180° or inbe-
tween. Similar results between coherence and PLV have been found in previous studies [93–
95]. The similarity of both measures in our study suggests that amplitude variations between
areas are of less weight than phase variations. Another main finding is the drop in model per-
formance with the metrics ICOH, PLI, WPLI and LPC which are by design less sensitive to
zero-phase coupling. Regarding the latter, a major concern exists whether such coupling in
scalp recordings would be contaminated by volume conduction artifacts. Obviously, synchrony
at sensor level could result from two channels picking up activity from a common source since
the activity of the source signal passes through the layers of cerebrospinal fluid, dura, scalp and
skull acting as a spatial filter. This effect leads to the detection of spurious synchrony, even if
the underlying sources are independent [96]. Based on the assumption that the quasi-static
approximation holds true for EEG, volume conduction would occur with zero-phase lag [97].
Thus, the most commonly used approach to deal with the problem of volume conduction is to
neglect interactions that have no phase delay. This is, however, a potentially overly conservative
approach. To address the question of how these biased measures of interactions are suited for
comparing modeled and empirical connectomes, we compared global model performance
based on connectivity metrics that are sensitive and robust to zero-phase lags in this study.
ICOH, PLI, WPLI and LPC all showed a significantly lower match between simulated and
empirical FC (around r = 0.18) compared to coherence and PLV (Fig 8). For all six metrics, the
global correlation was essentially abolished if the underlying SC was shuffled prior to simula-
tion (yellow bars in (Fig 8)). Also, the overall model performance for ICOH, PLI, WPLI and
LPC was considerably smaller than the mere correlation between SC and empirical FC (middle
row in Fig 5A). What are the possible reasons for this performance drop with ICOH, PLI,
WPLI and LPC? One reason could lie in the fact that the reference model SAR does not include
delays, thus the simulated FC mainly consists of instantaneous interactions and a comparison
with an empirical FC in which those interactions have largely been removed would be futile.
However, the results were very similar using the Kuramoto model. The large-scale connec-
tomes derived from all of the four biased metrics did not much reflect the coupling that
emerged from our model of fast dynamics based on structural connectivity. Presumably, a con-
siderable amount of functionally relevant synchrony takes place with near zero or zero-phase
lag which is not detected using the biased scores. In fact, zero-phase lag synchronization has
been detected between cortical regions in a visuomotor integration task in cats [98]. More
recently, a study of spike train recordings showed how paths among somatosensory areas were
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dominated by instantaneous interactions [99]. But synchrony across areas incorporating delays
can also lead to high coherence [100]. A recent modeling study investigated the detection rates
of synchrony by different EEG phase synchronization measures (PLV, ICOH, WPLI) in a net-
work of neural mass models. They found that no single phase synchronization measure per-
formed substantially better than all the others, and PLV was the only metric able to detect
phase interactions near ±0° or ±180° [91]. This study challenged the supposed superiority of
biased metrics in practical applications, because they are biased against zero-phase interactions
that do truly occur in the brain. Taken together we argue that by using biased metrics to detect
neural synchrony a major portion of relevant coupling is neglected. However, as the relevant
stage for comparisons is the source space, the undesired influence of volume conduction effects
on the estimated connectivity is partly reduced [101]. Since effects of field spread can never be
completely abolished also in the source space, we cannot rule out that volume conduction arti-
facts have influenced the high correlation in our model. The empirical functional connectome
was constructed based on band-pass filtered EEG in the alpha frequency range. Since different
FC maps have been detected for different frequency bands [9], it is conceivable that biased vs.
unbiased FC metrics might vary in their performance depending on the frequency.

Conclusion
In summary, our framework demonstrates how technical alternatives and choices along the
modeling path impact on the performance of a structurally informed computational model of
global functional connectivity. We show that determining the resting-state alpha rhythm func-
tional connectome, the anatomical skeleton has a major influence and that simulations of global
network characteristics can further close the gap between brain network structure and function.

Supporting Information
S1 Text. Empirical data. Detailed description of empirical data recording procedures.
(PDF)

S1 Fig. Evaluation of different EEG frequencies. A: The mean coherence values (±SEM,
shaded area) between all ROIs (n = 2145) is calculated for the frequency range of 3–30 Hz.
Overall coherence at lower frequencies is higher with a peak around 8 Hz and a smaller peak
around 24 Hz. B: The model performance at different bandpass filters of the EEG source time
series.
(TIF)

S2 Fig. Dependence between connection strength and euclidean distance. The euclidean dis-
tance is measured between the center coordinates of individual ROIs. The strength between
ROIs are the number of tracked DTI fibers divided by the product of both ROI sizes. The loga-
rithm of the structural connection strength is inversely correlated with the euclidean distance
(r = −0.37, n = 1883, p< .0001). Connections with zero strength (pairs of ROIs with no proba-
bilistic tracked fibers between them) were excluded (n = 262) due to the logarithmic axis.
(TIF)

Acknowledgments
We would like to thank Dr. Guido Nolte for his helpful suggestions.

Author Contributions

Conceived and designed EEG experiments: CGMB.

Modeling Functional Connectivity: From DTI to EEG

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005025 August 9, 2016 22 / 28

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005025.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005025.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005025.s003


Conceived and designed DTI experiments: GT BC.

Conceived and designed modeling experiments:HF PK CH AM.

Performed EEG experiments:MB.

Performed DTI experiments: BC.

Performed modeling experiments:HF.

Analyzed EEG data:MB.

Analyzed DTI data: BC.

