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Ligand- and Structure-Based Approaches of Escherichia coli
FabI Inhibition by Triclosan Derivatives: From Chemical
Similarity to Protein Dynamics Influence
Thales Kronenberger+,*[b, c] Philipe de Oliveira Fernades+,[a, d] Isabella Drumond Franco,[a]

Antti Poso,[b, c] and Vinícius Gonçalves Maltarollo*[a]

Enoyl-acyl carrier protein reductase (FabI) is the limiting step to
complete the elongation cycle in type II fatty acid synthase
(FAS) systems and is a relevant target for antibacterial drugs. E.
coli FabI has been employed as a model to develop new
inhibitors against FAS, especially triclosan and diphenyl ether
derivatives. Chemical similarity models (CSM) were used to
understand which features were relevant for FabI inhibition.
Exhaustive screening of different CSM parameter combinations
featured chemical groups, such as the hydroxy group, as
relevant to distinguish between active/decoy compounds.

Those chemical features can interact with the catalytic Tyr156.
Further molecular dynamics simulation of FabI revealed the
ionization state as a relevant for ligand stability. Also, our
models point the balance between potency and the occupancy
of the hydrophobic pocket. This work discusses the strengths
and weak points of each technique, highlighting the impor-
tance of complementarity among approaches to elucidate
EcFabI inhibitor’s binding mode and offers insights for future
drug discovery.

Introduction

The increase of antimicrobial resistance has become a global
healthcare problem, rendering obsolete many antibiotic
therapies.[1] There is, therefore, an urgent medical need for new
antibacterial drugs, especially with novel mechanisms of action
that would display minimal cross-resistance with currently used
treatments. The need for new drug targets leads to the use of

bacterial fatty acid synthase type II as a possible biological
source (FAS-II). Prokaryote FAS-II system is based on individual
enzymes, and it is different from the multifunctional fatty acid
synthase type I system found in eukaryotes, therefore providing
good prospects for a selective inhibition.[2] However, the use of
FASII system as a source of antibiotic targets for Gram-positive
pathogens have been challenged in recent years. FASII pathway
is considered essential for Staphylococcus aureus, while recent
evidence also shows that pathogens could incorporate exoge-
nous fatty acids, therefore bypassing the FASII inhibition.[3–5] It
has been shown also that enoyl-acyl carrier protein reductase
(FabI) is essential for in vivo survival of S. aureus, as FabI
inhibitors supported animal recovery in mice infections
models.[6]

FAS-II last step is the fatty acid elongation cycle, which is
commonly catalysed by enoyl-ACP reductases and, specifically,
FabI catalyses the reduction of the trans-2-enoyl-ACP double
bond.[7] Most FabI enzymes catalyse the substrate reduction
through an ordered bi-bi mechanism, in which the binding of
the cofactor NAD(P)H precedes the substrate binding[7] (Fig-
ure 1A). Among them, FabI is the major isoform in pathogens
such as S. aureus,[8] Escherichia coli[9] and Mycobacterium
tuberculosis[10] (also called InhA). FabI is a target for the broad-
spectrum antibacterial triclosan (TCL, compound 1), as deter-
mined from resistant E. coli strains with a mutation in this
gene.[11] Triclosan was further characterized as a reversible
inhibitor of E. coli FabI[12] and it has a consistent use despite the
intravenous toxicity and spread resistance.[13] TCL binding to the
active site of EcFabI reorganizes the amino-acid residues on the
loop (residues 191–205) into a slow binding mechanism with
long residence time.[14]

TCL inhibitory mechanism can be used as an example for
the entire class of competitive FabI inhibitors, where essential
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features, such as the presence of an aromatic ring and phenolic
hydroxyl group can be modified to improve the biological
activity. The aromatic ring can be involved in π-stacking
interactions with the aromatic nicotinamide moiety of NAD+,
while the hydroxyl group interacts with Tyr156 and the ribose
moiety of NAD+ in the active site.[12]

FabI belongs to an enzymatic class known to present
substrate promiscuity.[15] Additionally, FabI active site is covered
by a highly flexible loop, which has been suggested to reduce
the efficacy of docking as a tool for drug discovery.[16] Successful
drug discovery projects against FabI/InhA relied on either the
combination of docking with other computational technique
(molecular dynamics or quantum chemical/mechanical calcula-
tions) or on the extensive synthesis of analogues.[17,18] In
accordance with the ever-increasing ligand information, ligand-
based approaches could be employed[16,18] and are often
employed in parallel to structure-based drug design approaches
to reach similar and complementary findings.[19]

Despite the clinical success of the InhA isoniazid inhibitor[20]

and the FabI inhibitors that underwent clinical trials, none of them
has made it yet to market.[21–23] Recently, however combinatorial
treatment approach with daptomycin has been proposed, which
can breathe new air into the field of FASII inhibitor development.
Daptomycin is a potent last-resource antibiotic acting directly on
the gram-positive bacteria’s membrane. Also, its resistance
mechanism has been attributed to the release of decoy lipids from
the pathogen that would interfere with the compound’s mem-
brane interaction.[24] In this context, S. aureus, when infecting host
tissues, may depend upon endogenous phospholipid biosynthesis
to generate the decoys lipids for release.[25] Additionally, AFN-1252,
which is a potent FabI inhibitor, was shown to efficiently block
daptomycin-induced phospholipid decoy production. Interestingly,

AFN-1252 resistant isolates, were still vulnerable to the double
treatment with AFN-1252 and daptomycin, which provides a niche
for a double-punch antibacterial targeting, ultimately showing
that FASII inhibition is still on the vogue for drug discovery.

