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Purpose: The aim of this study was to demonstrate that modern data 
mining tools can be used as one step in reducing the labor necessary 
to produce and maintain systematic reviews.

Methods: We used four continuously updated, manually curated 
resources that summarize MEDLINE-indexed articles in entire fields 
using systematic review methods (PDGene, AlzGene, and SzGene for 
genetic determinants of Parkinson disease, Alzheimer disease, and 
schizophrenia, respectively; and the Tufts Cost-Effectiveness Analysis 
(CEA) Registry for cost-effectiveness analyses). In each data set, we 
trained a classification model on citations screened up until 2009. We 
then evaluated the ability of the model to classify citations published 
in 2010 as “relevant” or “irrelevant” using human screening as the gold 
standard.

Results: Classification models did not miss any of the 104, 65, and 
179 eligible citations in PDGene, AlzGene, and SzGene, respectively, 
and missed only 1 of 79 in the CEA Registry (100% sensitivity for the 
first three and 99% for the fourth). The respective specificities were 
90, 93, 90, and 73%. Had the semiautomated system been used in 
2010, a human would have needed to read only 605/5,616 citations 
to update the PDGene registry (11%) and 555/7,298 (8%), 717/5,381 
(13%), and 334/1,015 (33%) for the other three databases.

Conclusion: Data mining methodologies can reduce the burden 
of updating systematic reviews, without missing more papers than 
humans.
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Olkin5 calculated that a well-performed systematic review with 
meta-analysis can take between 1,000 and 2,000 person hours; 
part of this time appears to be related to topic refinement and 
set-up and the rest depends on the number of included papers. 
The time to complete systematic reviews has increased despite 
improvements in software tools that facilitate the process (e.g., 
reference management software), likely because the efficien-
cies of such tools are no match for the exponential growth of 
the literature. Based on our own experience, the US Agency 
for Healthcare Research and Quality’s comparative effective-
ness reviews take at least 13 months to complete, an amount of 
time that has grown consistently during the past 15 years.

Strict adherence to the US Institute of Medicine’s 21 stan-
dards and 82 elements of performance,6 the 100 Methodological 
Expectations of Cochrane Intervention Reviews (MECIR), 
and the detailed guidance from internationally acknowledged 
entities7–13 could further prolong the completion of system-
atic reviews. Long timelines generate high costs; increased 
fiscal constraints thus necessitate modernizing all stages of 
the systematic review pipeline to increase efficiency. Some 
improvements will refine processes to remove unnecessary 
redundancies, some will necessitate the development of new, 
publicly available resources,14,15 and others will demand the 

Systematic reviews, meta-analyses, and field synopses (i.e., 
systematically curated compendia summarizing entire fields) 
have gained acceptance as a practical way to provide reliable 
and comprehensive syntheses of the exponentially expanding 
medical evidence base. MEDLINE indexes more than 20,000 
new randomized trials and over 9,000 genetic association stud-
ies from 2010 alone, and the increasing trajectory of publication 
rates shows no signs of slowing.1 It is difficult to keep up with 
new information for both performing new reviews and updat-
ing existing reviews.1

Indeed, it is estimated that more than half of the systematic 
reviews in the Cochrane Library have not been updated for at 
least two years.2 Similarly, a recent survey of organizations that 
produce and maintain systematic reviews suggests that at least 
half of existing reviews are already out of date, limiting their 
utility.3 Exacerbating the challenge of information overload, the 
standards for systematic reviews and meta-analyses are more 
demanding now than they were only 10 years ago. The scenario is 
probably worse in the scientific fields with rapid data turnaround, 
such as genetic/-omic research. In fact, field synopses in genetics 
are attempts to cope with data and information overload.4

The time required to complete a systematic review and meta-
analysis has not decreased over the past three decades. Allen and 
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development and application of novel methodologies and 
tools.16,17

Here we describe a tool to expedite the process of updating 
systematic reviews, meta-analyses, or field synopses by semi-
automating the step of screening citations published after the 
latest update. Widespread use of the tool would eliminate a 
substantial amount of the work involved in updating reviews, 
thereby saving time and human resources and increasing the 
likelihood that reviews are kept current.