Analyzed modeling data:HF.

Interpretation of results and revising the work: AM CHHFMB BC PK CG GT.

Wrote the paper:HFMB PK.

References
1. Fox MD, Snyder AZ, Zacks JM, Raichle ME. Coherent spontaneous activity accounts for trial-to-trial

variability in human evoked brain responses. Nature neuroscience. 2006; 9(1):23–25. doi: 10.1038/
nn1616 PMID: 16341210

2. Arieli A, Sterkin A, Grinvald A, Aertsen A. Dynamics of ongoing activity: explanation of the large vari-
ability in evoked cortical responses. Science. 1996; 273(5283):1868–1871. doi: 10.1126/science.273.
5283.1868 PMID: 8791593

3. Steriade M, Nunez A, Amzica F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depo-
larizing and hyperpolarizing components. The Journal of Neuroscience. 1993; 13(8):3252–3265.
PMID: 8340806

4. Contreras D, Steriade M. State-dependent fluctuations of low-frequency rhythms in corticothalamic
networks. Neuroscience. 1996; 76(1):25–38. doi: 10.1016/S0306-4522(96)00392-2

5. Destexhe A, Contreras D, Steriade M. Spatiotemporal analysis of local field potentials and unit dis-
charges in cat cerebral cortex during natural wake and sleep states. The Journal of Neuroscience.
1999; 19(11):4595–4608. PMID: 10341257

6. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting
human brain using echo-planar MRI. Magnetic resonance in medicine. 1995; 34(4):537–541. doi: 10.
1002/mrm.1910340409 PMID: 8524021

7. Raichle ME, MacLeod AM, Snyder AZ, PowersWJ, Gusnard DA, Shulman GL. A default mode of
brain function. Proceedings of the National Academy of Sciences. 2001; 98(2):676–682. doi: 10.1073/
pnas.98.2.676

8. Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, Barnes GR, et al. Measuring functional
connectivity using MEG: methodology and comparison with fcMRI. Neuroimage. 2011; 56(3):1082–
1104. doi: 10.1016/j.neuroimage.2011.02.054 PMID: 21352925

9. Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK. Large-scale cortical correlation structure of
spontaneous oscillatory activity. Nature neuroscience. 2012; 15(6):884–890. doi: 10.1038/nn.3101
PMID: 22561454

10. Engel AK, Gerloff C, Hilgetag CC, Nolte G. Intrinsic coupling modes: multiscale interactions in ongoing
brain activity. Neuron. 2013; 80(4):867–886. doi: 10.1016/j.neuron.2013.09.038 PMID: 24267648

11. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M. Electrophysiological signatures of rest-
ing state networks in the human brain. Proceedings of the National Academy of Sciences. 2007; 104
(32):13170–13175. doi: 10.1073/pnas.0700668104

12. Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects struc-
tural connectivity in the default mode network. Cerebral cortex. 2009; 19(1):72–78. doi: 10.1093/
cercor/bhn059 PMID: 18403396

13. Honey C, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, et al. Predicting human resting-
state functional connectivity from structural connectivity. Proceedings of the National Academy of Sci-
ences. 2009; 106(6):2035–2040. doi: 10.1073/pnas.0811168106

Modeling Functional Connectivity: From DTI to EEG

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005025 August 9, 2016 23 / 28

http://dx.doi.org/10.1038/nn1616
http://dx.doi.org/10.1038/nn1616
http://www.ncbi.nlm.nih.gov/pubmed/16341210
http://dx.doi.org/10.1126/science.273.5283.1868
http://dx.doi.org/10.1126/science.273.5283.1868
http://www.ncbi.nlm.nih.gov/pubmed/8791593
http://www.ncbi.nlm.nih.gov/pubmed/8340806
http://dx.doi.org/10.1016/S0306-4522(96)00392-2
http://www.ncbi.nlm.nih.gov/pubmed/10341257
http://dx.doi.org/10.1002/mrm.1910340409
http://dx.doi.org/10.1002/mrm.1910340409
http://www.ncbi.nlm.nih.gov/pubmed/8524021
http://dx.doi.org/10.1073/pnas.98.2.676
http://dx.doi.org/10.1073/pnas.98.2.676
http://dx.doi.org/10.1016/j.neuroimage.2011.02.054
http://www.ncbi.nlm.nih.gov/pubmed/21352925
http://dx.doi.org/10.1038/nn.3101
http://www.ncbi.nlm.nih.gov/pubmed/22561454
http://dx.doi.org/10.1016/j.neuron.2013.09.038
http://www.ncbi.nlm.nih.gov/pubmed/24267648
http://dx.doi.org/10.1073/pnas.0700668104
http://dx.doi.org/10.1093/cercor/bhn059
http://dx.doi.org/10.1093/cercor/bhn059
http://www.ncbi.nlm.nih.gov/pubmed/18403396
http://dx.doi.org/10.1073/pnas.0811168106


14. Skudlarski P, Jagannathan K, Calhoun VD, HampsonM, Skudlarska BA, Pearlson G. Measuring
brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage.
2008; 43(3):554–561. doi: 10.1016/j.neuroimage.2008.07.063 PMID: 18771736

15. Goñi J, van den Heuvel MP, Avena-Koenigsberger A, de Mendizabal NV, Betzel RF, Griffa A, et al.
Resting-brain functional connectivity predicted by analytic measures of network communication. Pro-
ceedings of the National Academy of Sciences. 2014; 111(2):833–838. doi: 10.1073/pnas.
1315529111

16. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, et al. Mapping the structural
core of human cerebral cortex. PLoS Biol. 2008; 6(7):e159. doi: 10.1371/journal.pbio.0060159 PMID:
18597554

17. Garcés P, Pereda E, Hernández-Tamames JA, Del-Pozo F, Maestú F, Ángel Pineda-Pardo J. Multi-
modal description of whole brain connectivity: A comparison of resting state MEG, fMRI, and DWI.
Human brain mapping. 2015;.