In the last years, we observed a great advance in the discovery
and development of FabI inhibitors, some of which reached
clinical tests. That scenario reflects the clinical and commercial
interest of the development of new FabI inhibitors as new
antibacterial. In this sense, there is a broad range of computer-
aided drug design (CADD) methods, which can use a set of
validated bioactive compounds to get insights into the protein
function and help to design more potent/specific agents. The
integration of different CADD techniques is essential to overcome
the inherent limitations of each of them and, at the same time,
efficiently use the available computational resources. Specific
compound datasets with well-characterised activities against
targets with available structural information are excellent models
for employing both ligand-based and structure-based computa-
tional drug discovery, respectively.

Therefore, with the aim of better understanding the influence
of specific chemical features on the FabI inhibition by diphenyl
ether derivatives, within this work, we did an exhaustive study
employing a variety of chemical similarity models. Further
structural interpretation of the identified features related to the
inhibition mechanism of FabI was also validated by molecular
modelling, by the means of molecular dynamics simulation
(Figure 2). Altogether, the influence of chemical features from
known inhibitors and their interactions within EcFabI binding site
residues enabled helpful insights to drug discovery. Ultimately,
this work discusses the strengths and weak points of each
technique, highlighting the importance of complementarity
among different approaches to elucidate inhibitor’s binding mode
and further compound development.

Results and Discussion

Chemical Similarity Models

Initially, the first three chemical similarity models built using all
features of template molecules presented AUC values above 0.9

Figure 1. A) proposed enzymatic mechanism for FabI catalyses, the double
bond reduction occurs by conjugate addition of a hydride ion from NAD(P)H
leading to a rearrangement that generates the enolate intermediate, that
attacks the proton from the active side residues B) Gold standard compound
triclosan (1) employed as scaffold for the development of the studied series
followed by the three most potent compounds generated after SAR studies
and employed in our model generation. TCL image highlights the
numbering system employed here to discuss the ring substituents.

Figure 2. Flowchart illustrating the combination of different techniques from
ligand-based drug design (LBDD) and structure-based drug design (SBDD)
approaches employed together in this work.
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(Table 1), indicating a satisfactory result for the unedited
models. CSM derived from compound 41 has better statistical
values when compared to its counterparts (Table 1). Enrichment
values also indicated the better ability of the model derived
from compound 41 to distinguish between active and decoys
(Table 1). Figure 3 (A) enumerates the chemical features
evaluated along with the different 3D chemical similarity
models.

At the following step, 445 new CSMs were built by
excluding systematically the features followed by evaluating
the ability of them to distinguish active molecules from decoys
in a ROC curve validation (Figure 3B). The calculated AUC values
range from 0.762 to 0.996. The main reason for this result could
be the high similarity between the models, the template and
the dataset molecules. Seven models presented the AUC value
equal to 0.996 and all of them were derived from the

compound 41 as a template, indicating the highest predict-
ability of CSMs built with this template. Similar results could be
observed on the enrichment factors (on the top 1 and 5%
ranked poses, Supporting Information, Figure 1).

This first analysis indicated that both H-bond acceptor and
donor from the amide function at the side chain of the
template 41 are relevant to distinguish actives from decoys.
Following, the presence of the hydrophobic group, H-bond
donor from phenolic hydroxyl and H-bond acceptor from
phenoxy group is related to increased AUC values. In contrast,
the presence of an H-bond acceptor from pyridinic N atom
decreased the AUC value, suggesting a negative influence on
the classification ability of the biological activity. Table 2
presents a summary of the statistical parameters evaluated in
the validation of the ten best ROC models.

The similarity values calculated from the seven models with
the highest AUC values were also employed in a confusion
matrix calculation (Table 2). The Tc value of the first decoys
screened by CSM was employed as a cut-off to classify the
compounds as active (TC higher than cut-off) or inactive. After
this step, five models with the highest MCC values (models 253
and 301–304, Supporting Information, Table S1) were chosen to
perform a weight applying on features. Weights equal to 2, 3
and 5 times in single, double and triple combinations were
performed to build new 443 models. The validation of CSMs
with feature weighting indicated that 93 models have AUC
equals to 0.996. Then, we ranked it according to its enrichment
factor at 0.5% and choose the top five models to construct a
confusion matrix (Table 2)

In general terms, this step did not produce statistically
better results, just a slight increase of the early enrichment
factors (at 0.5% of the dataset) and MCC values but decreased
true positive rate. However, those models were also employed
in statistical analysis to interpret the importance of related
features. From the comparison of the AUC values of all models,
it is possible to note that some chemical features, namely HF,
HBA1, HBD1, HBA2 and R2, were significant only when used
with increased weight (Figure 3C). Surprisingly, R1 was not
relevant for the differentiation between actives and decoys,
despite its proximity to biologically relevant residues, as
discussed in later sections. The fine-tuning of weight parame-
ters has an overall positive impact (see Figure 3C), which is
statistically significant. Furthermore, the best model (302) was
also validated without decoys, in other words, only using the
experimentally inactive compounds and, as expected, the
calculated metrics decreased but all values suggest acceptable
predictability (Supporting Information, Figure 2 and Table S2).
Finally, for future potential virtual screening purposes, model

Table 1. Results of validation metrics for the first three models.