MATERIALS AND METHODS
Overview
We aim to semiautomate the updating of systematic reviews, 
meta-analyses, and field synopses, thereby reducing reviewers’ 
efforts and the associated costs. As an example, we describe 
the application of data mining methods from computer sci-
ence to facilitate updating four field synopses. Field synopses 
are continuously updated and manually curated collections of 
publications that synthesize a broad field. The steps involved 
in identifying eligible studies for field synopses are as follows. 
First, one searches databases, such as MEDLINE, to retrieve 
potentially relevant studies. Second, she or he screens the titles 
and abstracts of all retrieved citations to identify those that 
meet predefined eligibility criteria. These are exactly the same 
steps one would follow to update a systematic review or meta-
analysis. Therefore, to avoid confusion, from here on we refer 
to all literature databases that are updated following the above 
protocol as systematic reviews.

We simulated a prospective update of the four systematic 
review databases during 2010. We used citations published 
through 2009 to train a classification model to distinguish “rel-
evant” from “irrelevant” citations (i.e., to discern citations likely 
to be ultimately included in the systematic review from those 
likely to be excluded). We then used this trained classification 

model (classifier) to automatically screen articles published in 
2010 (i.e., the articles that would be considered when updat-
ing the systematic review). A human would manually review 
only the citations deemed relevant by the classifier. All articles 
designated as irrelevant would be excluded from further con-
sideration, thereby saving human effort. We assessed the per-
formance of the system with respect to the studies that were 
ultimately included by the researchers in the 2010 update of the 
systematic reviews.

Databases
We used four systematic reviews to validate our approach. 
Three synthesize genetic association studies, investigating 
Parkinson disease (PDGene),18 Alzheimer disease (AlzGene),19 
and schizophrenia (SzGene),20 respectively (Table 1). The 
fourth is the Tufts Cost-Effectiveness Analysis Registry (CEA 
Registry), which summarizes information from published cost-
effectiveness analyses. We added this fourth field synopsis to 
gain insights on the generalizability of our approach to non-
genetic synopses. The protocol and methods for our four data 
sets are available on their respective websites (Table 1). In con-
trast to typical systematic reviews, these address much broader 
questions and are updated on a weekly or monthly basis. For 
example, the AlzGene review evaluates the strength of the asso-
ciation between Alzheimer disease and genetic variations across 
the whole genome, whereas a typical systematic review would 
probably evaluate only a subset of such genetic variations (e.g., 
in the APOE gene). Note that attaining perfect (100%) sensitiv-
ity with semiautomated updating is much more difficult when 
all reported variations across thousands of genes are of interest 
rather than only APOE variations.

To simulate a prospective test of our semiautomated system, 
we segmented each of the data sets into a training set compris-
ing all citations published through 31 December 2009 and an 

Table 1  Characteristics of the four systematic reviews (field synopses)

Database Description

Citationsa

    •  Screened
    •  Included (%)

Update 
frequency PubMed search strategy Link

PDGene Associations between 
Parkinson disease and genetic 
variations across the whole 
genome

    •  25,832
    •  660 (2.6)

Weekly Parkinson* AND (genet* OR 
associat*)

http://www.pdgene.org

AlzGene Associations between 
Alzheimer disease and 
genetic variations across the 
whole genome

    •  50,131
    •  1,352 (2.7)

Weekly Alzheimer* AND (genet* OR 
associat*)

http://www.alzgene.org

SzGene Associations between 
schizophrenia and genetic 
variations across the whole 
genome

    •  31,185
    •  1,589 (5.1)

Weekly Schizophrenia* AND (genet* 
OR associat*)

http://www.szgene.org

CEA Registry Cost–utility analyses on a 
wide variety of diseases and 
treatments

    •  6,129
    •  2,366 (38.6)

Monthly Strategy including terms such 
as “QALY”, “quality”, and 
“cost–utility”

https://research.tufts-nemc.
org/cear4/

CEA, Cost-Effectiveness Analysis Registry.
aFrom inception to 2010.
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update (validation) set composed of citations published between 
1 January 2010 and 31 December 2010 (Supplementary 
Figure S1 online). This is equivalent to a prospective evaluation 
of our semiautomated system throughout 2010.

Classification of citations
For each of the four databases, we aim to train a classifier to 
discriminate relevant from irrelevant citations. There are two 
components to operationalizing this: a method to encode text 
in an analyzable format and a classification method.

