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Abstract

Persistent neuronal spiking has long been considered the mechanism underlying working memory, 

but recent proposals argue for alternative, “activity-silent” substrates. Using monkey and human 

electrophysiology, we show here that attractor dynamics that control neural spiking during 

mnemonic periods interact with activity-silent mechanisms in PFC. This interaction allows 

memory reactivations, which enhance serial biases in spatial working memory. Stimulus 

information was not decodable between trials, but remained present in activity-silent traces 

inferred from spiking synchrony in PFC. Just prior to the new stimulus, this latent trace was 

reignited into activity that recapitulated the previous stimulus representation. Importantly, the 

reactivation strength correlated with the strength of serial biases in both monkeys and humans, as 

predicted by a computational model integrating activity-based and activity-silent mechanisms. 

Finally, single-pulse TMS applied to the human prefrontal cortex between successive trials 
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enhanced serial biases, demonstrating the causal role of prefrontal reactivations in determining 

working memory behavior.

Introduction

The mechanisms by which information is maintained in working memory are still not fully 

understood. Ample evidence supports a role of sustained neural activity in prefrontal1–3 and 

other cortices4,5, possibly supported by attractor dynamics in recurrently connected 

circuits6,7. However, recent studies have argued that memories may be maintained without 

persistent firing rate tuning during memory periods8. This “activity-silent” memory can be 

mediated by slowly decaying intrinsic or synaptic mechanisms, such as short-term synaptic 

plasticity9,10, or activity-dependent intrinsic mechanisms with a long time constant11–13 that 

could allow reactivation of memories from a latent storage. This computational proposal has 

received support in neuroimaging studies: in some working memory tasks, despite good 

memory performance, stimulus information cannot be retrieved from neural delay activity, 

but later robustly reappears14 during comparison or response periods (but see ref.15).

The apparent incompatibility between activity-based and activity-silent memory 

maintenance has led to viewing them as exclusive alternatives8. However, modeling 

implementations of activity-silent conditions invariably require the network to be configured 

close to the attractor regime9,16 that enables persistent activity. This attractor non-linearity is 

necessary to increase the signal-to-noise ratio of the fading subthreshold signal for 

successful memory reactivation9. At the same time, activity-silent memory mechanisms may 

stabilize persistent activity in attractor networks (e.g. refs.11,17–19). Interestingly, modeling 

studies have argued that the interaction of these mechanisms during the delay would be 

reflected behaviorally in serial biases11,17, but this theoretically appealing hypothesis still 

lacks experimental support.

Serial biases in spatial working memory denote small but systematic shifts of memory 

reports toward nearby locations memorized in the previous trial20–23, revealing a lingering 

representation of previous memories. Uncleared memory remnants have long been viewed as 

limiting working memory performance (proactive interference24), but recent proposals 

suggest that they may be useful to inform working memory about the expected statistics in 

naturalistic conditions25, similar to other history biases with longer time scales and possibly 

different neural mechanisms (contraction bias,26–28). The functional relevance of biases 

implicates specific roles of higher-order brain areas: On the one hand, these areas could 

suppress maladaptive biases to minimize performance degradation29,30, but in turn they 

might promote adaptive biases by maintaining a representation of stimulus history26. 

Whether association areas generate or suppress serial biases in primates is currently 

undefined, and a mechanistic understanding of the generation of any type of history biases is 

still lacking.

Both attractor dynamics21 and activity-silent11,17,31 mechanisms have been proposed to 

carry stimulus-selective information from one trial to the next to effect serial biases. 

However, dependencies of serial biases on inter-trial interval (ITI) durations21–23, are largely 

consistent with activity-silent, and not activity-based mechanisms11,17,31. Here, we sought to 
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specify the interaction of activity-based and activity-silent prefrontal cortex (PFC) 

mechanisms in supporting serial biases while subjects performed a spatial working memory 

task that engages attractor dynamics in PFC6. Further, this approach may offer indirect 

evidence that activity-silent and activity-based mechanisms co-occur during the delay, as 

proposed by computational models (e.g.11,17–19). Telling apart these mechanisms in delay is 

problematic because of their co-activation. By extending the relevant task periods to the ITI, 

we propose a way to disentangle them, and to study the effect of their interaction on 

upcoming memories.

We compared the encoding properties of brain activity in delay and ITI to identify the 

mechanistic basis of the memory trace that spans consecutive trials. We used behavioral and 

electrophysiological data collected in monkeys and humans, with prefrontal multiple-unit 

recordings in monkeys, and scalp electroencephalography (EEG) in humans. Between 

successive persistent activity mnemonic codes, we found an activity-silent code in PFC that 

carried stimulus information through inter-trial periods. In addition, we found correlational 

and causal evidence that fixation-period PFC reactivation from this activity-silent trace 

enhances attractive serial biases. These findings underscore the behavioral relevance of the 

dynamic interplay between attractor and subthreshold network dynamics in PFC and 

reconcile these seemingly conflicting mechanisms: their interplay could be the basis of 

closely associated memory storage processes operating at different time scales, possibly 

serving different behavioral purposes14,32.

Results

We trained four rhesus monkeys to perform an oculomotor delayed response task (ODR). 

The task consisted of remembering spatial locations at fixed eccentricity while maintaining 

fixation during a delay period of 3 s (Fig. 1a, Methods). The extinction of the fixation cue 

triggered the monkey to execute a saccade towards the remembered location and marked the 

beginning of a fixed inter-trial interval (ITI) of 3.1 s, lasting until the appearance of the new 

trial’s stimulus cue (Fig. 1b). In addition, we tested 35 human participants in variations of 

the task performed by the monkeys (Methods). In all cases, we recorded the reported 

location and computed behavioral errors as angular distances to corresponding target 

locations. Following the methods described in previous studies20, we analyzed the 

dependence of the current-trial error on relative previous-trial location. Both monkeys and 

humans showed biased reports relative to previously remembered locations. These biases 

were attractive for short distances between previous-trial and current-trial locations, and 

repulsive for large previous-current distances (Fig. 1a, 2a). Our primary goal was to test the 

hypothesis that activity-silent and persistent activity working memory mechanisms interact 

to produce serial dependence effects. To this end, we investigated electrophysiological 

measurements in the ITI, including periods from the response to the subsequent fixation 

period.
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Reactivation of previous memory information in monkey dlPFC prior to new stimulus 
presentation

We collected single-unit responses from the dorsolateral PFC (dlPFC) of two monkeys while 

they performed the task. A substantial fraction of neurons in this area showed tuned 

persistent delay activity during the mnemonic delay period6 (n=206/822, Methods). These 

specific neurons are part of bump attractor dynamics characterizing the memory periods of 

this task6. Based on this evidence, we will assume an attractor dynamics mechanism for 

persistent activity, and use these terms interchangeably to refer to this network regime. 

Based on our hypothesis that an interplay of activity-silent and attractor mechanisms would 

support serial biases, we focused our analyses on these neurons, and we grouped them in 

simultaneously recorded ensembles for decoding analyses (n=94 ensembles, size range 1–6 

neurons, Extended Data Fig 1a).

DlPFC neuron firing rates exhibited strong dynamics in the ITI, compared to the stability 

during mnemonic delay periods (Fig. 1b). Phasic rate increases at response execution (Rn-1, 

Fig. 1b) and fixation onset (Fn, Fig. 1b) were hallmarks in these dynamics, but we also 

noticed an increase of firing rate prior to stimulus presentation (Sn, Fig. 1b), which could 

reflect anticipation of the upcoming stimulus due to fixed length fixation periods. We 

wondered if these rate changes were also related to dynamical changes in stimulus 

selectivity. Under the attractor-based hypothesis for serial biases33, sustained stimulus 

selectivity would be expected to extend from the previous trial’s delay period into the next 

trial’s fixation period. We measured selectivity by training a linear decoder on spike counts 

of our neuronal ensembles, and referenced its accuracy to that obtained by chance using a 

resampling approach (Methods). During the delay period, neuronal ensembles carried 

stimulus information and single neurons showed stimulus tuning (Fig. 1c,d red). After 

report, the memorized location was still decodable from ensemble activity but single 

neurons’ tuning curves showed a selective suppression of responses in their mnemonic 

preferred locations (Fig. 1c, cyan). This could reflect neuronal adaptation mechanisms or 

else saccade preparation towards the opposite direction to regain fixation. In the middle of 

the ITI, decoding accuracy was not different from chance and neurons were no longer tuned 

to the previous stimulus (Fig. 1c,d deep blue), suggesting that the encoding of the previous 

stimulus had disappeared from neural activity. However, aligned with anticipatory ramping 

activity at the end of the fixation period (Fig. 1b), previous stimulus was again decoded just 

prior to the new stimulus presentation, and single-neuron tuning reappeared (Fig. 1c,d 

orange). Although the existence of spiking selectivity during the ITI has already been 

previously reported33, we show here that there is a period in which stimulus information 

cannot be decoded and then it reappears at the end of the fixation period (late fixation). 