Template AUC Confidence levels Enrichment factor at
� 95% +95% 0.5% 1.0% 2.0%

37 0.991 0.982 0.997 116.3 81.9 45.7
41 0.995 0.991 0.998 129.7 85.9 49.9
48 0.937 0.875 0.984 107.2 75.7 39.6

Figure 3. Overview of the chemical similarity queries and validation results.
A) 2D representation of the chemical features evaluated along with the
different 3D chemical similarity models. Compounds 41 and 48 (the most
active of the series) were employed as a template for the model generation
and features were consistently numbered for comparison purposes. B)
Models with systematically screened chemical features. Models in the
presence (grey) and absence (white boxes) of specific chemical features
were compared in terms of AUC. Boxes represent the distribution around 5–
95 quantiles, while dots are models with values considered as outliers in this
interval. C) Models with differently weighted chemical features were
compared to models without this feature in terms of AUC. Statistical
significance between models and the control without the chemical feature
was evaluated using Mann-Whitney non-parametric model and the p-value
is represented as follow: ****<0.0001, ***<0.001, **<0.01.
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302 shows the best balance between validation parameters as
AUC, TPR, TNR, ACC and MCC, as well as the highest true
positive rate value. The use of generated CSM in the discovery
of new FabI inhibitors could provide new chemotypes since its
usage in the search of new bioactive compounds is based on
the arrangement of features into space (and not a search for a
specific functional group).

Molecular Modelling

Molecular docking studies followed by molecular dynamics
simulation of selected analogues (compounds 41, 27, 24 and
TCL) were conducted to complement the interpretation of the
chemical features in a structural context. Triclosan and com-
pound 41 were simulated independently in both ionization
states, the charged and neutral phenolic group, due to the
calculated pKa values (8.06 and 8.26 respectively). Accordingly,
compounds 37 and 24 have calculated pKa in the order of 9.17
and 10.88 (Supporting Information, Figure 3), respectively,
which discouraged the simulation of charged states, since they
would represent less than 2% of the total sample, for the most
conservative measurement. Comparison between experimen-
tally determined pKa values and our predictions showed
adequate correlation (Supporting Information, Figure 3), which
incentivized the use of the predictions determined in solution
to derive further conclusions.

Due to the highly flexible loops covering FabI’s active site,
as already reported by other groups and corroborated by high
B-factor values,[16] (Figure 4A and Supporting Information, Fig-
ure 4), further molecular modelling was based not only in the
interpretation of docking poses (Figure 4B shows the redocking
result), but rather discussed the interactions along molecular
dynamics simulations. On one hand, TCL and compound 41
ionized forms kept similar poses as the initial states (Figure 4C–
F), however, compounds 24 and 37 heavily relied on hydro-

phobic interactions to maintain binding stability (Figure 4G,H).
Furthermore, calculated poses with Glide were corroborated by
Surflex Docking[26] and GOLD 5.1[27] software (Supporting
Information, Figure 5) except for compound 24. Molecular
docking on different EcFabI structures led to similar docking
results, where compounds TCL, 41 and 37 presented classical
hydrogen bond interactions with Tyr156 and NAD+ (Supporting
Information Figure 6–7) and similar orientation to the co-
crystallized ligand.

Triclosan’s binding mode reproduced commonly described
interactions such as hydrogen bond between the hydroxyl
moiety and Tyr156/NAD+ and the π-π interaction of the ring 1
with both Tyr146 (T-shaped) and the NAD+ cofactor (π-
stacking) (Figure 5A–C), but not an ionic interaction with Lys163
(Figure 5B). However, only anionic states of triclosan (Fig-
ure 5D–E) and compound 41 (Figure F) maintained a hydrogen
bond with Tyr156, while the neutral forms drifted after few
nanoseconds of simulation (Supporting Information’s Figure 4
and 8 highlights the conformational changes FabI underwent
due to the compound displacement in the simulations with the
compound neutral states by the root-mean-square deviation
and fluctuation, respectively).

On the other hand, compound 24 (inactive) preferred the
interaction with Tyr146 after the minimization and did not
remain stable within the binding pocket. This pattern of
recognition of the phenolic group by the twin tyrosine residues
is suggested to be responsible for the activity since changes
from hydroxyl to methoxy groups are known to lead inactive
compounds on enzymatic assay.[28] Also, the ionized form of
Compound 37 (the most active of the series), stablished a stable
ionic interaction between its phenolate and the Lys163 (Fig-
ure 5B), which was seldom observed in the TCL/41 anionic
counterparts. Chang et al., 2013 hypothesized that the oxyanion
forms of diphenyl-ethers contribute to the high affinity binding
to SaFabI, where the charge of Lys164 (homologue to Lys163 in

Table 2. Summary of the statistical parameters evaluated in the validation of the ten best ROC models followed by the statistical parameters evaluated in
the validation of the ten best ROCS varying the weight of chemical features. Information regarding all calculated models is provided in the Supporting
Information (Table S1). Data from the best model is underlined. AUC: area under the ROC curve. E. (0.5%) stands for the enrichment factor on 0.5% (data for
1% and 2% enrichment is provided with full models as Supporting Information) TC1FP*: TanimotoCombo value for the first decoy predicted as false
positive. TPR: true positive rate. TNR: true negative rate. MCC: Matthews correlation coefficient. ACC: accuracy.