18. Chu C, Tanaka N, Diaz J, Edlow B, Wu O, Hämäläinen M, et al. EEG functional connectivity is partially
predicted by underlying white matter connectivity. Neuroimage. 2015; 108:23–33. doi: 10.1016/j.
neuroimage.2014.12.033 PMID: 25534110

19. Vincent J, Patel G, Fox M, Snyder A, Baker J, Van Essen D, et al. Intrinsic functional architecture in
the anaesthetized monkey brain. Nature. 2007; 447(7140):83–86. doi: 10.1038/nature05758 PMID:
17476267

20. Hermundstad AM, Bassett DS, Brown KS, Aminoff EM, Clewett D, Freeman S, et al. Structural foun-
dations of resting-state and task-based functional connectivity in the human brain. Proceedings of the
National Academy of Sciences. 2013; 110(15):6169–6174. doi: 10.1073/pnas.1219562110

21. Cabral J, Luckhoo H, Woolrich M, Joensson M, Mohseni H, Baker A, et al. Exploring mechanisms of
spontaneous functional connectivity in MEG: how delayed network interactions lead to structured
amplitude envelopes of band-pass filtered oscillations. Neuroimage. 2014; 90:423–435. doi: 10.1016/
j.neuroimage.2013.11.047 PMID: 24321555

22. Cabral J, Hugues E, Sporns O, Deco G. Role of local network oscillations in resting-state functional
connectivity. Neuroimage. 2011; 57(1):130–139. doi: 10.1016/j.neuroimage.2011.04.010 PMID:
21511044

23. Izhikevich EM, Edelman GM. Large-scale model of mammalian thalamocortical systems. Proceed-
ings of the national academy of sciences. 2008; 105(9):3593–3598. doi: 10.1073/pnas.0712231105

24. Messé A, Rudrauf D, Benali H, Marrelec G. Relating structure and function in the human brain: relative
contributions of anatomy, stationary dynamics, and non-stationarities. PLoS computational biology.
2014; 10(3):e1003530. doi: 10.1371/journal.pcbi.1003530 PMID: 24651524

25. Messe A, Benali H, Marrelec G. Relating structural and functional connectivity in MRI: A simple model
for a complex brain. Medical Imaging, IEEE Transactions on. 2015; 34(1):27–37. doi: 10.1109/TMI.
2014.2341732

26. Messé A, Rudrauf D, Giron A, Marrelec G. Predicting functional connectivity from structural connectiv-
ity via computational models using MRI: an extensive comparison study. NeuroImage. 2015; 111:65–
75. doi: 10.1016/j.neuroimage.2015.02.001 PMID: 25682944

27. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network
analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences. 2003;
100(1):253–258. doi: 10.1073/pnas.0135058100

28. de Pasquale F, Della Penna S, Snyder AZ, Lewis C, Mantini D, Marzetti L, et al. Temporal dynamics
of spontaneous MEG activity in brain networks. Proceedings of the National Academy of Sciences.
2010; 107(13):6040–6045. doi: 10.1073/pnas.0913863107

29. Singer W. Neuronal synchrony: a versatile code for the definition of relations? Neuron. 1999; 24
(1):49–65. doi: 10.1016/S0896-6273(00)80821-1 PMID: 10677026

30. Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation.
Annual review of neuroscience. 2009; 32:209–224. doi: 10.1146/annurev.neuro.051508.135603
PMID: 19400723

31. Engel AK, Fries P. Beta-band oscillations—signalling the status quo? Current opinion in neurobiology.
2010; 20(2):156–165. doi: 10.1016/j.conb.2010.02.015 PMID: 20359884

32. Siegel M, Donner TH, Engel AK. Spectral fingerprints of large-scale neuronal interactions. Nature
Reviews Neuroscience. 2012; 13(2):121–134. PMID: 22233726

33. Hipp JF, Engel AK, Siegel M. Oscillatory synchronization in large-scale cortical networks predicts per-
ception. Neuron. 2011; 69(2):387–396. doi: 10.1016/j.neuron.2010.12.027 PMID: 21262474

Modeling Functional Connectivity: From DTI to EEG

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005025 August 9, 2016 24 / 28