Further, this code in late fixation is a reactivation of the representation active in the previous 

trial delay. This is supported by 2 pieces of evidence. On the one hand, information 

reappearance occurred more strongly in those neuronal ensembles that maintained more 

stimulus information during the delay period (Fig. 1c and Extended Data Fig. 1). Secondly, 

the converging pattern of noise correlations at the end of the delay6 and in late fixation 

suggested a similar attractor-like network activation in both periods. Indeed, when the 

preceding stimulus appeared between two neurons’ preferred locations, these PFC neuron 

pairs exhibited negative noise correlations in late fixation (Extended Data Fig. 2) – a 
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signature of a fixed-shape bump that diffuses from the initial stimulus location, moving 

closer to one neuron’s preferred location and away from the other, thus increasing one and 

decreasing the other neuron’s firing rate6. Negative correlations appeared exclusively during 

late fixation, strongly suggesting a bump reactivation (Extended Data Fig. 2). Taken 

together, these results support a faithful reactivation of the memory-period representation in 

the fixation period (reactivation period), following a period of absent selective neuronal 

firing in dlPFC. This reactivation suggests a relationship between mechanisms of delay 

memory encoding, and mechanisms bridging the ITI to facilitate reactivation prior to the 

new stimulus.

Previous trial memory information is reactivated in the fixation period of human EEG

In line with monkey electrophysiology, we found similar previous-trial traces in human EEG 

(n=15). We extracted alpha power from all electrodes and used a linear decoder to 

reconstruct the target location from EEG in each trial34 (Methods). The target representation 

was significantly sustained during delay, response, and the next trial’s fixation period (Fig. 

2b, diagonal axis). Importantly, this dynamic EEG decoder at each time point uses signals 

originating from different cortical regions and could therefore combine temporally 

overlapping, but spatially distinct representational components (e.g. mnemonic vs. response-

related components). We thus trained different linear decoders during delay (500–1000 ms 

after stimulus onset, delay code) and around the response (250 ms before to 250 ms after 

response, response code), and used the respective weights to extract previous-stimulus 

information throughout different periods of the trial (Fig. 2c). The delay code was stable 

during stimulus presentation and delay, but disappeared during the ITI, around the time of 

response. In contrast, the response code did not generalize beyond the time at which the 

decoder was trained (Fig. 2c). We found that the previous trial’s delay code re-appeared 

during the fixation period (Fig. 2c, and Fig. 2d, orange), similar to monkey neurophysiology 

(Fig. 1c), but slightly earlier in the ITI, possibly triggered by the onset of the fixation dot 

(while reactivation in monkey PFC in the fixed-duration ITI could be triggered by a ramping 

anticipatory signal, Fig. 1b). These results provide a confirmatory correspondence with the 

time-course of mnemonic decoding in the monkey data, but they also show the temporal 

continuity between qualitatively distinct memory and response codes. The bidirectional 

transfer of information between memory and response representations in different brain 

areas could provide a bridge between the memory and ‘reactivation’ periods observed in 

PFC. Alternatively, response codes may just reflect the output motor commands and 

mnemonic codes may subsist subthreshold in PFC to allow reactivations. We tested this 

hypothesis with cross-correlation analysis of PFC units.

Increased cross-correlation suggests a latent trace during ITI

We sought experimental validation that activity-silent mechanisms in dlPFC still maintained 

stimulus information during the ITI between consecutive trials. We reasoned that if such 

latent activation (e.g. a synaptic trace9) affected a group of interconnected neurons, these 

would be more likely to exceed their spiking threshold in synchrony8,35. Specifically 

following a preferred cue, neurons would increase their activity in the delay and maintain a 

latent activity-silent trace in the subsequent ITI that would be reflected in enhanced 

synchrony35, but not enhanced rates. Moreover, we deduced that this reasoning was 
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pertinent only to excitatory interactions: neurons interacting through effective inhibition 

should instead show reduced probability of co-activation following possible inhibitory 

efficacy enhancement by preferred stimuli in the previous trial35.

To test this hypothesis, we selected pairs of neurons with similar selectivity (n=67 pairs, 

Methods) so they had consistent activation (high/low firing rate) in the delay. Following 

previous studies36,37, we divided the selected pairs based on their whole-trial cross-

correlation peak sign in excitatory (exc) and inhibitory (inh) interactions (Methods). We 

considered two conditions (Fig. 3a, Methods): trials in which the previous stimulus was 

shown close to either preferred location (pref, Methods) or far from preferred locations (anti-
pref). Then, we computed a cross-correlation selectivity index (CCSI) by subtracting the 

amplitude of the central peak of the jitter-corrected cross-correlation function (coincident 

spikes within 20 ms, Methods, similar to ref.38) for pref and anti-pref trials for each neuron 

pair (Fig. 3b). Our hypothesis predicts positive (negative) CCSI for exc (inh) pairs in the ITI, 

i.e. higher (lower) spike synchrony following preferred stimuli.

The CCSI computed in a period of the ITI where firing rate had ceased to represent the 

stimulus (activity-silent period, Fig. 1c,d, deep blue) was positive, reflecting selectivity in 

neuronal synchrony to the previous stimulus for all interactions (Fig. 3c). We then 

investigated changes in CCSI for exc/inh interactions across our two periods of interest: the 

activity-silent and reactivation periods (Fig 1c, deep blue and orange, respectively). We 

found that their reactivation-period CCSI differed significantly, being negative for inh 
interactions and positive for exc interactions (Fig. 3c). Finally, we explored the CCSI 

dynamics throughout the trial (Fig. 3d): with the exception of immediately after the previous 

response, where neurons showed anti-tuning to previous-trial stimulus (Fig. 1c), CCSI for 

exc pairs was always positive, indicating stronger central-peak cross-correlation when the 

previous stimulus was preferred (Fig. 3d, orange). On the other hand, for inh interactions 

CCSI was negative (stronger inhibitory interactions following a preferred stimulus) only 

during reactivation and the previous-trial delay period (Fig. 3d, cyan), the periods where 

PFC firing rates showed stimulus selectivity. This pattern is consistent with the latent 

memory mechanism residing in excitatory neurons and only being reflected in inhibitory 

interactions through the collective engagement in bump attractor dynamics, during the delay 

and at the time of reactivation. Importantly, this analysis was done during a period without 

firing rate selectivity (Fig. 3f), thus free of a potential confound from firing rates (see 

Extended Data Fig. 3 for the same analysis performed during the delay period, where that 

caveat cannot be ignored.)

This proves the existence of a latent trace of the stimulus in PFC during the ITI, but it could 

still be reflecting selective subthreshold inputs from a different area that maintains tuned 

persistent activity, instead of selective local modulations in PFC. To rule out this possibility 

and strengthen the idea that stimulus information is directly transferred from an activity-

based to an activity-silent code in PFC, we tested if the selectivity of exc interactions during 

the activity-silent period depended on spiking activity of corresponding neurons in the 

previous delay period. Assuming a neuron-specific activity-dependent mechanism 

supporting the activity-silent code in the ITI, we predicted that the magnitude of the cross-

correlation central peak in the activity-silent period would correlate on a trial-by-trial basis 
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with the mean spike count recorded in the preceding delay period and specifically for pref 
(and not for anti-pref) trials (Methods). This prediction was confirmed in the experimental 

data (Fig. 3e). Thus, this cross-correlation analysis supports the hypothesis that previous, 

currently irrelevant stimulus information remains in prefrontal circuits in latent states, 

undetected by linear decoders that do not take spike timing into consideration (Figs. 1c, 3f).

Bump-reactivation as a mechanism for stimulus information reappearance

Based on our electrophysiology results and on prior modeling studies9, we formulated the 

bump-reactivation hypothesis to explain our data. We hypothesized that information held in 

memory as an activity bump during the previous trial’s delay period6 would be imprinted in 

neuronal synapses as a latent, activity-silent trace during the ITI. This latent bump could be 

reactivated by the unspecific anticipatory signal seen in mean firing activity in PFC (Fig. 

1b), or anticipatory mechanisms following an external cue that predicts stimulus 

presentation, such as the onset of a fixation dot (Fig. 2c). In fact, in a separate EEG 

experiment where fixation lengths were jittered so as to make stimulus onsets unpredictable, 

we could not find any delay code reactivation (Extended Data Fig. 4).

To test the bump-reactivation hypothesis, we built a bump attractor network model of 

spiking excitatory and inhibitory neurons. Based on our electrophysiology findings, short-

term plasticity (STP) dynamics were included only in excitatory synapses (Methods). In 

each trial, stimulus information was maintained in activity bumps during the delay, 

supported by recurrent connectivity between neurons selective to the corresponding 

stimulus. During the ITI period, model neurons had no detectable tuning to the previous-trial 

stimulus (Fig. 4a, black line and Fig. 4b, deep blue)17,31. However, the synapses of neurons 

that had participated in memory maintenance in the previous delay were facilitated due to 

STP (Fig. 4a, deep blue line). Parallel to our analysis in Fig. 3, this was reflected in the 

central peak of the ITI cross-correlation for pairs of excitatory model neurons, which 

maintained selectivity to the previous stimulus (Fig. 4a) even in the absence of single neuron 

firing rate selectivity (Fig. 4a, deep blue). We found that single neuron tuning could be 

recovered from the hidden synaptic trace using a nonspecific input (drive) to the whole 

population (Fig. 4a,c, Methods, see also ref.9,39). Our biologically constrained 

computational model was thus an explicit implementation of the bump-reactivation 

hypothesis that we had formulated.