Text encoding. We created computer-friendly representations 
of the titles, abstracts (when available), and medical subject 
heading terms (MeSH; when available) of citations using a 
standard encoding scheme. Specifically, we created a long list 
that includes all words present in at least three citations in the 
set of abstracts screened for the original review. The length of 
the list (which corresponds to the number of words encoded) 
depends on the data set, but is typically in the tens of thousands. 
Each document was then represented simply as a vector with 
elements 1 and 0, denoting whether the citation contained the 
corresponding word in this long list. This encoding scheme is 
known as the “bag-of-words” representation.

Classification method. A detailed exposition of the methods is 
provided in the Supplementary data online. Briefly, we used 
Support Vector Machines (SVMs),21 which are state-of-the-
science methods for text classification.22 SVMs in their canoni-
cal form perform poorly when there are far fewer examples (in 
our case, citations) from one class (relevant citations) than the 
other (irrelevant citations). This is known as class imbalance, 
and it is the norm in literature searches conducted for sys-
tematic reviews. Further, in systematic reviews false negatives 
(relevant citations misclassified as irrelevant) are much more 

costly than false positives (irrelevant citations misclassified as 
relevant). We explicitly accounted for these asymmetric mis-
classification costs in two ways. First, we modified the SVMs 
to emphasize sensitivity (we penalized more severely for false 
negatives compared with false positives). Second, we did not 
train SVMs on the entire training set, but instead on a balanced 
sample comprising an equal number of relevant and irrelevant 
examples. This was accomplished by using all relevant examples 
and a randomly selected sample of the irrelevant examples and 
is analogous to performing a nested case–control study in a 
cohort with sparse index cases.

Although undersampling discards information, empirical 
evidence shows that it yields classifiers with higher sensitiv-
ity.23–27 However, undersampling introduces randomness (the 
random sampling of the irrelevant citations in the training 
set). To reduce random variation in the model’s predictions, we 
used an ensemble of 11 sets of SVM classifiers trained indepen-
dently (an approach called bagging).28,29 The final classification 
decision was taken as a majority vote over this ensemble (see 
Figure 1). We used an odd number of classifiers in the ensem-
ble to avoid ties (the exact choice of 11 was motivated by our 
previous experimental work, in which this value worked well 
across many data sets).24,25

Analyses
For each data set, we calculated the sensitivity and specificity 
of the classifiers on the update set. The reference standard was 
whether a citation was ultimately included in the systematic 
review (based on manual screening). We report the number 
of citations that reviewers would have needed to screen, had 
they been using the proposed semiautomated system to update 
reviews in 2010, versus the number of citations they actually 
screened. We assessed the variability of overall results by repeat-
ing all analyses 20 times using different random number seeds. 

Figure 1  Outline of the classification method. The title, abstract, and MeSH term components of citation documents are encoded as series of 0’s and 1’s 
(i.e., as separate “bag-of-words” representations; see Methods section). We used an ensemble of 11 base classifiers (squares) comprising three Support Vector 
Machines (SVMs, circles), one per encoded component. Open circles and black circles stand for SVMs that classify their encoded components as relevant and 
irrelevant, respectively. If at least one of the SVMs suggests that the citation is relevant, the corresponding base classifier casts a relevant vote (white squares); 
otherwise, it casts a vote for irrelevant (black squares). The overall disposition is given according to the majority vote of the ensemble of 11 base classifiers 
(here, relevant with 7 vs. 4 votes)—this is called “bagging”. The proportion of votes for the “winning” disposition is a proxy for the confidence of the classifier 
in its ultimate vote (here 7/11, or 0.64). MeSH, medical subject heading.
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We arbitrarily considered the first run the main analysis and 
report minimum and maximum results from the other 19.

Analyses of misclassifications: Our classification model does 
not provide rationales for its predictions. To provide some intu-
ition as to whether the model and the human experts tend 
to make the same “mistakes,” we performed the following 
analysis. For each data set, we asked our experts to manually 
rescreen “false-positive” citations (i.e., citations not included 
in the final database but predicted to be relevant by the classi-
fier based only on titles and abstracts and not on the full text). 
The experts then categorized the rescreened citations as “clearly 
irrelevant”, “unclear,” or “clearly relevant” (scoring them as 0, 1, 
or 2, respectively). For these same “false-positive” citations, we 
measured the confidence of the classification model in its (mis-
taken) predictions, as described below. An association between 
higher scores in human rescreening and higher confidence in 
the classification models predictions suggests that model and 
human experts tend to make the same mistakes.