http://dx.doi.org/10.1016/j.neuroimage.2008.07.063
http://www.ncbi.nlm.nih.gov/pubmed/18771736
http://dx.doi.org/10.1073/pnas.1315529111
http://dx.doi.org/10.1073/pnas.1315529111
http://dx.doi.org/10.1371/journal.pbio.0060159
http://www.ncbi.nlm.nih.gov/pubmed/18597554
http://dx.doi.org/10.1016/j.neuroimage.2014.12.033
http://dx.doi.org/10.1016/j.neuroimage.2014.12.033
http://www.ncbi.nlm.nih.gov/pubmed/25534110
http://dx.doi.org/10.1038/nature05758
http://www.ncbi.nlm.nih.gov/pubmed/17476267
http://dx.doi.org/10.1073/pnas.1219562110
http://dx.doi.org/10.1016/j.neuroimage.2013.11.047
http://dx.doi.org/10.1016/j.neuroimage.2013.11.047
http://www.ncbi.nlm.nih.gov/pubmed/24321555
http://dx.doi.org/10.1016/j.neuroimage.2011.04.010
http://www.ncbi.nlm.nih.gov/pubmed/21511044
http://dx.doi.org/10.1073/pnas.0712231105
http://dx.doi.org/10.1371/journal.pcbi.1003530
http://www.ncbi.nlm.nih.gov/pubmed/24651524
http://dx.doi.org/10.1109/TMI.2014.2341732
http://dx.doi.org/10.1109/TMI.2014.2341732
http://dx.doi.org/10.1016/j.neuroimage.2015.02.001
http://www.ncbi.nlm.nih.gov/pubmed/25682944
http://dx.doi.org/10.1073/pnas.0135058100
http://dx.doi.org/10.1073/pnas.0913863107
http://dx.doi.org/10.1016/S0896-6273(00)80821-1
http://www.ncbi.nlm.nih.gov/pubmed/10677026
http://dx.doi.org/10.1146/annurev.neuro.051508.135603
http://www.ncbi.nlm.nih.gov/pubmed/19400723
http://dx.doi.org/10.1016/j.conb.2010.02.015
http://www.ncbi.nlm.nih.gov/pubmed/20359884
http://www.ncbi.nlm.nih.gov/pubmed/22233726
http://dx.doi.org/10.1016/j.neuron.2010.12.027
http://www.ncbi.nlm.nih.gov/pubmed/21262474


34. Hummel F, Gerloff C. Larger interregional synchrony is associated with greater behavioral success in
a complex sensory integration task in humans. Cerebral Cortex. 2005; 15(5):670–678. doi: 10.1093/
cercor/bhh170 PMID: 15342429

35. Deco G, Jirsa VK, McIntosh AR. Emerging concepts for the dynamical organization of resting-state
activity in the brain. Nature Reviews Neuroscience. 2011; 12(1):43–56. doi: 10.1038/nrn2961 PMID:
21170073

36. Engel AK, König P, Kreiter AK, Singer W. Interhemispheric synchronization of oscillatory neuronal
responses in cat visual cortex. Science. 1991; 252(5009):1177–1179. doi: 10.1126/science.252.
5009.1177 PMID: 2031188

37. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional
systems. Nature Reviews Neuroscience. 2009; 10(3):186–198. doi: 10.1038/nrn2575 PMID:
19190637

38. Li L, Rilling JK, Preuss TM, Glasser MF, Damen FW, Hu X. Quantitative assessment of a framework
for creating anatomical brain networks via global tractography. NeuroImage. 2012; 61(4):1017–1030.
doi: 10.1016/j.neuroimage.2012.03.071 PMID: 22484406

39. Wedeen VJ, Wang R, Schmahmann JD, Benner T, TsengW, Dai G, et al. Diffusion spectrummag-
netic resonance imaging (DSI) tractography of crossing fibers. Neuroimage. 2008; 41(4):1267–1277.
doi: 10.1016/j.neuroimage.2008.03.036 PMID: 18495497

40. Li L, Rilling JK, Preuss TM, Glasser MF, Hu X. The effects of connection reconstruction method on the
interregional connectivity of brain networks via diffusion tractography. Human brain mapping. 2012;
33(8):1894–1913. doi: 10.1002/hbm.21332 PMID: 21928316

41. Ritter P, Schirner M, McIntosh AR, Jirsa VK. The virtual brain integrates computational modeling and
multimodal neuroimaging. Brain connectivity. 2013; 3(2):121–145. doi: 10.1089/brain.2012.0120
PMID: 23442172

42. Bojak I, Oostendorp TF, Reid AT, Kötter R. Connecting mean field models of neural activity to EEG
and fMRI data. Brain topography. 2010; 23(2):139–149. doi: 10.1007/s10548-010-0140-3 PMID:
20364434

43. Stam CJ, Nolte G, Daffertshofer A. Phase lag index: Assessment of functional connectivity frommulti
channel EEG and MEGwith diminished bias from common sources. Human brain mapping. 2007; 28
(11):1178–1193. doi: 10.1002/hbm.20346 PMID: 17266107

44. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling
system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest.
Neuroimage. 2006; 31(3):968–980. doi: 10.1016/j.neuroimage.2006.01.021 PMID: 16530430

45. Sturm AK, König P. Mechanisms to synchronize neuronal activity. Biological cybernetics. 2001; 84
(3):153–172. doi: 10.1007/s004220000209 PMID: 11252634

46. Cheng B, Braass H, Ganos C, Treszl A, Biermann-Ruben K, Hummel FC, et al. Altered intrahemi-
spheric structural connectivity in Gilles de la Tourette syndrome. NeuroImage: Clinical. 2014; 4:174–
181. doi: 10.1016/j.nicl.2013.11.011

47. Cabral J, Kringelbach ML, Deco G. Exploring the network dynamics underlying brain activity during
rest. Progress in neurobiology. 2014; 114:102–131. doi: 10.1016/j.pneurobio.2013.12.005 PMID:
24389385

48. Breakspear M, Heitmann S, Daffertshofer A. Generative models of cortical oscillations: neurobiologi-
cal implications of the Kuramoto model. Frontiers in human neuroscience. 2010; 4. doi: 10.3389/
fnhum.2010.00190 PMID: 21151358