Model AUC E. (0.5%) Tc Cut-off TPR TNR ACC TC1FP* MCC

Best ROC models (fixed weight)

253 0.996 138.7 1.33 0.83 0.99 0.99 0.81 0.80
301 0.996 141.3 1.25 0.9 0.99 0.99 0.81 0.81
302 0.996 133.7 1.2 0.97 0.99 0.99 0.83 0.83
303 0.996 137.0 1.16 0.93 0.99 0.99 0.79 0.79
304 0.996 130.6 1.17 0.9 0.99 0.99 0.79 0.79
313 0.996 133.1 1.21 0.93 0.99 0.99 0.78 0.78
317 0.996 128.6 1.34 0.93 0.99 0.99 0.79 0.79

Best ROC models (weight variation)

589 0.99 155.1 1.73 0.83 1 0.99 0.85 0.84
875 0.996 154.8 2.59 0.57 1 0.99 0.69 0.71
612 0.996 154.6 1.73 0.83 1 0.99 0.85 0.84
824 0.996 151.2 2.09 0.7 1 0.99 0.76 0.76
505 0.996 149.2 1.91 0.87 0.99 0.99 0.79 0.79
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E. coli) would assist in the stabilization of the hydrogen bond
network with the Tyr157 and the oxidized cofactor NADP+.[29]

Clearly, the ionized forms showed consistent interactions
with Tyr156 and NAD+ when compared to the respective
neutral states or neutral compounds, which suggests a direct
relation between biological activity and the phenolic group pKa
values. This can be further corroborated by the lesser stability at
the binding site of the neutral ones. The equilibrium between
the charged and neutral species in solution may be influenced
by the better binding of ionized compounds, which would be
trapped in the FabI active site, despite its lower amount in the
biological environment. Since both the ionization process and
protein binding are driven by its respective equilibrium
constants, the retained charged inhibitors within the protein
would shift the ionization equilibrium in solution by reducing
its product.

During simulations ring 1 featured π-π interactions with
both Tyr146 and Tyr156 (Figure 5C). Charged states of active
compounds have closer interaction with Tyr156, where simu-
lations of compound 24 lead to unstable interactions. Com-
pound 24 inactivity could be explained by the predominance of
unionized form caused by the substitution of halogens (electron
withdrawing groups) for alkyl groups (electron donor groups)
and its respective absence of these interactions (Figure 5G). This
observation could be related to the stabilization of H-bonds
between compounds and Tyr156 and NAD+ due the hydrogen
bonding dependence of suitable distance and angle between
the donor, the hydrogen atom and the acceptor.

On the other side of the molecule, the TCL’s chlorine
substituents at ring 2 (position 2’, Figure 1B for reference) were
initially suggested to form halogen bonds with the main chain of
Ala95 (Figure 4C–D). The amide of the compound ionized 41
(HBA4/HBD2) interacts both with the main chain of Ala95 and
phosphate group of NAD+ (Figure 4E–F and Figure 5C, H),
however the same was not observed for the neutral state. We

Figure 4. A) The three main loops of EcFabI (PDB ID: 1QG6), residues 90–115
(in red) encompassing the flexible lid region, residues 145–157 (dark yellow)
where the active site twin tyrosine residues are presented, and residues 195–
205 (blue, 191–200 is also annotated as substrate binding loop or SBL),
which represents an hydrophobic region that covers the active site. B)
redocking of TCL within the active site. Representative structure of the last
frames from the molecular dynamics simulations of with different com-
pounds: charged (C) and neutral triclosan (D), charged (E) and neutral (F)
compound 41, neutral compound 37 (G) and 24 (H). Interactions are
represented by dashed lines as follow: the π-π interactions are coloured in
light blue, hydrophobic in dark yellow, hydrogen bond acceptors in red and
hydrogen bond donor interactions in dark blue. FabI’s residues are coloured
according to the atom types of the interacting amino-acid residues (protein’s
carbon, light grey; nitrogen, blue; oxygen, red; phosphorus, orange).

Figure 5. Summary of hydrogen bond interactions and π-π interactions
frequencies with main residues within the active site. (A) Summary of the
hydrogen bond interaction between the hydroxyl group and residue Tyr156
and also between the Ala95 and both HBA4/HBD2 chemical features. B) ionic
interaction profile with Lys163. C) Summary of the π-π interactions among
the aromatic rings within the active site: Phe203, Tyr146 and 156. D)
Hydrogen bond interaction distance between HBA1 and Tyr156 hydroxyl
group along the simulation for the TCL in both ionization states, neutral (in
red) and charged (in blue), followed by an exemplary snapshot of the MD
simulation (E), same analyses were performed for both ionization states of
compound 41 (F), with charged form in green and neutral form in purple.
Each dark coloured line represents the average distance of the five
independent simulations and the respective light coloured to represent the
observed standard deviation. G) Hydrogen bond interaction between Ala95
main-chain hydrogen and the compound 41 amide’s oxygen, followed by a
representative snapshot from the simulation (H). Residues are coloured
according to the atom types of the interacting amino-acid residues (protein’s
carbon, light grey; nitrogen, blue; oxygen, red; phosphorus, orange), polar
interactions are represented by dashed yellow.
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hypothesize, based on chemical similarity, that the pyridinic
nitrogen atom of the compounds 46 to 48 could form a direct
hydrogen bond with the main chain atoms of Gly93 or Ala95.
Interestingly, the vicinal substituents of the N-pyridine (ring 2,
position 2’, see Figure 1B) have a striking effect over the activity,
ranging from highly active compounds, such as 48 (� F) and 46
(� NH2), towards completely inactive (47, =O). Experimental
evidence from Gly93Val mutants, which are TCL resistant,
corroborates the importance of this interaction to the structure
stabilization.[30]

Initial attempts to modify the ring 1 chlorine towards more
hydrophobic moieties improved both enzyme affinity and

microbicide activity,[28] which were initially attributed to
similarity with the natural hydrophobic substrate. Modelling
results suggested that the hydrophobicity of the ethyl sub-
stituent at ring 1, in the compounds 37 and 41 (Figure 4C–E)
can occupy the hydrophobic back-pocket composed by Ile200,
Phe203 and Met206 (Figure 6A and F).