The impact of bump reactivation on serial biases

We next used our computational model to derive behavioral and physiological predictions to 

test in our data, in particular in relation to serial biases. In order to simulate serial biases 

with our computational model, we ran pairs of consecutive trials with varying distance 

between the two stimuli presented in each simulation. We used the final location of the bump 

in the second trial (current-trial memory) as the “behavioral” output of the model in that 

trial. We were able to model the profile of serial biases observed experimentally (Fig. 4d; 

Extended Data Fig. 5), similar to previous models17,31. To test the impact of bump-

reactivation in serial biases, we compared the behavioral output of simulations with and 

without drive before the second trial stimulus (Methods). Bump reactivation resulted in 

stronger attractive biases for similar successive stimuli, and in repulsive biases for more 
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dissimilar successive stimuli (Fig. 4d, cyan). We found that tuned intracortical inhibition40,41 

was necessary for this emergence of repulsive biases upon bump reactivation (Extended 

Data. Fig. 5; see31,42 for an alternative mechanism). We finally tested the dependence of this 

behavioral effect on the strength of the nonspecific drive. A very short but strong impulse to 

the whole network during the ITI quickly saturated all the synaptic facilitation variables, 

effectively removing all serial biases in the output of the network (Fig. 4d, deep blue). Thus, 

in this model bump reactivation affects serial biases non-linearly as reactivation strength is 

varied. In sum, our model can reproduce behavioral and neurophysiological findings 

described in Figs. 1–3 and derives predictions concerning memory reactivations from silent 

traces that we then tested in the data.

Previous stimulus reactivation increases serial biases

The model predicts that higher reactivation of previous memories in the fixation period 

should be associated with stronger serial biases (Fig. 4d). We tested this prediction in our 

neural recordings from monkey PFC and EEG recordings on the human scalp.

Monkey PFC.—We first classified each trial based on leave-one-out decoding of the 

previous stimulus trained and tested on activity from two different time windows during 

fixation: during a period with no stimulus information (activity-silent period, Fig. 1, deep 

blue), and at the time of reactivation (Fig. 1, orange). For each of these 2 windows we 

separated high-decoding trials (first quartile) from low-decoding trials (all other trials) and 

computed bias curves separately. We found that serial biases were indistinguishable in the 

activity-silent period (Fig. 5a) but they were stronger for high-decoding than for low-

decoding trials at the time of bump reactivation (Fig. 5b). This follows the prediction of our 

computational model, assigning behavioral relevance to the bump reactivation prior to 

stimulus onset. This result was not dependent on a singular selection of trial separations: for 

different proportions of high- and low-decoding trials the serial bias strengths (Methods) 

changed smoothly and remained consistent with the reported result (Extended Data Fig. 6). 

We then repeated the same analysis at different time points of the ITI. A significant 

difference in serial bias strength (Methods) emerged only when trials were classified as low- 

vs. high-decoding in the reactivation period (Fig. 1c, 5c, orange), and serial biases remained 

virtually indistinguishable at all other time points (Fig. 5c).

Human EEG.—Analogous to the analysis performed in monkey data, we grouped trials by 

their leave-one-out decoding accuracy of the previous stimulus (Methods). We separated 

high- and low-decoding trials on two different time points: at the time of reactivation (Fig. 2, 

5f, orange) and in an arbitrary time point without stimulus information (activity-silent, Fig. 

5c, black). Consistent with monkey data and our model’s prediction, we found stronger 

serial bias for high-decoding than for low-decoding trials for the reactivation period (Fig. 

5e), but not for the activity-silent period (Fig. 5d), where previous memory content was not 

decodable (Fig. 2c). The analysis was repeated for all other time points during the fixation 

period (Fig. 5f). Indeed, behavior exclusively depended on decoding accuracy at the time of 

delay code reactivation (Fig. 2, orange). Taken together, these results support the hypothesis 

that previous trial memory reactivation prior to stimulus onset controls serial biases.
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TMS-induced reactivations modulate serial biases

As a causal validation of the influence of pre-stimulus PFC reactivation on serial biases, we 

designed a transcranial magnetic stimulation (TMS) study. This is a relevant experiment 

because memory-dependent changes in human EEG alpha-power cannot be unequivocally 

ascribed to a specific brain region, which limits the correspondence of our EEG and monkey 

dlPFC data. In particular, representations in larger and more organized occipital cortices 

might contribute strongly to visual EEG signals (e.g. ref.34), but could yet be driven by top-

down projections from association cortices43. Inspired by a previous study that reported 

reactivation of latent memories using TMS14, we causally tested the implication of dlPFC in 

serial biases by applying single-pulse TMS during the fixation period. We had two control 

conditions to test our hypotheses: (1) we targeted the TMS coil at dlPFC and vertex in 

interleaved blocks; and (2) we randomly chose TMS intensity relative to the subject’s resting 

motor threshold (RMT) in each trial (sham: 0%, weak-tms: 70%, and strong-tms: 130% of 

RMT, Methods). We found that TMS modulated serial biases when targeted at dlPFC but not 

at vertex (Fig. 6). Moreover, our computational model predicted a non-linear dependence 

with stimulation strength (Fig. 4d), which was supported by the data (Fig. 6b). Interestingly, 

the behavioral impact of PFC TMS stimulation declined throughout the session, as if 

subjects desensitized to the TMS pulse (Extended Data Fig. 7). Importantly, we show 

combined results from two separate experiments of n=10 subjects each, one being a pre-

registered replication (Methods, Extended Data Figs. 8, 9). These results provide causal 

evidence for the involvement of PFC in the serial bias machinery during the ITI. Further, we 

show that TMS impacts serial biases nonlinearly, as predicted by model simulations that 

implement the bump reactivation hypothesis via the interplay of bump attractor and activity-

silent mechanisms.

Discussion

By studying the neural basis of serial biases, we have shown how the interplay of bump-

attractor dynamics and silent mechanisms in PFC maintains and eventually reactivates 

information about previous stimuli in spatial working memory. In delayed-response tasks, 

prefrontal tuned persistent activity consistent with bump-attractor dynamics characterizes the 

delay period and correlates with behavioral precision6,44. We have now seen that this 

sustained activation disappears from the prefrontal network between trials, but it is 

reactivated before the new trial (Figs. 1,2) and enhances behavioral serial biases (Figs. 5,6). 

This reactivation is directly linked to previous trial activity: it emerges specifically in those 

neural ensembles that showed strongest persistent tuning in the delay (Fig. 1c, Extended 

Data Fig. 1), it is decoded from the human EEG with decoders trained in the delay (Fig. 2), 

and it has the fingerprints of bump attractors as evaluated with pairwise correlations 

(Extended Data Fig. 2). Activity-silent mechanisms in prefrontal cortex bridge disconnected 

periods of persistent activity, carrying trial-specific information from one trial to the next 

(Fig. 3). Importantly, this latent tuning is directly associated with trial-by-trial firing rates in 

the preceding delay (Fig. 3e), thus establishing a coupling between activity-based and 

activity-silent mechanisms in PFC. Taken together, our results are consistent with the view 

that attractor-based and activity-silent mechanisms are jointly represented in the prefrontal 

circuit and that their tight interplay influences representations in spatial working memory. 
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We specified this in a computational network model: delay-period attractor dynamics 

imprint activity-silent mechanisms, which then retain information between trials and allow 

reactivations to recapitulate attractor states (Fig. 4).

Our data provides experimental support that non-specific PFC stimulation can revive 

subthreshold information, supporting the ideas put forward in computational models9 and in 

previous neuroimaging and EEG studies14,32,45. Importantly, we obtained explicit causal 

evidence supporting the role of ITI reactivations in enhancing serial biases.

Similarly, recent causal evidence in rodents26 showed the role of parietal activations in 

generating history-dependent biases. However, the absence of selective mnemonic delay 

activity in rat parietal neurons26 suggests that parietal ITI representations do not emerge 

from trace reactivations. A directed mechanistic investigation of rat PPC in this task, similar 

to our efforts here, would be necessary to clarify the mechanisms and origin of history 

biases, and potential differences between the generation of contraction and serial biases in 

rodents and primates. On the other hand, human TMS studies found behavioral effects of 

memory reactivations, when applied in the delay period, but only when memories were still 

behaviorally relevant14. In contrast, we show here that fixation-period TMS can enhance the 

behavioral influence of previous, already irrelevant memories. Reactivations may thus not 

depend on behavioral relevance, but rather on the decaying dynamics of activity-silent 

mechanisms: a more advanced decay of irrelevant memory traces in ref.14 may limit 

memory reactivations. Reactivations also offer alternative explanations to TMS effects in 

working memory that have previously been interpreted on the basis of network 

disruptions46.