49. Tononi G, Sporns O, Edelman GM. A measure for brain complexity: relating functional segregation
and integration in the nervous system. Proceedings of the National Academy of Sciences. 1994; 91
(11):5033–5037. doi: 10.1073/pnas.91.11.5033

50. Van Veen BD, Van DrongelenW, YuchtmanM, Suzuki A. Localization of brain electrical activity via
linearly constrained minimum variance spatial filtering. Biomedical Engineering, IEEE Transactions
on. 1997; 44(9):867–880. doi: 10.1109/10.623056

51. Hindriks R, Woolrich M, Luckhoo H, Joensson M, Mohseni H, Kringelbach M, et al. Role of white-mat-
ter pathways in coordinating alpha oscillations in resting visual cortex. NeuroImage. 2015; 106:328–
339. doi: 10.1016/j.neuroimage.2014.10.057 PMID: 25449741

52. Vinck M, Oostenveld R, vanWingerden M, Battaglia F, Pennartz CM. An improved index of phase-syn-
chronization for electrophysiological data in the presence of volume-conduction, noise and sample-size
bias. Neuroimage. 2011; 55(4):1548–1565. doi: 10.1016/j.neuroimage.2011.01.055 PMID: 21276857

53. Rappelsberger P, Pfurtscheller G, Filz O. Calculation of event-related coherence—a newmethod to
study short-lasting coupling between brain areas. Brain topography. 1994; 7(2):121–127. doi: 10.
1007/BF01186770 PMID: 7696089

Modeling Functional Connectivity: From DTI to EEG

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005025 August 9, 2016 25 / 28

http://dx.doi.org/10.1093/cercor/bhh170
http://dx.doi.org/10.1093/cercor/bhh170
http://www.ncbi.nlm.nih.gov/pubmed/15342429
http://dx.doi.org/10.1038/nrn2961
http://www.ncbi.nlm.nih.gov/pubmed/21170073
http://dx.doi.org/10.1126/science.252.5009.1177
http://dx.doi.org/10.1126/science.252.5009.1177
http://www.ncbi.nlm.nih.gov/pubmed/2031188
http://dx.doi.org/10.1038/nrn2575
http://www.ncbi.nlm.nih.gov/pubmed/19190637
http://dx.doi.org/10.1016/j.neuroimage.2012.03.071
http://www.ncbi.nlm.nih.gov/pubmed/22484406
http://dx.doi.org/10.1016/j.neuroimage.2008.03.036
http://www.ncbi.nlm.nih.gov/pubmed/18495497
http://dx.doi.org/10.1002/hbm.21332
http://www.ncbi.nlm.nih.gov/pubmed/21928316
http://dx.doi.org/10.1089/brain.2012.0120
http://www.ncbi.nlm.nih.gov/pubmed/23442172
http://dx.doi.org/10.1007/s10548-010-0140-3
http://www.ncbi.nlm.nih.gov/pubmed/20364434
http://dx.doi.org/10.1002/hbm.20346
http://www.ncbi.nlm.nih.gov/pubmed/17266107
http://dx.doi.org/10.1016/j.neuroimage.2006.01.021
http://www.ncbi.nlm.nih.gov/pubmed/16530430
http://dx.doi.org/10.1007/s004220000209
http://www.ncbi.nlm.nih.gov/pubmed/11252634
http://dx.doi.org/10.1016/j.nicl.2013.11.011
http://dx.doi.org/10.1016/j.pneurobio.2013.12.005
http://www.ncbi.nlm.nih.gov/pubmed/24389385
http://dx.doi.org/10.3389/fnhum.2010.00190
http://dx.doi.org/10.3389/fnhum.2010.00190
http://www.ncbi.nlm.nih.gov/pubmed/21151358
http://dx.doi.org/10.1073/pnas.91.11.5033
http://dx.doi.org/10.1109/10.623056
http://dx.doi.org/10.1016/j.neuroimage.2014.10.057
http://www.ncbi.nlm.nih.gov/pubmed/25449741
http://dx.doi.org/10.1016/j.neuroimage.2011.01.055
http://www.ncbi.nlm.nih.gov/pubmed/21276857
http://dx.doi.org/10.1007/BF01186770
http://dx.doi.org/10.1007/BF01186770
http://www.ncbi.nlm.nih.gov/pubmed/7696089


54. Andrew C, Pfurtscheller G. Event-related coherence as a tool for studying dynamic interaction of brain
regions. Electroencephalography and clinical neurophysiology. 1996; 98(2):144–148. doi: 10.1016/
0013-4694(95)00228-6 PMID: 8598174

55. Gerloff C, Bushara K, Sailer A, Wassermann EM, Chen R, Matsuoka T, et al. Multimodal imaging of
brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after
capsular stroke. Brain. 2006; 129(3):791–808. doi: 10.1093/brain/awh713 PMID: 16364955

56. Manganotti P, Gerloff C, Toro C, Katsuta H, Sadato N, Zhuang Pa, et al. Task-related coherence and
task-related spectral power changes during sequential finger movements. Electroencephalography
and Clinical Neurophysiology/Electromyography and Motor Control. 1998; 109(1):50–62. doi: 10.
1016/S0924-980X(97)00074-X PMID: 11003064

57. Wu J, Srinivasan R, Kaur A, Cramer SC. Resting-state cortical connectivity predicts motor skill acqui-
sition. NeuroImage. 2014; 91:84–90. doi: 10.1016/j.neuroimage.2014.01.026 PMID: 24473097