Slow binding inhibitor association to the protein can be
described in one- or two-step process one-step processes.
Briefly, an one-step inhibitor association accounting for slow
formation of the enzyme-inhibitor complex (EI) by overcoming
the energetic barrier of the transition state (TS). Alternatively, a
special type of two-step process involves rapid formation of EI,
which is then followed by a slow induced-fit in the structure of
complex (EI*), which for FabI would be related to the SBL
stabilization. FabI is suggested to have a special kind of two-
step mechanism that is kinetically indistinguishable from the
one-step mechanism,[29,31] in which the free energy of EI* is
much lower than that of EI and the initial formation of EI cannot
be detected at low inhibitor concentrations.

The increase in residence time can be described in terms of
either by the stabilisation of the EI/EI* or the disruption of the TS.
It has been shown that hydrophobic 5-substituents can enhance
residence time and affinity of diphenyl-ethers in both SaFabI[29]

and BpFabI1[31] by both of those mechanisms. We could suggest
that this residence time and affinity gain rise from the displace-
ment of high energy water molecules (Figure 6F, sites 3 and 12)
by the hydrophobic moieties in those compounds.

Interestingly, the phenolate ring and the ethyl substituent
occupies the region near the Phe203, Tyr156 and Ile200, in
which we observed hydration sites with high free energy,
suggesting that occupying those sites would contribute to
ligand binding energy (Figure 6F). This pocket was suggested to
be responsible for the fatty acid orientation during the
catalysis.[32] Complementarily, compound 11 (Supporting Infor-
mation, Table S3) has a hydroxyethyl moiety that reduces the
local hydrophobicity of the ligand at this pocket, which could
explain its inactivity. Longer acyl chains were suggested to
address those pockets, however, there is lack of refined
structural information on that region since residues between
Lys201–Arg218 could not be solved in the respective crystal
structures.[33] The work of Vani and Palermo et al.,[34,35] discussed
the importance of paired aromatic rings for substrate specificity
in lipid processing enzymes, by acting as gates that can
dynamically change between a substrate accepting state
towards a the catalytic closed state. Similarly, in our systems we
could observe that Tyr146 and Phe203 assume a “closed” gate
conformation upon the inhibitor binding (Supporting Informa-
tion, Figure 9), without, however transitioning towards the
open one. We hypothesize that, to fully understand the
particular mechanism of Tyr146/Phe203 gating and its transi-
tions, longer simulations with the natural ligand would be
required, which are intended for future works.

Figure 6. Hydrophobic interactions along with the molecular dynamic
simulation. A) most frequent hydrophobic interactions are described for
each analysed compound and different moieties. Each bar represents the
standard error of five independent simulations. Specifically, the interaction
between residues Ala196 and the ethyl moiety of compound 41, which
remains stable along the simulation (B for distance along the simulation and
C highlighting a representative snapshot) with higher frequency for the
deprotonation ionized state (green, and with the ring (R1) of TCL (D and E –
for representative snapshot). Each deep coloured line represents the average
of five independent simulations, while the respective lighter tone represents
the standard deviation. F) Superimposed EcFabI side-chains, compound 41
and conserved water molecules are presented coloured spheres, according
to their free energy value (ΔG), also described in the adjacent table. The
table contains the thermodynamic parameters for the solvation of the seven
hydration sites, within the compound pocket. Green spheres represent
regions where stable water molecules could be placed and therefore less
likely to contributed to free energy gain upon ligand binding, alternatively,
red and orange spheres represent regions where ligand occupancy could
contribute to binding affinity by enthalpic energy gain. Occupancy is
calculated from the number of water-oxygen atoms found occupying a
given hydration site during the 2 ns of molecular dynamics simulation,
enthalpic energy (ΔH) and free energy value (ΔG) are given in kcal/mol.
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On the Comparison Between CSM and MD Results

Chemical similarity models (CSMs) have a range of applications
and can be employed in early drug discovery pipeline with low
computational costs, enabling the screening of very large
databases. However, CSMs often do not take into account the
contributions of protein interactions. We here employed an
exhaustive screening of parameter combinations to construct
reliable CSMs, which were used to classify a series of TCL
derivatives according to the EcFabI inhibition capability.

Hawkins et al. pointed out that the assignment of different
weights to the chemical features (represented by different
colours), therefore changing the combo score, could improve the
performance in virtual screening.[36] Additionally, models’ enrich-
ment can either be over[37] or underestimated[38,39] by inappropriate
decoy selection.[40] Specifically, DUD-E’s decoy set was shown to
overestimate AUC values when used to validate machine learning-
based models.[41] Herein, we followed the idea from Huang et al.
(2006), which states that a decoy compound must be phys-
iochemically similar to the known active compound, but structur-
ally dissimilar. As CSMs calculate the similarity between a
compound and a query defined by the molecular volume and
some chemical features distributed in specific positions on space,
we assumed that dissimilar compounds in decoy set may not
interfere in the model’s evaluation. Accordingly, the lack of
chemical diversity in active compounds set is a major limiting step
for the model training and can become a source of bias to the
model.[40] Then, for this work, all analysed subsets (active, inactive
and decoys compounds) were similar in terms of physicochemical
properties to avoid bias. Our intention was not to compare
different decoy generation methods, but given the presented
metrics, to use the models’ specificity to evaluate statistically
significant chemical features and develop a structure-activity
relationship. Similarly to our employed strategy, other works have
previously employed DUD datasets in the validation of chemical
similarity models.[43,44]