Our data supports the idea that activity-silent and attractor-based mechanisms are not 

orthogonal, alternative mechanisms, but they are interdependent mechanisms co-localized in 

PFC. In turn, their different timescales may associate them preferentially with different types 

of memory processes. During active maintenance of working memory rapid persistent 

attractor-based activity may encode memory, with slower activity-silent mechanisms having 

a supporting, stabilizing role11,17,18. Note that although direct evidence of this interplay in 

the delay period is problematic (Extended Data Fig. 3), our approach of separately assessing 

delay period and inter-trial interval, and their trial-by-trial correlation, supports this interplay 

indirectly and may be the most direct evidence that can be accessed extracellularly, without 

resorting to detailed intracellular measurements in awake monkeys. On the other hand, after 

the deactivation of attractor-based active maintenance in the inter-trial interval, slowly-

decaying activity-silent maintenance may underlie secondary, possibly involuntary memory 

traces, leading to serial biases in upcoming trials. Note that previous studies have also 

proposed a central role for activity-silent maintenance for an additional, intermediate type of 

memory: unattended, behaviorally-relevant memories14,32. It was hypothesized that, by 

resorting to different mechanisms, unattended memories may be reserved and protected 

while processing attended memories. Although our data does not address the mechanism of 

unattended memories, in our proposed framework the close interplay between attractor-

based and activity-silent mechanisms does not allow unattended memories (activity-silent 

memories) to be protected from intervening attended memories (attractor-based). This yields 
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the prediction that serial-bias-like patterns of interference40,41 between unattended and 

attended memories should be observed in these experiments14,32.

Our results have implications for the functional interpretation of serial biases and their 

relation with the interplay of prefrontal mnemonic mechanisms. First, enhanced serial biases 

after reactivating latent traces from earlier memories are consistent with the view that biases 

are the by-product of memory-supporting processes. As previous computational studies have 

shown, long-lasting cellular or synaptic mechanisms can enhance the stability of working 

memory retention (e.g.11,17–19), with the cost of across-trial interference of memories11,17. 

Along these lines, a recently found reduction in serial biases in patients with 

schizophrenia42, anti-NMDAR encephalitis42 or autism28 may reflect a reduced interplay of 

memory supporting mechanisms. Second, we see an active role of PFC in generating serial 

biases, rather than suppressing them as proposed by the proactive interference literature29,30. 

This discrepancy could be resolved if the role of PFC was two-sided: 1) PFC could generate 

biases either as a by-product of stable memory retention11,17 or even actively, in 

circumstances in which past memory traces are adaptive for behavior25; alternatively, 2) 

strong PFC activation would suppress maladaptive memory remnants in situations where 

biases are particularly detrimental to behavioral performance. This dual PFC function is 

supported in our modeling and TMS data by the contrasting effect of weak and strong PFC 

activation on serial biases.

Our TMS experiment clarified our EEG results by demonstrating the role of PFC in serial 

biases. Because we did not concurrently acquire EEG during the TMS study, we could not 

directly measure the neural reactivation induced by the TMS pulse. However, prior work has 

shown the reactivation of EEG memory representations with TMS14, albeit in different 

conditions (pulses in the memory period targeted at parietal and occipital regions). 

Intriguingly, serial biases for trials without TMS stimulation in PFC-stimulation blocks were 

repulsive (Figure 6b). We speculate that this was due to suppressive long-lasting 

physiological effects in PFC that carried over from previous TMS-stimulated trials in the 

block47 (see Extended Data Fig. 10 for a phenomenological model of this hypothesis). 

Future work involving more fine-grained TMS intensities and carefully controlled block 

designs will be necessary to clarify these results further.

We proposed a computational model that can parsimoniously explain our data using short-

term facilitation in the synapses of a recurrent network. Short-term plasticity has also been 

used in previous computational models of interacting activity-based and activity-silent 

dynamics9,10,13 and of serial biases17,31. Beyond previous modeling efforts, we explored the 

mechanistic requirements of code reactivations prior to a new trial, and we derived 

predictions whose validation conferred plausibility to the model. Our findings do not 

unequivocally identify this mechanism and we could have chosen another mechanism with a 

long time constant to implement our hypothesis computationally (e.g. calcium-activated 

depolarizing currents18, depolarization-induced suppression of inhibition11, short-term 

potentiation48, etc). Also, synaptic plasticity mechanisms linked to feedforward connections 

into PFC39 could conceivably play a role. Still, several lines of evidence support the 

involvement of short-term plasticity in prefrontal function. First, there is explicit evidence 

for enhanced short-term facilitation and augmentation among PFC neurons in in vitro 
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studies49,50. Second, extracellular recordings in behaving animals cannot directly probe 

activity-silent mechanisms, but indirect evidence for synaptic plasticity has been gathered in 

prefrontal activity correlations of rodents engaged in working memory tasks36. Our study 

also follows this approach to seek evidence for activity-silent stimulus encoding, but we 

apply it specifically at time periods without firing rate codes for task stimuli, thus 

unambiguously decoupling activity-silent from activity-based selectivity (Fig. 3, Extended 

Data Fig. 3).

In sum, we provide experimental evidence that subthreshold traces of recent memories 

remain imprinted in PFC circuits, and bias behavioral output in working memory in 

particular through network reactivations of recent experiences. Our findings suggest that the 

dynamic interplay between attractor and subthreshold network dynamics in PFC supports 

closely associated memory storage processes: from effortful memory to occasional 

reactivation of fading experiences.

Materials and Methods

Behavioral task and recordings

Monkey behavioral task and recordings.—Four adult (>6 years old), male rhesus 

monkeys (Macaca mulatta) were trained in an oculomotor delayed response task requiring 

them to fixate, view a peripheral visual stimulus on a screen at a distance of 50 cm and make 

a saccadic eye movement to its location after a delay period. During execution of the task, 

neurophysiological recordings were obtained from the dorsolateral prefrontal cortex 

(dlPFC). Detailed methods of the behavioral task, training, surgeries and recordings, as well 

as descriptions of neuronal responses in the task have been published previously6,51–54 and 

are only summarized briefly here. Visual stimuli were 1° squares, flashed for 500 ms at an 

eccentricity of either 12° or 14°, indicated as degrees of visual angle. Stimuli were presented 

randomly at 1 out of 8 possible locations around the fixation point. A delay period lasting 3 s 

followed the presentation of the stimulus, at the end of which the fixation point turned off, 

and a saccade terminating within 5° from the location of the remembered stimulus was 

reinforced with liquid reward (5° correspond to about 20 degrees of arc on the circle of 

possible cues). Although fixation was maintained through cue and delay periods, we denote 

“fixation period” the interval between fixation onset and cue onset, when the only behavior 

expected was fixation (fixation period, Fig. 1b). A fixed inter-trial interval (ITI) of 3.1s 

elapsed between fixation cue extinction and the onset of the cue in the next trial (ITI, Fig. 

1b). Eye position was monitored with a scleral eye coil system in two monkeys and an 

ISCAN camera in the other two. From 2 of those monkeys, we collected single-unit 

responses from dlPFC using tungsten electrodes of 1–4 MΩ impedance at 1 kHz, while they 

were performing the task51. Simultaneous recordings were obtained by arrays of 2–4 

microelectrodes, spaced 0.2–1 mm. A substantial fraction of neurons in this area showed 

tuned persistent delay activity during the mnemonic delay period of the task (n=206/822 

neurons,6,51–54). For decoding analyses, we grouped those neurons in simultaneously 

recorded ensembles (total of n=94 neural ensembles, 1–6 neurons per ensemble, Extended 

Data Fig. 1a). All experiments were conducted in accordance with the guidelines set forth by 

the US National Institutes of Health, as reviewed and approved by the Yale University 
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Institutional Animal Care and Use Committee, and by the Wake Forest University 

Institutional Animal Care and Use Committee. Data collection and analysis were not 

performed blind to the conditions of the experiments. No statistical methods were used to 

pre-determine sample sizes, and we followed customary practice of testing n=2 monkeys for 

electrophysiology data and n=4 monkeys for behavioral data. We note that the 

electrophysiology data was acquired previously and has been used in other 

publications6,51–56.

Human participants and behavioral task.—Thirty-five (35) neurologically and 

psychologically healthy volunteers with normal or corrected vision (EEG experiment n=15 

(4 male), 21.27 ± 4.86 years, (mean ± std); two additional subjects were tested but aborted 

the EEG experiment with insufficient trials); TMS experiments n=20 (6 male), 29.86 years ± 

9.55 years (mean ± std); one additional participant was excluded before their MRI scan due 

to health concerns) from the Barcelona area provided written informed consent and were 

monetarily compensated for their participation, as reviewed and approved by the Research 

Ethics Committee of Hospital Clínic (Barcelona). During both EEG and TMS experiments, 

each participant performed two sessions of approximately 1.5 h. To perform behavioral and 

EEG analyses, we concatenated the two sessions for each subject. Stimuli were presented on 

a 17” HP ProBook viewed at a distance of 65 cm, and using Psychopy (version 1.82.01) 

running on Python 2.7. The TMS study consisted of a first experiment with 10 subjects, and 

a pre-registered replication experiment (https://osf.io/rguzn/) with 10 more subjects 

(Extended Data Figs. 7–9). For all 3 studies (one EEG and two TMS experiments), we 

recruited independent subject pools. For the fully randomized within-subjects design of our 

EEG task, condition-blind data collection and analysis was not a critical issue. In the TMS 

study, the experimenter could not be blind to the location of the coil. No statistical methods 

were used to pre-determine sample sizes but our sample sizes are similar to those reported in 

the relevant previous publications14,34,46

In each 1.5 h EEG session, participants completed 12 blocks of 48 trials (except for one 

participant, who completed 12 blocks in one, and 9 blocks in the second session). Each trial 

began with the presentation of a central black fixation dot (.5 × .5 cm) on a gray background. 