58. Anguera JA, Boccanfuso J, Rintoul JL, Al-Hashimi O, Faraji F, Janowich J, et al. Video game training
enhances cognitive control in older adults. Nature. 2013; 501(7465):97–101. doi: 10.1038/
nature12486 PMID: 24005416

59. Niso G, Carrasco S, Gudín M, Maestú F, del Pozo F, Pereda E. What graph theory actually tells us
about resting state interictal MEG epileptic activity. NeuroImage: Clinical. 2015;. doi: 10.1016/j.nicl.
2015.05.008

60. Jbabdi S, Johansen-Berg H. Tractography: where do we go from here? Brain connectivity. 2011; 1
(3):169–183. doi: 10.1089/brain.2011.0033 PMID: 22433046

61. Bullmore E, Sporns O. The economy of brain network organization. Nature Reviews Neuroscience.
2012; 13(5):336–349. PMID: 22498897

62. Betzel RF, Avena-Koenigsberger A, Goñi J, He Y, de Reus MA, Griffa A, et al. Generative models of
the human connectome. Neuroimage. 2016; 124:1054–1064. doi: 10.1016/j.neuroimage.2015.09.
041 PMID: 26427642

63. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations.
Neuroimage. 2010; 52(3):1059–1069. doi: 10.1016/j.neuroimage.2009.10.003 PMID: 19819337

64. NewmanME. The mathematics of networks. The new palgrave encyclopedia of economics. 2008; 2
(2008):1–12.

65. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. nature. 1998; 393(6684):440–
442. PMID: 9623998

66. Cheng H, Wang Y, Sheng J, Kronenberger WG, Mathews VP, Hummer TA, et al. Characteristics and
variability of structural networks derived from diffusion tensor imaging. Neuroimage. 2012; 61
(4):1153–1164. doi: 10.1016/j.neuroimage.2012.03.036 PMID: 22450298

67. Leon PS, Knock SA, WoodmanMM, Domide L, Mersmann J, McIntosh AR, et al. The Virtual Brain: a
simulator of primate brain network dynamics. Frontiers in neuroinformatics. 2013; 7.

68. Kuramoto Y. Chemical oscillations, waves, and turbulence. vol. 19. Springer; 1984

69. Finger H, König P. Phase synchrony facilitates binding and segmentation of natural images in a cou-
pled neural oscillator network. Frontiers in computational neuroscience. 2013; 7(195). doi: 10.3389/
fncom.2013.00195 PMID: 24478685

70. Yeung MS, Strogatz SH. Time delay in the Kuramoto model of coupled oscillators. Physical Review
Letters. 1999; 82(3):648. doi: 10.1103/PhysRevLett.82.648

71. Oostenveld R, Stegeman DF, Praamstra P, van Oosterom A. Brain symmetry and topographic analy-
sis of lateralized event-related potentials. Clinical neurophysiology. 2003; 114(7):1194–1202. doi: 10.
1016/S1388-2457(03)00059-2 PMID: 12842715

72. Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer P, Saletu B, et al. Assessing interac-
tions in the brain with exact low-resolution electromagnetic tomography. Philosophical Transactions
of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2011; 369
(1952):3768–3784. doi: 10.1098/rsta.2011.0081

73. Steinmann S, Leicht G, Ertl M, Andreou C, Polomac N, Westerhausen R, et al. Conscious auditory
perception related to long-range synchrony of gamma oscillations. NeuroImage. 2014; 100:435–443.
doi: 10.1016/j.neuroimage.2014.06.012 PMID: 24945670

74. Vecchio F, Miraglia F, Curcio G, Della Marca G, Vollono C, Mazzucchi E, et al. Cortical connectivity in
fronto-temporal focal epilepsy from EEG analysis: A study via graph theory. Clinical Neurophysiology.
2015; 126(6):1108–1116. doi: 10.1016/j.clinph.2014.09.019 PMID: 25449555

75. Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, et al. Dynamic statistical paramet-
ric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron. 2000;
26(1):55–67. doi: 10.1016/S0896-6273(00)81138-1 PMID: 10798392

Modeling Functional Connectivity: From DTI to EEG

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005025 August 9, 2016 26 / 28

http://dx.doi.org/10.1016/0013-4694(95)00228-6
http://dx.doi.org/10.1016/0013-4694(95)00228-6
http://www.ncbi.nlm.nih.gov/pubmed/8598174
http://dx.doi.org/10.1093/brain/awh713
http://www.ncbi.nlm.nih.gov/pubmed/16364955
http://dx.doi.org/10.1016/S0924-980X(97)00074-X
http://dx.doi.org/10.1016/S0924-980X(97)00074-X
http://www.ncbi.nlm.nih.gov/pubmed/11003064
http://dx.doi.org/10.1016/j.neuroimage.2014.01.026
http://www.ncbi.nlm.nih.gov/pubmed/24473097
http://dx.doi.org/10.1038/nature12486
http://dx.doi.org/10.1038/nature12486
http://www.ncbi.nlm.nih.gov/pubmed/24005416
http://dx.doi.org/10.1016/j.nicl.2015.05.008
http://dx.doi.org/10.1016/j.nicl.2015.05.008
http://dx.doi.org/10.1089/brain.2011.0033
http://www.ncbi.nlm.nih.gov/pubmed/22433046
http://www.ncbi.nlm.nih.gov/pubmed/22498897
http://dx.doi.org/10.1016/j.neuroimage.2015.09.041
http://dx.doi.org/10.1016/j.neuroimage.2015.09.041
http://www.ncbi.nlm.nih.gov/pubmed/26427642
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19819337
http://www.ncbi.nlm.nih.gov/pubmed/9623998
http://dx.doi.org/10.1016/j.neuroimage.2012.03.036
http://www.ncbi.nlm.nih.gov/pubmed/22450298
http://dx.doi.org/10.3389/fncom.2013.00195
http://dx.doi.org/10.3389/fncom.2013.00195
http://www.ncbi.nlm.nih.gov/pubmed/24478685
http://dx.doi.org/10.1103/PhysRevLett.82.648
http://dx.doi.org/10.1016/S1388-2457(03)00059-2
http://dx.doi.org/10.1016/S1388-2457(03)00059-2
http://www.ncbi.nlm.nih.gov/pubmed/12842715
http://dx.doi.org/10.1098/rsta.2011.0081
http://dx.doi.org/10.1016/j.neuroimage.2014.06.012
http://www.ncbi.nlm.nih.gov/pubmed/24945670
http://dx.doi.org/10.1016/j.clinph.2014.09.019
http://www.ncbi.nlm.nih.gov/pubmed/25449555
http://dx.doi.org/10.1016/S0896-6273(00)81138-1
http://www.ncbi.nlm.nih.gov/pubmed/10798392


76. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ, et al. Measuring phase synchrony in brain signals.
Human brain mapping. 1999; 8(4):194–208. doi: 10.1002/(SICI)1097-0193(1999)8:4%3C194::AID-
HBM4%3E3.0.CO;2-C PMID: 10619414

77. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true brain interaction from EEG
data using the imaginary part of coherency. Clinical neurophysiology. 2004; 115(10):2292–2307. doi:
10.1016/j.clinph.2004.04.029 PMID: 15351371

78. Pascual-Marqui RD. Instantaneous and lagged measurements of linear and nonlinear dependence
between groups of multivariate time series: frequency decomposition. arXiv preprint arXiv:07111455.
2007;.

79. Hindriks R, van Putten MJ, Deco G. Intra-cortical propagation of EEG alpha oscillations. Neuroimage.
2014; 103:444–453. doi: 10.1016/j.neuroimage.2014.08.027 PMID: 25168275

80. Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, Menon V. Development of functional and struc-
tural connectivity within the default mode network in young children. Neuroimage. 2010; 52(1):290–
301. doi: 10.1016/j.neuroimage.2010.04.009 PMID: 20385244

81. Zalesky A, Fornito A, Harding IH, Cocchi L, Yücel M, Pantelis C, et al. Whole-brain anatomical net-
works: does the choice of nodes matter? Neuroimage. 2010; 50(3):970–983. doi: 10.1016/j.
neuroimage.2009.12.027 PMID: 20035887

82. Zhong S, He Y, Gong G. Convergence and divergence across construction methods for human brain
white matter networks: An assessment based on individual differences. Human brain mapping. 2015;
36(5):1995–2013. doi: 10.1002/hbm.22751 PMID: 25641208

83. Power JD, Cohen AL, Nelson SM,Wig GS, Barnes KA, Church JA, et al. Functional network organiza-
tion of the human brain. Neuron. 2011; 72(4):665–678. doi: 10.1016/j.neuron.2011.09.006 PMID:
22099467

84. Ton R, Deco G, Daffertshofer A. Structure-Function Discrepancy: Inhomogeneity and Delays in Syn-
chronized Neural Networks. PLoS Computational Biology. 2014; 10(7). doi: 10.1371/journal.pcbi.
1003736 PMID: 25078715

85. Sporns O, Tononi G, Edelman GM. Theoretical neuroanatomy: relating anatomical and functional
connectivity in graphs and cortical connection matrices. Cerebral Cortex. 2000; 10(2):127–141. doi:
10.1093/cercor/10.2.127 PMID: 10667981

86. Barnett L, Buckley CL, Bullock S. Neural complexity and structural connectivity. Physical Review E.
2009; 79(5):051914. doi: 10.1103/PhysRevE.79.051914

87. Villegas P, Moretti P, Muñoz MA. Frustrated hierarchical synchronization and emergent complexity in
the human connectome network. Scientific reports. 2014; 4. doi: 10.1038/srep05990

88. Sadilek M, Thurner S. Physiologically motivated multiplex Kuramoto model describes phase diagram
of cortical activity. Scientific reports. 2015; 5. doi: 10.1038/srep10015 PMID: 25996547

89. Váša F, ShanahanM, Hellyer PJ, Scott G, Cabral J, Leech R. Effects of lesions on synchrony and
metastability in cortical networks. NeuroImage. 2015;.

90. Schirner M, Rothmeier S, Jirsa VK, McIntosh AR, Ritter P. An automated pipeline for constructing per-
sonalized virtual brains frommultimodal neuroimaging data. NeuroImage. 2015;. doi: 10.1016/j.
neuroimage.2015.03.055 PMID: 25837600

91. Vindiola M, Vettel J, Gordon S, Franaszczuk P, McDowell K. Applying EEG phase synchronization
measures to non-linearly coupled neural mass models. Journal of neuroscience methods. 2014;
226:1–14. doi: 10.1016/j.jneumeth.2014.01.025 PMID: 24485868

92. Greenblatt R, Pflieger M, Ossadtchi A. Connectivity measures applied to human brain electrophysio-
logical data. Journal of neuroscience methods. 2012; 207(1):1–16. doi: 10.1016/j.jneumeth.2012.02.
025 PMID: 22426415

93. Krusienski DJ, McFarland DJ, Wolpaw JR. Value of amplitude, phase, and coherence features for a
sensorimotor rhythm-based brain–computer interface. Brain research bulletin. 2012; 87(1):130–134.
doi: 10.1016/j.brainresbull.2011.09.019 PMID: 21985984

94. Khadem A, Hossein-Zadeh GA. Quantification of the effects of volume conduction on the EEG/MEG
connectivity estimates: an index of sensitivity to brain interactions. Physiological measurement. 2014;
35(10):2149. doi: 10.1088/0967-3334/35/10/2149 PMID: 25243864

95. Zhang C, Yu X, Yang Y, Xu L. Phase Synchronization and Spectral Coherence Analysis of EEG Activ-
ity During Mental Fatigue. Clinical EEG and neuroscience. 2014;p. 1550059413503961.

96. Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. Oxford university
press; 2006.

97. Stinstra J, Peters M. The volume conductor may act as a temporal filter on the ECG and EEG. Medical
and Biological Engineering and Computing. 1998; 36(6):711–716. doi: 10.1007/BF02518873 PMID:
10367461

Modeling Functional Connectivity: From DTI to EEG

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005025 August 9, 2016 27 / 28

http://dx.doi.org/10.1002/(SICI)1097-0193(1999)8:4%3C194::AID-HBM4%3E3.0.CO;2-C
http://dx.doi.org/10.1002/(SICI)1097-0193(1999)8:4%3C194::AID-HBM4%3E3.0.CO;2-C
http://www.ncbi.nlm.nih.gov/pubmed/10619414
http://dx.doi.org/10.1016/j.clinph.2004.04.029
http://www.ncbi.nlm.nih.gov/pubmed/15351371
http://dx.doi.org/10.1016/j.neuroimage.2014.08.027
http://www.ncbi.nlm.nih.gov/pubmed/25168275
http://dx.doi.org/10.1016/j.neuroimage.2010.04.009
http://www.ncbi.nlm.nih.gov/pubmed/20385244
http://dx.doi.org/10.1016/j.neuroimage.2009.12.027
http://dx.doi.org/10.1016/j.neuroimage.2009.12.027
http://www.ncbi.nlm.nih.gov/pubmed/20035887
http://dx.doi.org/10.1002/hbm.22751
http://www.ncbi.nlm.nih.gov/pubmed/25641208
http://dx.doi.org/10.1016/j.neuron.2011.09.006
http://www.ncbi.nlm.nih.gov/pubmed/22099467
http://dx.doi.org/10.1371/journal.pcbi.1003736
http://dx.doi.org/10.1371/journal.pcbi.1003736
http://www.ncbi.nlm.nih.gov/pubmed/25078715
http://dx.doi.org/10.1093/cercor/10.2.127
http://www.ncbi.nlm.nih.gov/pubmed/10667981
http://dx.doi.org/10.1103/PhysRevE.79.051914
http://dx.doi.org/10.1038/srep05990
http://dx.doi.org/10.1038/srep10015
http://www.ncbi.nlm.nih.gov/pubmed/25996547
http://dx.doi.org/10.1016/j.neuroimage.2015.03.055
http://dx.doi.org/10.1016/j.neuroimage.2015.03.055
http://www.ncbi.nlm.nih.gov/pubmed/25837600
http://dx.doi.org/10.1016/j.jneumeth.2014.01.025
http://www.ncbi.nlm.nih.gov/pubmed/24485868
http://dx.doi.org/10.1016/j.jneumeth.2012.02.025
http://dx.doi.org/10.1016/j.jneumeth.2012.02.025
http://www.ncbi.nlm.nih.gov/pubmed/22426415
http://dx.doi.org/10.1016/j.brainresbull.2011.09.019
http://www.ncbi.nlm.nih.gov/pubmed/21985984
http://dx.doi.org/10.1088/0967-3334/35/10/2149
http://www.ncbi.nlm.nih.gov/pubmed/25243864
http://dx.doi.org/10.1007/BF02518873
http://www.ncbi.nlm.nih.gov/pubmed/10367461


98. Roelfsema PR, Engel AK, König P, Singer W. Visuomotor integration is associated with zero time-lag
synchronization among cortical areas. Nature. 1997; 385:157–161. doi: 10.1038/385157a0 PMID:
8990118

99. Campo AT, Martinez-Garcia M, Nácher V, Luna R, Romo R, Deco G. Task-driven intra-and interarea
communications in primate cerebral cortex. Proceedings of the National Academy of Sciences. 2015;
112(15):4761–4766. doi: 10.1073/pnas.1503937112

100. Gregoriou GG, Gotts SJ, Zhou H, Desimone R. Long-range neural coupling through synchronization
with attention. Progress in brain research. 2009; 176:35–45. doi: 10.1016/S0079-6123(09)17603-3
PMID: 19733748

101. Schoffelen JM, Gross J. Source connectivity analysis with MEG and EEG. Human brain mapping.
2009; 30(6):1857–1865. doi: 10.1002/hbm.20745 PMID: 19235884

Modeling Functional Connectivity: From DTI to EEG

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005025 August 9, 2016 28 / 28

http://dx.doi.org/10.1038/385157a0
http://www.ncbi.nlm.nih.gov/pubmed/8990118
http://dx.doi.org/10.1073/pnas.1503937112
http://dx.doi.org/10.1016/S0079-6123(09)17603-3
http://www.ncbi.nlm.nih.gov/pubmed/19733748
http://dx.doi.org/10.1002/hbm.20745
http://www.ncbi.nlm.nih.gov/pubmed/19235884