CSMs without the HBA1/HBD1 chemical feature were
rendered unselective towards EcFabI enzyme activity, which is
not surprising since phenolic hydroxyl moieties fitting this
region are responsible for the interaction with Tyr156 and
NAD+. Simulations of the compound 24, as an example of an
inactive compound, showed the instability of this interaction.
This observation agrees with data in the literature that indicate
EcFabI Tyr156Phe mutants have decreased affinity for
triclosan.[45] Comparatively, InhA (the respective homologous
from Mycobacterium tuberculosis) is poorly inhibited by TCL,
mainly due to the presence of Phe156, instead of a tyrosine.
Chemical similarity models were limited by the ionization state
provided considering only the major species, presumably, being
unable to distinguish between the hydrogen acceptor or donor
character of the hydroxyl (HBA1/HBD1) and classifying both as
significantly relevant. However, our data strongly indicate that
the ionization state of compounds has an important effect on
the ligand stability in longer time scale simulations. It is
essential to highlight that crystal structures can provide a static
idea of the inhibitor’s binding modes offering snapshots of the
different protein states, which, especially in highly flexible

complexes prone to induced-fit effects, can be insufficient to
explain the inhibitory mechanism.

The current hypothesis for the ACP substrate binding to
FabI, relies on FabI-ACP complex models generated via MD
simulations. This model pointed out the importance of the
flexible charged side-chains on FabI’s substrate binding loop,
such as Lys201, Arg204 and Lys205.[46] Additionally, the model
shows the crotonyl thioester of ACP near to Tyr146 hydroxyl
group, which highlights the importance of this residue for
substrate reduction. Interestingly, in our simulations, Tyr156 is
responsible for the main interactions, with Tyr146 playing a
support role for the binding.

Yang and collaborators (2017) have already analysed the
structural potential of triclosan derivatives by interpreting 50 ns
long MD simulations with several TCL derivatives.[47] They have
shown that the loop covering the active site can assume
structured conformation upon ligand binding. Specifically, the
residues Leu195–Ser198 stabilized this loop as an α-helix, by
the compounds 17 and 18, while the compounds 22 or 23 (for a
detailed description of chemical structures see Supporting
Information, Table S3) led to the formation of both 3–10 and α-
helices. Additionally, in the same work, it was reported the
absence of π-π interaction between the inactive compound 23
and the twin tyrosine residues, which partially agrees with our
observations regarding the stabilisation importance (Figure 5B).
According to Yang,[47] mostly hydrophobic residues favourably
contributed to the binding energy, namely Leu100, Met159,
Ala196, Ala197, Ile200, Phe203. This amino-acid set agrees with
our CSM’s suggestion that hydrophobic chemical features are
relevant to discern differences in the biological activity.
Complementarily, we also observed that compounds with
hydrophobic substituent (37 and 41) occupied back-pocket
composed by Ala196 and Ile200, maintaining van der Waals
contacts, which we suggest increased the binding stability in
longer simulations (Figure 6A). Additionally, these residues have
been previously characterized on an enzymatic level with
mutants, showing that exchanges of Met159Thr and Phe203Leu
significantly reduced the enzyme affinity towards triclosan,
while the replacement of Ala197Met had no impact.[45]

Simulations of EcFabI with compound 41 showed a unique
preference towards Ala196 for hydrophobic interactions (Fig-
ure 6B), which remains to be biochemically exploited for this
particular enzyme. Interestingly, studies with FabI1 Enoyl-ACP
Reductase from Burkholderia pseudomallei have shown that α-
helix 6 (the so-called substrate binding-loop, represented by
the residues Thr194–Gly199, original numbering from BpFabI1),
becomes ordered and closed upon ligand binding.[31] In our
EcFabI studies, also a flexible loop (comprised by the residues
191 to 205) covers the active site, as mentioned previously,
which contains the key residues related to the inhibitor
interaction (Figure 4A), and were kept ordered during most of
the simulations with the exception of compound 24 and the
neutral forms of compound 41 and TCL (Figure 4C–H and
Supporting information, Figure 4, showing the comparison
between the ligand-free and bound systems’ RMSD values).

Kinetic and structural studies with the compound 41 related
the effect of 5-ethyl substituents with the increases in the
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residence time, which presumably is related to the stabilization
of the ground state’s protein conformation.[31] Additionally,
three-dimensional structures of BpFabI1 co-crystallised with
different TCL analogues showed that Phe203 rotates toward
Leu207 displacing Ala197 (equivalent to the Ala196 of EcFabI),
upon ligand binding, which creates a hydrophobic pocket that
accommodates the 5-ethyl group. Complementarily, in EcFabI,
the Ile200 and Phe203 amino-acids compose the beginning of
the short loop (near the α-helix-8) and end, which surrounds
the ethyl moiety in our simulations. In this study, we observed
that interactions with Ile200 and Met159 are also relevant,
especially when the most active compound 37 is concerned,
which could be explained by this pocket’s remodelling.

Interestingly, chemical features originated from the 4’-amide
group (Figure 1B for orientation), originally 4’-chlorine group on
TCL, had divergent interpretations on CSMs. Both HBD2 and HBA4
are relevant for the obtained models to discriminate the actives
from decoys, which could be explained by the hydrogen bond
interactions with Ala95. However, while HBD2 contributed to the
model selectivity, HBA4 only showed significant changes when
highly weighted. We have observed in our simulations that HBD2
can interact with NAD+’s phosphate (Figure 5G) or indirectly with
Gly93 by a conserved water network, both pertinent for
compound interaction. HBA4, represented by the amide’s oxygen
atom, showed stable interaction with Ala95’s Hα in our 41(� )
simulations, and also superimposes with interesting hydration sites
(Figure 5F), which leads to the suggestion that HBA4 can
contribute towards binding affinity. CSM ignoring the induced-fit
effects of compound binding and solvation effects are the main
limitation of the technique and, therefore it is natural that
divergent points may arise when compared with MD results.