After 1.1 s of fixation, a single colored circle (stimulus, diameter 1.4 cm) appeared for .25 s 

at any of 360 circular locations at a fixed radius of 4.5 cm, randomly sampled from a 

uniform distribution. In 66.67% of trials (a total of 768 trials per subject), the stimulus was 

followed by a 1 s delay in which only the fixation dot remained visible. In the remaining 

trials, the delay duration was either 3 s (16.67% of trials, 192 trials per subject) or 0 s 

(16.67% of trials, 192 trials per subject). Trials with 0 s delay were excluded from the 

analyses in this study. The change of the fixation dot color (from black to the stimulus color) 

instructed participants to respond (response probe). Participants responded by making a 

mouse click at the remembered location. A transparent circle with a white border indicated 

the stimulus’ radial distance, so the participant was only asked to remember its angular 

location. After the response was given, the cursor had to be moved back to the fixation dot to 

self-initiate a new trial. The total length of the ITI, defined as the time between response 

probe and the next stimulus onset, was around 2.72 s (median, 95% CI = [2.11 s, 4.16 s]). 

Participants were instructed to maintain fixation during pre-stimulus fixation, stimulus 
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presentation, and delay and were free to move their eyes during response and when returning 

the cursor to the fixation dot. Colors (1 out of 6 colors with equal luminance) were randomly 

chosen with equal probability for each trial.

Stimuli and trial structure in the TMS task were similar to the EEG task, except for the 

fixation period duration (0.6 s) screen background (white), stimulus color (black), and 

response probe color (red). At the end of the fixation period (16.7 ms prior to stimulus 

onset), a single TMS pulse was applied in half of vertex trials (tms or sham trials, randomly 

interleaved), and in two thirds of prefrontal trials (weak, strong or sham trials, randomly 

interleaved). See TMS details below. Only delays of 1 s were used in this experiment. 

Participants completed 4 blocks of 90 (vertex) and 4 blocks of 130 (PFC) trials within each 

session. In the first TMS study, these 8 blocks were randomly shuffled for each session. In 

the replication TMS study, we successively alternated vertex and PFC blocks within each 

session, and the 2 sessions of a given participant started alternatively with each area in a 

counterbalanced design.

EEG recordings and preprocessing.—We recorded EEG from 43 electrodes attached 

directly to the scalp. The electrodes were located at Modified Combinatorial Nomenclature 

sites Fp1, Fpz, Fp2, AF7, AFz, AF8, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, A1, T7, 

C5, C3, Cz, C4, C6, T8, A2, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, PO7, PO3, POz, 

PO4, PO8, O1, Oz and O2. Sites were referenced to an average of mastoids A1 and A2 and 

re-referenced offline to an average of all electrodes. We further recorded horizontal EOG 

from both eyes, vertical EOG from an electrode placed below the left eye and ECG to detect 

cardiac artifacts. We used a Brainbox® EEG-1166 EEG amplifier with a .017–100 Hz 

bandpass filter and digitized the signal at 512 Hz using Deltamed Coherence® software 

(version 5.1).

EEG data was pre-processed using Fieldtrip (version 20171231) in MATLAB R2017b and 

R2019a. We excluded outlier trials in which variance or kurtosis across samples exceeded 4 

standard deviations from mean variance or kurtosis over trials, respectively. To reduce 

artifacts in the remaining data, we ran an independent component analysis (ICA) on the trial-

segmented data and corrected the signal for blinks, eye movements, and ECG signals, as 

identified by visual inspection of all components. Data were Hilbert-transformed (using the 

FieldTrip function “ft_freqanalysis.m”) to extract frequencies in the alpha-band (8–12 Hz) 

and total power was calculated as the squared complex magnitude of the signal. Finally, we 

excluded trials in which lognormal alpha-power at any electrode exceeded the time-resolved 

trial average of lognormal alpha-power by more than 4 standard deviations, and trials in 

which the time-averaged variance across electrodes exceeded the mean variance over trials 

by more than 4 standard deviations (to increase the stability of trial-wise decoding 

predictions for different randomly chosen training sets). In total, we rejected an average of 

3.95% ± 1.07% (mean ± std) of trials per participant. Excluding rejected trials and trials with 

0 s delay, we used 914.33 ± 28.94 trials per participant. To concatenate data from the two 

sessions for the same subject, we normalized each session’s alpha-power for each electrode 

separately.
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Transcranial Magnetic Stimulation.—Stimulation was performed in the TMS study 

using a Magstim Rapid 2 machine with a 70 mm figure-of-eight coil. TMS target points 

were located using a BrainSight navigated brain stimulation system that allowed 

coordination of the coil position based on the participant’s structural MRI (sMRI) scan. A 

region of interest in right dlPFC (MNI152 coordinates x = 40, y = 34, z = 16) was defined 

using NeuroSynth57 term-based meta-analysis of 53 fMRI studies associated with the key 

phrase ‘spatial working memory’ (Supplementary Fig. 1 and Supplementary Data). This 

mask was transformed into each subject’s sMRI space. Vertex target points were defined 

using the 10–20 measurement system. Stimulator intensity, coil position, and coil orientation 

were held constant for each participant for the duration of each session. In order to mask the 

sound of TMS coil discharge, we had participants listen to white noise through earphones 

for the duration of the session. White noise volume was selected based on participant 

threshold for detecting TMS click using the staircase method (2-up, 1-down). Stimulation 

intensity was determined by the individually-defined resting motor threshold (RMT). We 

applied 2 different TMS intensities at 70% RMT (weak-tms, 24.5%−41.5% (min-max) of 

stimulator output) and 130% RMT (strong-tms, 45.5%−76.5% of stimulator output), 

depending on the trial (see text). To reduce the number of trials per session, we applied 

strong-tms at Vertex in the original study, but weak-tms for the replication study (pre-

registered at https://osf.io/rguzn/, Extended Data Figs. 9 and 10). The stimulation parameters 

were in accordance with published TMS guidelines58. In a post-experiment debriefing 

session, we collected information about the subjective experience of the participants. Many 

participants (13 out of 20) reported facial muscle twitching in dlPFC blocks. This is an 

unlikely explanation for the effects observed in Fig. 6 because (1) twitching is expected to 

increase with TMS intensity but we instead observed a non-linear dependency in our effect 

(Fig. 6b), and (2) behavioral performance in our task as measured by the precision of the 

responses was not modulated by TMS intensity in dlPFC blocks (linear mixed model as 

described below: θe
2 intensity + (1 |subject), p>0.5), suggesting that our reported intensity-

dependent effect (Fig. 6b) was not the result of a general behavioral impairment caused by 

facial twitching.

Serial bias analysis

Human.—For each trial, we measured the response error (θe) as the angular distance 

between the angle of the presented stimulus and the angle of the response. To exclude 

responses produced by guessing or motor imprecision, we only analyzed responses within an 

angular distance of 1 radian and a radial distance of 2.25 cm from the stimulus. Further, we 

excluded trials in which the time of response initiation exceeded 3 s, and trials for which the 

time between the previous trial’s response probe and the current trial’s stimulus presentation 

exceeded 5 s. On average, 2.99% ± 4.51% (mean ± std) of trials per participant were 

rejected.

We measured serial biases as the average error in the current trial as a function of the 

circular distance between the previous and the current trial’s target location (θd) in sliding 

windows with size π/3 and in steps of π/20 radians, and steps of π/100 radians for Fig. 2a 

(note that for easier interpretability, all figures depict values in angular degrees). To increase 

power and correct for global response biases, we calculated a ‘folded’ version of serial 
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biases as follows59. We multiplied trial-wise errors by the sign θd:θ′e = θe · sign(θd), and used 

absolute values of θd Positive mean folded errors should be interpreted as attraction towards 

the previous stimulus and negative mean folded errors as repulsion away from the previous 

location. For difference in serial bias analyses (Fig 5f), we averaged folded errors for close 

prev-curr distances (between 0 and π/2radians).