We took the proportion of votes in agreement with the 
majority vote as a measure of the model’s confidence in its pre-
dictions. For example, in Figure 1, 7 of the 11 base classifiers 
predict that the citation is relevant, and the confidence of the 
classification is 7/11 (≈0.64). Thus, confidence ranges from 6/11 
(≈0.54) to 11/11 (1.0).

To test for an association between human rescreening and 
model confidence, we compared the distribution of human 
scores across the extreme quartiles of the distribution of con-
fidence scores over false-positive citations using Fisher’s exact 
test. In the case of the smaller CEA Registry, we performed this 
comparison across the top and bottom halves of the confidence 
score distributions. To also quantify the direction of the asso-
ciation, we used a proportional odds ordinal logistic regression 
to calculate the odds ratio for a human assigning a higher score 
(from 0 to 1 or from 1 to 2). The predictor was the percentile of 
classifier confidence (higher vs. lower).

Software
We used the LIBSVM30 Support Vector Machine implementa-
tion and its Python interface. All of our code is open source and 
is available from the authors. Statistical analyses were performed 
in Stata SE, version 11 (Stata, College Station, TX). All P values 
are two tailed and considered significant at the 0.05 level.

RESULTS
Table 2 lists the size of the initial (training) and update (vali-
dation) sets in the four databases, as well as the proportion 
of citations that were finally included upon full-text review. 
Researchers screened between ~25,000 and 50,000 citations 
for the three genetic synopses and a total of 6,129 for the CEA 
Registry (from inception through 2010; these comprise the 
training sets). Of these, only a minority was finally included in 
the systematic reviews. For example, during 2010, 0.9 to 3.3% 
of citations reviewed were included in the genetic databases, 
and 7.8% were included in the CEA Registry. Semiautomation 

could therefore save considerable resources that are otherwise 
spent reading irrelevant citations.

Performance in the update set. In all three genetic topics, 
the proposed semiautomated strategy correctly identified all 
citations that were included in the systematic reviews in 2010 
(100% sensitivity) and considered relevant only ~10% of the 
papers that were excluded by the human experts (specificity 
of about 90%). Had the semiautomated system been used in 
2010, the human experts would have needed to screen only 605 
(PDGene), 555 (AlzGene), and 717 (SzGene) titles and abstracts 
compared with the 5,616, 7,298, and 5,381 citations they manu-
ally screened for the three data sets (Table 3). This translates to 
reductions in labor of ~81, 92, and 87%, respectively.

In the case of the CEA Registry, the classifier missed only 1 
eligible article (sensitivity about 99%), and incorrectly consid-
ered relevant ~28% of the papers that were excluded by human 
reviewers in 2010 (specificity around 73%). Relying on the 
semiautomated system throughout 2010, researchers would 
have needed to screen only 334 of 1,015 citations (a reduction 
in labor of ~67%).

Sensitivity analyses. All results were robust when we repeated 
the entire analysis an additional 19 times using different ran-
dom number seeds. No eligible papers were missed in the three 
genetic topics, and the same eligible paper was always missed 
in the CEA Registry. The specificity of the classifiers was practi-
cally identical to that of the main analyses (Table 2).

Analysis of misclassifications. As mentioned above, only a sin-
gle citation31 in one data set (CEA Registry) would have been 
a false negative (i.e., missed if the semiautomated system was 
actually in use during 2010). The confidence of the classifica-
tion model in that prediction was high because 10 of 11 base 
classifiers categorized the citation as irrelevant. Upon re-review, 
human experts deemed that this citation might also have been 
missed by an inexperienced reviewer: only a single sentence in 
the abstract suggests that a cost-effectiveness (or cost-utility) 
analysis might have been performed.

Table 4 describes the results of human rescreening of cita-
tions that were not included in the systematic reviews, but were 

Table 2  Training and update (validation) sets in the four 
systematic reviews

Data set

Training set  
(inception—2009)

Update  
(validation) set (2010)

Size
Includeda  

(%) Size
Includeda  

(%)

PDGene 20,216 556 (2.8) 5,616 104 (1.9)

AlzGene 42,833 1,287 (3.0) 7,298 65 (0.9)

SzGene 25,804 1,410 (5.5) 5,381 179 (3.3)

CEA Registry 5,114 2,287 (44.7) 1,015 79 (7.8)

CEA, Cost-Effectiveness Analysis Registry.
aIncluded in the systematic review (field synopsis) upon full text review.
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suggested as relevant by the classifier (false positives) for differ-
ent strata of classifier confidence. Classifier confidence appears 
to be associated with human experts’ dispositions upon re-
review. Based on ordinal logistic regressions, false positives in 
the highest 25% (50% for the CEA Registry) had between 1.9 
and 6.1 higher odds of being deemed “clearly relevant” rather 
than “maybe” or “maybe” rather than “clearly irrelevant” upon 
re-review by human experts. Confidence intervals included 1 
only in the SzGene data set.