Conclusions

Our models highlighted the importance of ethyl moieties (position
5) for the occupancy in the hydrophobic pocket containing Ile200,
Phe203 and Ala196, as well the interaction of hydrogen acceptor/
donor groups (position 4) with Ala95 by a halogen bond/hydrogen
bond, which greatly contributed to the compound stability.
Furthermore, results from both ligand- and structure-based
strategies partially converged indicating that simple and fast
techniques such as three-dimensional similarity models could be
successfully employed in the identification of potential new EcFabI
inhibitors in virtual screening simulations. As molecular docking
followed by molecular dynamics analyses were employed success-
fully to explain differences of activity of representative compounds
of dataset, those two techniques could be used in the refinement
of the hit selection of future virtual screening campaigns by
analysing the main ligand-target known interactions as well as its
stability along simulation time, mainly due to the importance of
induced-fit effects for this class of enzyme. The design of new
antibacterial targeting FabI, especially where diphenyl-ethers are
concerned, can benefit from understanding the structure and
dynamics of transition state, since many available drugs act as TS
mimetics.

Experimental Section

Dataset

Forty-eight diphenyl ether derivatives with experimental values of
an inhibitory concentration of EcFabI (IC50) were employed in this
study[28] (Figure 1B displays the representative dataset compounds).
Aiming the validation of the constructed models, the compounds
were classified either as active (IC50<1.0 μM) or inactive (all
ones).[48] The structures of all dataset compounds, as well as its IC50

values, are listed in Supporting Information, Table S3. The 3D
structures of all compounds were generated with Discovery Studio
2017[49] and had their ionization states calculated using QUACPAC
1.7.0.2.[50] Subsequently, 30 lowest energy conformers were calcu-
lated for each compound in the dataset using OMEGA 2.5.1.4[51]

and, for the three most active compounds, the lowest energy
conformation was determined as further for the following steps.

Construction and Validation of 3D Chemical Similarity Models

Three-dimensional chemical similarity models (CSMs) were gener-
ated using the structure of the three most active compounds as a
template. Then, the similarity values between CSMs and all dataset
compounds were calculated by Tanimoto Coefficient (Tc) related to
the molecular shape and chemical features (H-bond donors and
acceptors [HBD and HBA], rings [R], hydrophobic groups [HF],
anions [A� ] and cations [C+]). The initial models included all
features present in the template molecules. Aiming to validate the
constructed models, we also generate decoys (putative inactive
molecules with high physicochemical similarity and structural
dissimilarity) in a 1 :36 (active: decoys) proportion using the
DecoyFinder 2.0 software.[52] The 3D structures of the decoys were
prepared by adjusting the ionization state and charges using
QUACPAC 1.7.0.2[53] and AM1BCC method,[54] with the fixpka option
and the AM1bccspt force-field, followed by conformer generation
using OMEGA 2.5.1.4,[55] where 30 conformers were generated and
grouped with real inactive compounds in a file named decoys. A
validation run with each generated model (see below) to select and
score a set of active molecules and a set of decoy molecules,
suggesting confidence levels for future ROCS runs against com-
pounds with unknown activity. The calculated values of Tc for all
dataset (active and decoys) were then employed to generate a ROC
curve and, consecutively, to calculate the area under the curve
(AUC) and enrichment factors at 0.5, 1 and 2% of the screened
dataset as validation metrics.

Then, we exhaustively constructed CSMs by excluding each feature
and its combinations. All generated models in this step were
validated according to the AUC values and enrichment factors and
these values were employed in statistical and hypothesis analysis
aiming to evaluate the importance of chemical features in active/
inactive classification ability of the models. Afterwards, the groups
with higher impact in the analysed metrics were used to generate
other series of CSMs by varying systematically its weight on Tc
calculations. The CSMs generated at this step were also submitted
to statistical and hypothesis analyses. At the final step of model
generation and validations, a confusion matrix was built to the
models with the highest AUC values aiming to calculate the rates of
true positives and negatives, accuracy, F1-score and Matthews
correlation coefficient (MCC).[56,57] All CSM generations, as well as its
validations, were performed with ROCS 3.2.1.4 software and its
graphical user interface vROCS.[36] The statistical analysis consisted
of a normality test, analysis of groups by boxplot and non-
parametric Mean-Whitney hypothesis test[58] performed with Graph-
Pad software (v8.1, La Jolla, California, USA). All statistical data
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referring to the chemical similarity models are available online in
the Zenodo repository (under the code 10.5281/zenodo.3257327).