Monkey.—In contrast with the human experiments, the stimulus distribution was discrete 

for all the monkey experiments. On each trial, the subject was cued to 1 of 8 possible cue 

locations equidistant on a circle. This restricted the minimal angular distance between cues 

in two consecutive trials to be π/4 radians. To have a finer resolution to calculate serial 

biases, we capitalized on the response variability on each trial: we computed θd as the 

distance between the current trial’s stimulus and the previous trial’s response (instead of the 

previous trial’s stimulus). Similar methods to humans were used, except for Fig. 1a, where 

we used smaller sliding window sizes (π/10 in steps of π/100 radians), essential to capture 

the thinner attractive serial bias profile in monkeys (Fig. 1a). Specific differences in our 

monkey and human serial bias curves (Fig. 1a, 2a) may be due to the discrete stimulus 

distribution (8 possible locations) that we used for monkeys, in contrast to the continuous 

distribution used in our human experiments. Indeed, studies with larger samples and 

continuous stimulus distributions have reported behavioral biases in monkeys more 

consistent with the human literature21,33. For all our serial bias curves, x-axis coordinates 

mark the central value of the corresponding sliding window.

Statistical methods

Data were analyzed using custom scripts in Python 2.7 (monkey and TMS data) and in 

Python 3.7.4 (human EEG data). Details of statistical methods are tabulated in the Life 

Sciences Reporting Summary available online. Unless stated otherwise, all hypothesis tests 

were two-tailed (permutation tests or bootstrap hypothesis test, n=106) and confidence 

intervals (C.I.) are at [2.5, 97.5] percentiles of a bootstrapped distribution. Using bootstrap 

distributions, we avoid assuming normality for our statistical tests. One exception was the 

linear model used for TMS data analyses, in which normality was assumed. Supplementary 

Fig. 2 shows the distribution of residuals of this model and corresponding qqplot. There was 

a significant deviation from normality in extreme values. This did not compromise our 

statistical inference, because of the large sample size (n= 18299)60 and because the 

interaction of interest was confirmed by model-free analyses (Fig. 6, Extended Data Figs. 7–

9).

To test the effect of TMS on serial biases, we fit a linear mixed-effects model using the R 

function lme61. In particular, we modeled trial-wise behavioral errors θe as a linear model 

with interaction terms for coil location (PFC vs. vertex), TMS intensity (strong-tms, sham, 
and weak-tms) and the sine of θd (prev-curr), which approximates the expected dependency 

of θe on θd in the presence of serial biases (θe ∝ sin(θd)). We incorporated the non-linear 

dependency of serial bias on stimulation intensity that our model simulations predicted, by 

using −1, 0 and 1 for strong-tms, sham and weak-tms, respectively. In one model, we used 

instead the nominal percent of RMT TMS intensity used (70, 0, 130, respectively) for 

comparison (Fig. 6b). We accounted for subject-by-subject variability by including random-
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effect intercepts and random-effect coefficients of prev-curr. The full, three-way interaction 

model was:

θe coil location * intensity * prev‐curr + (1 + prev‐curr |subject)

Decoding stimulus information

Monkeys.

Population decoder.: For each recorded ensemble, we decoded stimulus θj in trial j by 

modelling it as a linear combination of the spike counts nij (i = 1…k) of k simultaneously 

recorded neurons, computed in sliding windows of 0.5 s and steps of 0.1 s during that trial 

(in all decoding time courses depicted in figures (monkeys and humans), time (x-axis) 

coordinates mark the central value of the corresponding sliding window):

cos θj 1 + ∑i
kβinij and sin θj 1 + ∑i

kωinij .

For each set of neurons, we trained two sets of weights {βi} and {ωi} on 80% of randomly 

selected trials and tested in the remaining trials. We applied Monte-Carlo cross-validation 

with 50 random splits to obtain angle estimates θ j. We obtained a measure of error (err) by 

averaging across splits the mean absolute error θ j − θj  in each split.

Accuracy of ensembles: Distance from shuffle.: To establish the significance of decoding 

accuracy (z), we compared each ensemble’s decoding error (err), to the distribution of 

decoding errors in 1,000 shuffled stimulus sequences (errs). By shuffling the list of stimuli 

presented in the particular recording of each ensemble, we maintained the characteristics of 

the distribution (e.g. unbalanced distribution of stimuli), but effectively destroyed 

correlations between stimuli and neural activity.

z = −
err−mean errs

std errs

In Fig. 1c and Extended Data Fig. 1b, we tested separately ensembles that had the strongest 

and weakest decoding accuracy in the delay by obtaining z from spike counts in the delay 

period, and classifying the ensembles based on z: ensembles within the top tertile (high-
decoding delay ensembles), and those in the bottom tertile (low-decoding delay ensembles).

Accuracy of single trials: Leave-one-out decoder.: To measure stimulus information on a 

trial-by-trial basis, we used leave-one-out cross-validation (Fig. 5a–c). We regressed the βi 

and ωi weights in all trials, except the one left out for testing. For these analyses we 

computed spike counts in windows of 1 s in steps of 50 ms.

Humans.

Linear decoder.: EEG alpha power is known to decrease in occipital sites contralateral to 

attended locations and locations being actively maintained in working memory34,62–64. We 
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used this feature to decode the stimulus’ angular position from the distribution of alpha 

power over all 43 electrodes. We trained the decoder on the previous trial’s stimulus label 

and decoded this information throughout the previous and current trial. Trialwise alpha 

power for each electrode was modeled as a linear combination of a set of regressors 

representing the stimulus location in the corresponding trial, U = WM, where U is a J × K 
matrix of alpha power measured at electrode j in trial k, M is the N × K design matrix of 

values for regressor n in trial k, and W is the J × N weight matrix, mapping the weight for 

regressor n to electrode j. U and M (determined by the stimulus, see below) were given by 

the experiment, while W was fitted using least squares (see below).

The design matrix M is a set of eight regressors Mn representing expected “feature 

activations”65 for feature n in trial k. The value of regressor Mn in trial k was determined as |

sin(nπ/8 – skπ/8 + π/2)7|, where sk = [0…7] indicates which one of eight angular location 

bins (width π/8 rad) included the stimulus shown in trial k.

Similar to monkey analyses, we measured single-trial stimulus representations using leave-

one-out cross-validation, ensuring equal number of trials from each location bin in the 

training set (Ut and Mt). We estimated the weight matrix W  and the left-out trial k’s design 

matrix Mk by:

W = UtMtT MtMtT
−1,

Mk = W TW
−1

W TUk .

For each trial and time point, we repeated this analysis 100 times with randomly chosen 

training sets (except for the temporal generalization matrix, for which 10 repetitions were 

run, Fig 2b), and averaged M over all repetitions. Finally, we estimated the predicted angle 

θk as the direction of the vector sum of feature vectors with length Mnk pointing at angular 

location bin centers bn = nπ/8 (n = 0…7). Trialwise decoding strength was then defined as 

cos θk − θk . To correlate decoding strength with behavioral biases (Fig. 5d–f), we increased 

the stability of trialwise measures by temporal averaging over moving 200 ms windows (x-

axis ticks in Fig. 5f are centered at window centers).

Cross-temporal decoding.: To explore the temporal generalization of the mnemonic and the 

response code over time, we trained decoders in independent time windows of the previous 

and current trial, and tested them in all time points of consecutive trials (from .25 s to 1.25 s 

after previous stimulus onset (Fig. 2c, left), −.25 s to .25 s after previous response (Fig. 2c, 

middle), and −1.25 s to .25 s after the current trial’s stimulus onset (Fig. 2c, right)). For the 

temporal generalization matrix (Fig. 2b), we averaged training and test data over 

independent windows of 50 samples (≈ 97.77 ms). High-resolution time courses of 

mnemonic and response code (Fig. 2c) were obtained by training the decoder on averaged 

data from 0.5 s to 1 s after previous stimulus onset and −.25 s to .25 s relative to the response 
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time (dashed lines in Fig. 2b), respectively, and by testing on averaged data from five 

samples (≈ 9.77 ms) through consecutive trials.

Preferred location

We computed the preferred locations of each neuron. Similar to ref.6, preferred location was 

determined by computing the circular mean of the cue angles (0° to 315°, in steps of 45°) 

weighted by the neuron’s mean spike count over the delay period (3 s) following each cue 

presentation.

Cross-correlations

Dataset.—For the estimation of functional connectivity we estimated cross-correlations by 

computing the jittered cross-covariances66 of spike counts from simultaneously recorded 

neuron pairs, whose preferred locations were separated by a maximum of 60° (n=67). We 

included pairs of neurons recorded from the same electrode (n=21) and pairs recorded from 

different electrodes (n=46), and we confirmed that the results held when analyzing only 

pairs from different electrodes (Fig. 3c, exc p=0.01, n=20; inh p=0.04, n=13, one-sided 

permutation test). For each pair we selected those trials where the presented cue fell within 

the preferred range (pref, within 40° from either preferred locations) or outside the preferred 

range (anti-pref, all the other trials). We discarded those trials without at least 1 spike for 

each neuron in the pair.

Jittered cross-covariance.—We used the Python function scipy.signal.correlate to 

compute cross-covariances between spike trains of simultaneously recorded pairs. Spikes 

were counted in independent windows of 10 ms38,67. For each trial, 1000 jittered cross-

covariances were computed as follows66. We shuffled the spike counts within non-

overlapping windows of 50ms and computed cross-covariance for each of these jittered 

spike counts. This captured all the cross-covariance caused by slow dynamics (> 50ms) but 

destroyed any faster dynamics. Finally, we removed the mean of these jittered cross-

covariances from each trial’s cross-covariance, ending up with correlations due to faster 

dynamics (≤ 50ms). We considered the magnitude of the central peak of the cross-covariance 

in our analyses by averaging 3 bins (±1 bin from the zero-lag bin). For the time resolved 

cross-correlation function (Fig. 3c,d), we repeated this process for sliding windows of 1 s 

and steps of 50ms, and averaged across trials and neuronal pairs.