DISCUSSION
If we are ever to keep up with the information overload while 
adhering to the current demanding standards, we must mod-
ernize the methodology and conduct of systematic reviews, 
meta-analyses, and field synopses without compromising their 
scientific validity. This is particularly relevant to genetics and 
genomics, in which data accumulate rapidly. To this end, we 
demonstrated that data mining methodologies can reduce the 

burden of updating of systematic reviews without sacrificing 
their comprehensiveness.

Indeed, only a single citation of the many dozens that were 
included in each topic’s 2010 update would have been missed by 
the semiautomated method. This is directly comparable to the 
performance of individual human screeners: in empirical explo-
rations, human experts missed on average 8% of eligible cita-
tions (ranging from 0 to 24%).32 To minimize the likelihood of 
overlooking eligible studies, current recommendations suggest 
using two independent screeners.33–36 Thus, computer-assisted 
screening could replace full manual screening for both screeners, 
replace one screener, or be used in addition to both screeners to 
further increase the sensitivity of the overall process. To refine the 
role of the semiautomated process in real-life settings, we must 
evaluate their utility using study designs similar to those used 
for evaluating medical tests.37–40 The most robust design would 
entail a randomized comparison of using versus not using the 
semiautomated system during the conduct of systematic reviews. 

Table 3  Empirical results of classifier performance over the four systematic reviews in the 2010 update

Data set TP FN Sensitivity (%) (range) TN FP Specificity (%) (range)

PDGene 104 0 100.0 (100.0, 100.0) 5,011 501 90.0 (90.0, 91.1)

AlzGene 65 0 100.0 (100.0, 100.0) 6,743 490 93.2 (93.0, 93.2)

SzGene 179 0 100.0 (100.0, 100.0) 4,664 538 89.7 (89.2, 89.7)

CEA Registry 78 1 98.7 (98.7, 98.7) 680 256 72.6 (72.1, 73.0)

CEA, Cost-Effectiveness Analysis Registry; FN, false negatives (citations deemed irrelevant by the classifier but included in the systematic review); FP, false positives (citations 
deemed relevant by the classifier but not included in the systematic review); TN, true negatives (citations deemed irrelevant by the classifier and not included in the 
systematic review); TP, true positives (citations deemed relevant by the classifier and included in the systematic review (upon full text review)).

Table 4  Human expert rescreening of classifier “false positives” stratified by classifier confidence

Classifier confidence

Human rescreening of the title and abstract of the citation 
record

P value  
(Fisher’s exact)

Odds ratioa (95% confidence 
interval)

“Clearly  
irrelevant” “Maybe” “Clearly relevant”

PDGene

  Lower 25% 115 5 0 <0.001 Reference

  Higher 25% 96 21 3 5.80 (2.13, 15.78)

AlzGene

  Lower 25% 116 5 0 <0.001 Reference

  Higher 25% 92b 21 3 6.11 (2.24, 16.62)

SzGene

  Lower 25% 118 10 7 0.148 Reference

  Higher 25% 106 17 12 1.89 (0.99, 3.63)

CEA Registry

  Lower 50% 31 6 27 0.038 Reference

  Higher 50% 18 5 41 2.43 (1.21, 4.83)

CEA, Cost-Effectiveness Analysis Registry.
aOrdinal logistic regression odds ratios for one-category change (“clearly irrelevant” to “maybe” or “maybe” to “clearly relevant”) upon rescreening by human experts. 
In PDGene, for example, a citation in the highest confidence quartile has a 5.8 times higher odds to be categorized as “maybe” rather than “clearly irrelevant” or “clearly 
relevant” rather than “maybe” upon human rescreening compared with citations in the lowest confidence quartile. bIncludes a book article (“Speaking Our Minds: What 
It’s Like to Have Alzheimer’s,” by L. Snyder) that was included in MEDLINE (PubMed) when we run the analyses; it is no longer included in PubMed. In any case, we counted 
it as a false positive.
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Apart from quantifying the utility of the semiautomated system, 
such an experiment would potentially allow one to detect unfore-
seen detrimental consequences (e.g., sloppiness during manual 
screening as a result of overreliance on the computer).