Molecular Docking

EcFabI proteins co-crystallized with TCL (wild-type PDB ID: 1QG6[12])
was selected for docking simulations of relevant compounds, based
on the completeness (no missing residues in the final structure),
resolution ( 1.9 Å) and similarity of the co-crystallized ligand with our
compound series. This PDB structure was prepared by adjusting
ionization states of amino-acid residues and fixing missing side-chain
atoms (PrepWiz, Maestro v2017.4). The grid employed in the docking
was generated by Maestro using default settings for van der Waals
radius (1.0) and partial charge cut-off (0.25). Molecular docking was
performed in a grid encompassing residues around 20 Å from the
centroid of the co-crystallized ligand, using the default settings of the
Glide program (Glide v7.7, Maestro v2017.4) in extra-precision mode,
with at least five poses selected for further visual inspection.[59] Amino-
acid residues were considered rigid and both structural water
molecules and cofactor NAD+ were maintained in the active site
during the calculation. Structural waters were kept when they made at
least two hydrogen bonds, namely water 666 and 667 (numbering
based on the PDB 1QG6), interacting among themselves and with
Gly93 and with the oxygen from the NAD’s phosphate, respectively.
The employed docking protocol was evaluated with TCL redocking,
which showed a difference in the RMSD (root mean square deviation)
values smaller than 1 Å when compared to the experimental binding
mode and were able to reproduce interactions with Tyr146 and
Tyr156 (Figure 3B). Relevant compounds for docking were selected
based on the enzymatic activity: TCL as a positive control, 37 and 41
as active compounds, and 24 inactive one. All ligands were drawn
using Maestro and prepared by adding hydrogen atoms according to
physiological pH (7.4), followed by the calculation of the atomic
charges with the force-field OPLS3e (LigPrep, default settings).
Hydroxyl group of different compounds underwent density functional
theory-based pKa prediction using Jaguar pKa (Maestro v2018.1) using
five initial conformations.[60] Jaguar uses a combination of correlated
ab initio quantum chemistry to calculate microscopic pKa (i. e. on the
atomic level), a self-consistent reaction field (SCRF) continuum treat-
ment of solvation and empirical corrections, the latter is employed to
repair deficiencies in both solvation models. Calculations were run
with the QM method DFT B3LYP/6-31G** level of theory. From
calculated pKa values, we calculated the percentage of ionized and
neutral species of compounds in pH of simulation using the
Henderson-Hasselbach equation.

Molecular Dynamics Simulation

Chosen docking poses for each compound underwent molecular
dynamics simulation to evaluate ligand stability within the active site
and analyse its interactions. For TCL and compound 41, simulations
with their anionic states were also performed according to pKa
prediction results. MD simulation was carried out using Desmond[61]

with the OPLS3e force-field. This force-field has a better performance
representing ligand properties and therefore is suitable to deal with
the chemical diversity derived from the virtual screenings.[62] Also,
along this force-field represent the halogen bonds by an off-atom
charge site, which is suitable for the ligands of this series. The
simulated system encompassed the protein-ligand complex, a
predefined water model (TIP3P[63]) as explicit solvent and counter-ions
(Na+ or Cl� adjusted to neutralize the overall system charge, around
4–5 Na+ atoms). The system was treated in a cubic box with periodic
boundary conditions specifying the shape and the size of the box as
13 Å distance from the box edges to any atom of the protein
(totalizing around 45,000 atoms between protein, ligand, solvent and

ions). We used a time step of 1 fs, the short-range coulombic
interactions were treated using a cut-off value of 9.0 Å using the
short-range method, while the smooth Particle Mesh Ewald method
(PME) handled long-range coulombic interactions.[64]

Initially, the relaxation of the system was performed using Steepest
Descent and the limited-memory Broyden-Fletcher-Goldfarb-Shan-
no algorithms in a hybrid manner. The simulation was performed
under the NPT ensemble for 5 ns implementing the Berendsen
thermostat and barostat methods. A constant temperature of 310 K
was maintained throughout the simulation using the Nose-Hoover
thermostat algorithm and Martyna-Tobias-Klein Barostat algorithm
to maintain 1 atm of pressure, respectively. After minimization and
relaxation of the system, we proceeded with the production step of
200 ns. All MD simulations were performed at least in five
independent runs with randomly generated seeds. The representa-
tive structure was selected by clustering the structures from the
RSMD values, using 1 Å as a cut-off (Supporting Information,
Figure 4 represents the variation of the RMSD values along with the
simulation). All trajectories from MD simulations are available online
in the Zenodo repository (10.5281/zenodo.3257327).

Interactions and distances were determined using the Simulation
Event Analysis pipeline implemented in Maestro (Maestro 2018v1).
The current geometric criteria for protein-ligand H-bond is distance of
2.5 Å between the donor and acceptor atoms (D� H···A); a donor angle
of �120° between the donor-hydrogen-acceptor atoms (D� H···A); and
an acceptor angle of �90° between the hydrogen-acceptor-bonded
atom atoms (H···A� X). Similarly, protein-water or water-ligand H-bond
are: a distance of 2.8 Å between the donor and acceptor atoms
(D� H···A); a donor angle of �110° between the donor-hydrogen-
acceptor atoms (D� H···A); and an acceptor angle of �90° between the
hydrogen-acceptor-bonded atom atoms (H···A� X). Non-specific hydro-
phobic interactions are defined by hydrophobic side-chain within
3.6 Å of a ligand‘s aromatic or aliphatic carbons and π-π interactions
required two aromatic groups stacked face-to-face or face-to-edge,
within 4.5 Å of distance.

WaterMap Calculations

WaterMap calculations were carried out to understand the solvation
impact within the inhibitor site of FabI. All WaterMap calculations
were run in with default settings. Briefly, a 2 ns molecular dynamics
simulation of the EcFabI active site without the compound, but
with NAD+, was performed using the Desmond molecular dynamic
engine with the OPLS3e force field. The binding site was defined to
include all protein residues within 5 Å distance of any TCL atom,
those amino-acids were restrained throughout the simulation.
Water molecules from the simulation were then clustered into
distinct hydration sites. Enthalpy values for each hydration site can
then be obtained by averaging over the non-bonded interaction for
each water molecule in the cluster. Entropy values were calculated
using numerical integration of local expansion of the entropy in
terms of spatial and orientational correlation functions.
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