Putative excitatory and inhibitory interaction.—Because changes in connectivity 

strength (our hypothesis for activity-silent mechanisms) affect inversely excitatory peaks and 

inhibitory troughs of cross-correlations35, we analyzed separately these two types of 

interactions. Similarly to ref.36,37, based on the average central peak of the cross-correlation 

function in the whole trial [−4.5 s, 2.5 s], we classified each pair into 3 subgroups: 1) those 

with positive peak for both preferred and anti-preferred trials were classified as putative 

excitatory interactions (exc), 2) those with negative peak for both preferred and anti-

preferred trials were classified as putative inhibitory interactions (inh) and 3) we discarded 

those with inconsistent peak sign between pref and anti-pref trials. In total, we analysed the 

cross-correlation time course of n=47 pairs of neurons (n=27 exc and n=20 inh; from 

different electrodes n=20 exc and n=13 inh).
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Delay rate vs ITI cross-correlation analyses.—In Fig. 3e we sought evidence for an 

interplay between attractor and subthreshold network dynamics in PFC. To this end, we 

computed the trial-by-trial correlation between the cross-covariance peak (see above) in the 

ITI —at a time point when there was no firing rate tuning (activity-silent period, Fig. 3d)— 

and the mean firing rate of the two neurons at the end of the preceding delay period (last 2s, 

delay-fr, Fig. 3e), for exc interaction pairs under the pref and anti-pref condition (see above). 

For each pair, we obtained demeaned values for each trial by subtracting the mean firing rate 

and mean cross-covariance peak across all trials, respectively. This allowed us to compute 

the correlation based on trial-by-trial measurements of all pairs together (n=27), in order to 

increase statistical power. Error bars were computed then based on a bootstrap approach on 

all trials for all pairs. A local activity-dependent subthreshold mechanism for ITI memory 

traces predicts that for pref trials, but not for anti-pref trials, firing rate variations in the 

delay period determines the degree of latent variable loading (cross-covariance peak) in the 

ITI (Fig. 3e).

Simulating bump reactivation

We used a previously proposed computational model40,68,69 to study serial dependence 

between two consecutive trials. The model consists of a network of interconnected 2048 

excitatory and 512 inhibitory leaky integrate-and-fire neurons70. This network was 

organized according to a ring structure: excitatory and inhibitory neurons were spatially 

distributed on a ring so that nearby neurons encoded nearby spatial locations. All 

connections were all-to-all and spatially tuned, so that nearby neurons with similar preferred 

directions had stronger than average connections, while distant neurons had weaker 

connections. Inhibitory-to-inhibitory connections were untuned. Network parameters were 

taken from (Compte et al. 2000) except for:

GEE,AMPA = 0.1 nS, GEI,AMPA = 0.192 nS,

GEE,NMDA = 0.42 nS, GEI,NMDA = 0.49 nS,

GII,GABA = 0.7413 nS, GIE,GABA = 0.9163 nS,

gext, I = 5.8 nS, gext, E = 5.915 nS,

JEE
+ = 7.1, σEE = 18, JEI

+ = JIE
+ = 2.2, σEI = σIE = 32 deg .

Short-term plasticity.—Simulation of “activity-silent” mechanisms during the inter-trial 

period, was done by adding two more variables x and u, as described in refs.9,71, to 

excitatory presynaptic neurons:
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dx
dt = 1 − x

τx
− u·x·δ t − tsp

du
dt = U − u

τu
+ U 1 − u ·δ t − tsp .

With tsp marking all spike times and δ(t) being the Dirac delta function. We used parameters 

U = 0.2, τx = 200 ms, τu = 1500 ms. The effective conductance of each excitatory synapse 

was then g · u · x, with g being the corresponding maximum conductance parameter (see 

above). These short-term plasticity dynamics affected only AMPAR-mediated recurrent 

connections in the network. In a separate set of network simulations (not shown), we also 

included STP in inhibitory connections in the network (same parameters as indicated above) 

and we found that we could obtain a similar pattern of serial bias modulations as shown in 

Fig. 4d. This shows that our results are not specifically dependent on whether inhibitory 

connections present facilitation dynamics or not.

Stimulation and behavioral readout.—External stimuli were fed into the circuit as 

weak inputs (0.25 nA) to neurons selective to the stimulus as described in Compte et al. 

(2000). Each simulation of our computational model consisted in two trials run in sequence: 

a first stimulus of duration 250 ms, a first delay period of 1000 ms, a network resetting input 

(nonspecific current −0.261 nA, duration 300 ms), an intertrial interval of duration 1300 ms, 

a second stimulus (250ms) and a second delay period of 1000 ms. The first and second cue 

stimuli were independently drawn randomly from 360 uniformly distributed angular values, 

and only the network readout of the second trial was analyzed to obtain a “behavioral 

readout”. The readout was obtained with a “bump tracking” procedure: starting at cue 

presentation the instantaneous network readout was derived as the angular direction of the 

population vector of single-neuron firing rates (computed in windows of 250 ms, sliding by 

100 ms) considering the ±100 neurons surrounding the readout estimated in the previous 

time step. The instantaneous readout was iteratively derived to track the center of the bump 

(and ignoring possible elevated activity extending from the fixation period) and the final 

behavioural output was defined as the readout in the last 250 ms of the trial. Serial bias was 

calculated by measuring single-trial errors (behavioral readout minus target location) in 

relation to previous-current distance of stimulus cue values, as described above for 

experimental data.

Consecutive trials and bump reactivation.—Reactivation of previous trial stimulus 

during the reactivation period (300 ms before the second stimulus onset) was accomplished 

stimulating all excitatory neurons with a non-specific external stimulus9,39. This stimulus 

increased exponentially with a rate α = 10 s−1 as β 1 − e−α t − t0 , with β being the 

reactivation strength and t0 the time of onset of the stimulus. Reactivation strength was weak 

(β = 0.17 nA) or strong (β = 2.9 nA).
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Rate and synaptic tuning.—For each simulation in Fig. 3a,b we computed the firing rate 

(r) and synaptic (s = u · x) tuning, by computing for both measures the difference between 

neurons within (± 50°) and outside (180° ± 50°) the previous bump location.

Extended Data
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Extended Data Fig. 1. Consistent decoding accuracy in delay and reactivation links these two 
representations at the neural ensemble level
a) The size of n=94 independent ensembles of simultaneously recorded neurons varies 

between 1–6. b) Fraction of neural ensembles with significant previous stimulus decoding 

accuracy (z > 1.96, see Methods) computed for all ensembles (dashed line) and only for 

those ensembles with highest previous stimulus code averaged across the whole delay (see 

Methods). The incidence of stimulus decoding was significant in delay and reactivation, but 

not at ITI (two-sided binomial test at p=0.05, with n=94 and n=27 ensembles, for ‘all 

ensembles’ and ‘highest delay code’, respectively). Error bars are bootstrapped ±s.e.m. c) 
across-ensemble Pearson correlation between delay decoding accuracy (averaged in the 

whole delay) and decoding accuracy at different time points (two-sided p-values: 6.5e-30, 

0.87, 0.035, n=94 ensembles). The ensembles with highest delay code also had higher 

decoding during reactivation, demonstrating the neural association between delay 

representations and reactivations despite absent code in the ITI. Error bars denote ±s.e.m. 

computed with a bootstrap procedure. d) Individual ensemble values from c, orange 

(pearson correlation, two-sided p=0.035, n=94 ensembles).
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Extended Data Fig. 2. Noise correlation between pairs of neurons is negative at reactivation, as 
predicted by the attractor model.
Bump-attractor dynamics are characterized by negative pairwise noise correlations for cues 

presented between two neurons’ preferred locations (within pref), but not for other cues 

(outside pref) 6. a) Periods used in noise correlation analyses: early (activity-silent), and late 

fixation (reactivation; n=94 ensembles, zoom-in of Fig. 1c). Error shading, bootstrapped 