We note that semiautomating the updating of systematic 
reviews is different than semiautomating the screening of cita-
tions when performing a new systematic review.17 The main 
difference is that when updating an existing review, one has 
access to the set of citations that were manually screened for the 
original review. These citations can be used to train a classifier; 
the larger this set is, the better the classifier will likely perform, 
because it has more data from which to learn. By contrast, when 
performing a new review, no such training data set is available 
at the outset, and the problem is more challenging. Methods for 
new systematic reviews are still in development24–27 and remain 
to be empirically validated on a large scale.

Allowing for some caveats, our results are applicable to the 
general case of updating typical systematic reviews and meta-
analyses. First, the scope of key questions in the updates should 
be identical to (or at worst a subset of) the scope in the origi-
nal review. If the update is on one part of the original review, 
we would expect a decrease in the specificity of the predictions 
(some citations that would be eligible for the original review 
would be out of scope for the update), but no effect on the sensi-
tivity. Further, there is a tacit assumption that there is no abrupt 
shift in the typical vocabulary of the field, as may happen, for 
example, in the case of an experimental drug or a disease or 
condition being referred to with a new name. Finally, the initial 
review should have a large enough number of citations to train 
a robust model. Ultimately, systematic reviewers must make a 
decision regarding the applicability of a model trained on the 
original review to the citations retrieved for the update; no hard 
and fast rules currently exist.

The latter observation is perhaps the most important concern 
when assessing the applicability of our results to updating typical 
systematic reviews. Specifically, in the three genetic topics, the 
initial set was an order of magnitude larger than most system-
atic reviews. However, in our previous work on semiautomating 
citation screening in new systematic reviews, we have consis-
tently attained 100% sensitivity with training sets of 1,700–2,500 
citations in all examined examples.25 Larger reviews are very 
common; literature searches for typical reviews often return 
2,500–5,000 citations. High performance should therefore be 
attainable when semiautomating review updates. If anything, 
the systematic reviews (field synopses) in our examples have 
broader inclusion criteria than most systematic reviews and thus 
likely represent a more difficult problem: there are more eligible 
papers and thus more opportunities to miss them. Furthermore, 
there is greater diversity among the eligible papers.

Moreover, in practice one can assess the likely performance 
that a classification model will achieve when semiautomating 
a review update by performing an analysis called cross-fold 
validation on the citations manually screened for the original 
review. This analysis involves splitting the original database 
into, for example, 10 parts and sequentially training a model 

on 9/10 of the data and then assessing its performance on the 
remaining 1/10. This is repeated 10 times, and an estimate of 
performance is taken as average of these 10 tests. If the esti-
mated performance is deemed acceptable (i.e., very high sensi-
tivity is consistently achieved), then the researchers undertak-
ing the update may opt to use the semiautomated approach.

Finally, another limitation is that the computer is a “black 
box” because no readily interpretable explanation is provided 
for the classifications. This challenge is inherent to modern text 
classification methods. However, a detailed rationale for exclud-
ing the citations during screening is not necessarily critical. For 
example, we do not really provide rationales for the millions 
of citations that are excluded by the search strategy in the first 
place. In the end, trusting computer algorithms to semiauto-
mate abstract screening in routine settings is contingent on 
their empirical performance: if there are consistently acceptable 
empirical results, this criticism is less important.

We find it intuitively agreeable that upon re-reviewing false 
positives (i.e., citations ultimately not included in the respective 
synopses but denoted relevant by the model), experts tended to 
have trouble with the same citations that our model did. This 
is an indirect indication that the models rely at least on similar 
patterns of terms as humans do, of course lacking a human’s 
semantic comprehension.

The semiautomated system reduced the number of citations 
that would have needed to be screened by a human expert by 
70–90%, a substantial reduction in workload, without sacrific-
ing comprehensiveness. Regularly updated systematic reviews 
and meta-analyses will play increasingly crucial roles in trans-
lating scientific knowledge into evidence-based medicine. The 
novel approach developed here is an important and practical 
step toward reaching that goal. In addition to making the pro-
cess of updating systematic reviews substantially more efficient, 
application of our method may also improve the quality of 
evidence-based medicine.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the paper 
at http://www.nature.com/gim
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