95% C.I. b) In the computational model (n=1000 independent simulations), bump 

reactivations from subthreshold traces are characterized by negative noise correlations only 

during reactivation for within-pref trials, following the nonspecific input drive (Fig. 4). c) 
Noise correlations of PFC pairs with dissimilar preferred angles (60° < Δθ < 120°, n=34 

pairs) were lower in late than in early fixation for within-pref trials (bootstrap test, 

p=0.0001, n=34, Cohen’s d=0.61). d) On average, lower noise correlations occurred only 

during reactivation and in within-pref trials (ANOVA trial condition × time point, F(4)=2.5, 

p=0.06, n=34). For within-pref trials, noise correlations differed between early and late 

fixation (bootstrap test, p=0.0001, Cohen’s d=0.61, n=34), being negative in late (bootstrap 

test, p=0.035, Cohen’s d=−0.32, n=34), but positive in early fixation (bootstrap test, 

p=0.018, Cohen’s d=0.37, n=34). Correlations were positive in outside-pref trials both 

during late and early fixation (bootstrap test, p=0.024 and p=0.06, respectively), with no 

significant difference (two-sided bootstrap test, p=0.93, n=34). In addition, negative noise 
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correlations diminished when using the previous saccade location rather than the previous 

stimulus as reference (paired bootstrap test, p=0.005, Cohen’s d=−0.47, n=34), suggesting 

that the bump diffused only during the delay period, but not after the saccade 6. Unless 

stated otherwise, all bootstrap tests were one-tailed in the direction of the model predictions 

in b. All error bars indicate ±s.e.m.
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Extended Data Fig. 3. Stimulus selectivity in both cross-correlation peaks and firing rates during 
the delay period prevents the isolation of activity-based and activity-silent processes.
Same analysis as in Fig. 3, but performed during the current delay period (instead of ITI, 

Fig. 3) and selecting pref and anti-pref trials based on current stimulus (instead of previous, 

Fig. 3). Note that these are different trials (no need to be consecutive), so exc (n=33 pairs) 

and inh (n=21 pairs) might differ from Fig. 3. a) Left, cross-correlation peak selectivity 

emerged and was sustained in the delay period (left, CCSI as in Fig. 3, computed in centered 

500-ms windows sliding in steps of 50 ms) and consisted in enhanced central peaks 

(troughs) for exc (inh) following a preferred stimulus. Color bars mark the periods where the 

average CCSI is different from 0 (bootstraped 95% C.I.) Right, cross-correlation averaged 

over 0.5–3.5 s. Zero-lag correlation for pref and anti-pref are different in exc (p=0.03, n=33, 

two-sided paired bootstrap test) and inh (p=0.01, n=21, two-sided bootstrap test) conditions. 

b) Firing rate selectivity (pref - anti-pref) also emerges robustly in the delay period for 

neurons in exc and inh pairs. The selectivity in cross-correlation peaks (CCSI) can therefore 

be confounded with firing rate selectivity72 when analyzing data in the delay period. This 

prevents the unambiguous identification of activity-silent mechanisms in this task period. 

Our approach of analyzing data in the inter-trial interval, when there is no firing rate 

selectivity (Fig. 3f), gets around this problem. Gray shading marks the stimulus presentation. 

In all panels, error-bar shadings indicate ±s.e.m.
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Extended Data Fig. 4. In a dataset with unpredictable stimulus-onset time, previous item 
representations were not reactivated in the pre-stimulus period.
We conducted the same analysis as in human EEG (Fig. 2) in a previously published dataset 

(n=15 independent subjects for all panels; for experimental details, please refer to the 

original publication, ref. 34) with unpredictable fixation period durations (range 0.7 s-1.3 s). 

Decoding analyses were applied separately for data aligned to the onset of fixation (Fn, 

graded shading indicates range of possible stimulus onset times, upper panels) and aligned 

to the onset of the stimulus (Sn, graded shading indicates possible fixation onset times, 

lower panels). a) Tuning to previous-trial location (decoder trained in delay, 0.5s - 1.0s after 

stimulus onset) during previous-trial delay (left, stimulus aligned) vanishes in current-trial 

fixation (right, fixation onset aligned). No reactivation occurs. b) Average tuning 

reconstruction at different epochs for the delay decoder, indicated in a). c) Serial dependence 

separating trials with high (red curve, top quartile) from all other trials’ (black curve) 

decoding accuracy in early fixation (orange in a). Unlike in an experiment with predictable 

stimulus onset (Fig. 5), serial bias did not differ as a function of decoding strength. d) 
Difference in serial biases (Methods) between high-decoding and other trials were not 

significant at any time point in fixation. The black triangle marks the center of 0.2 s 

decoding window for the split in c. e-h) Parallel results were obtained when the analyses of 

panels a-d were run on data aligned to the time of stimulus onset instead of fixation onset. In 

d and h, time courses were smoothed using a squared filter of 5 samples. Periods with 

significant decoding in a,e are marked with black horizontal bars, indicating p<.001 in a 

two-sided bootstrap test. Shading indicates 95% C.I. in a,d,e,h, and ±s.e.m. in b,c,f,g.
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Extended Data Fig. 5. Structured inhibition is necessary for repulsive serial biases at far 
distances.
Top panel, illustration of two different models that have different inhibitory connectivity 

profiles. On the left, inhibitory connectivity strength from inhibitory to excitatory neurons is 

similar for all distances between their preferred locations. On the right, inhibition is 

structured such that similarly tuned neurons have stronger feedback inhibition. This shows 

that repulsive biases are caused by repulsive interactions between simultaneously active 

bumps in the network40,41, and are absent when there is no reignited bump that recruits 

localized inhibition at the flanks of the pre-cue bump of activity.
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Extended Data Fig. 6. Serial bias split between high-decoding and other trials (Fig. 5) is robust to 
the choice of different percentiles.
a) In monkey behavior b) In human behavior. X-axis indicates quantiles used for the split in 

high- and low-decoding trials (Fig. 5), from a total of n=1362 trials in a, and a range of [792, 

908] trials per subject in b. Error bars are ±s.e.m. (over n=1362 trials in a, and over n=15 

subjects in b) and colored bars mark where corresponding difference in serial biases is 

different than zero (p<0.05, two-sided bootstrap test).
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Extended Data Fig. 7. The effect on serial biases of targeting dlPFC with TMS diminishes in the 
course of the experimental session.
Serial bias plots averaged across n=20 independent subjects for trials with TMS applied in 

vertex (a) and PFC (b), and difference between serial biases computed for sham and weak-

tms trials in vertex (black) and in PFC (red) blocks (c). Same analyses as in Figure 6, but 

(top) analyzing trials from the full session, (middle) first half session (225 trials, replication 

of Figure 6) and (bottom) last half session (225 trials). The behavioral impact of PFC TMS 

stimulation declined through the session, as if subjects desensitized (prev-curr ✕ TMS 
intensity ✕ session-half t11083=−2.38, p=0.017. Methods, Linear Mixed Models). Serial 

biases were modulated by TMS in PFC, but not in Vertex (prev-curr ✕ TMS intensity ✕ coil 
location, t18272=2.21, p=0.027. For dlPFC: prev-curr ✕ TMS intensity, t11087=2.13, 

p=0.032. For Vertex: t7166=0.03, p=0.97. Methods, Linear mixed models) when analyzing 

the full session, and analyzing only the first half session (t9133=2.51, p=0.011). x-axis 
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coordinates mark the central value of windows (π/2rad, sliding by π/30 rad) used to 

calculate behavioral biases.
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Extended Data Fig. 8. Consistent fixation-period single-pulse TMS effects on serial biases: first 
experiment.
Serial bias plots averaged across n=20 independent subjects for trials with TMS applied in 

vertex (a) and PFC (b), and difference between serial biases computed for sham and weak-

tms trials in vertex (black) and in PFC (red) blocks (c). Same as Extended Data Fig. 6, but 

only analyzing data from the original study (n=10 subjects). Similarly to when pooling both 

the original and replication studies together, the behavioral impact of PFC TMS stimulation 

declined throughout the session, however not significantly (prev-curr ✕ TMS intensity ✕ 
session-half t5701=−1.73, p=0.08. Methods, Linear Mixed Models). Serial biases were 

modulated by TMS in PFC, but not in Vertex (t5705=1.92, p=0.05) when analyzing the full 

session, and analyzing only the first half session (t3059=2.59, p=0.009, Methods). x-axis 

coordinates mark the central value of windows (π/2rad, sliding by π/30 rad) used to 

calculate behavioral biases.
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Extended Data Fig. 9. Consistent fixation-period single-pulse TMS effects on serial biases: 
replication experiment.
Serial bias plots averaged across n=20 independent subjects for trials with TMS applied in 

vertex (a) and PFC (b), and difference between serial biases computed for sham and weak-

tms trials in vertex (black) and in PFC (red) blocks (c). Same as Extended Data Fig. 6 and 7, 

but only analyzing data from the pre-registered (https://osf.io/rguzn/) replication study (n=10 

subjects). Similarly to the original experiment, the behavioral impact of PFC TMS 

stimulation declined throughout the session, however not significantly (prev-curr ✕ TMS 
intensity ✕ session-half t5375=−1.63, p=0.1. Methods, Linear Mixed Models). Similarly to 

the original study, serial biases were more strongly modulated by TMS in PFC than in 

Vertex, however not significantly (t5379=1.12, p=0.25) when analyzing the full session and 

the effect was stronger when analyzing only the first half-session (t2675=1.91, p=0.06, 

Methods). x-axis coordinates mark the central value of windows (π/2rad, sliding by π/30 

rad) used to calculate behavioral biases.
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Extended Data Fig. 10. A phenomenological model of our hypothesis on how long-term 
physiological effects of single TMS pulses affect serial bias curves in event-related experimental 
sessions.
Our TMS results show a difference between the effects of sham stimulation at the vertex and 

sham stimulation over dlPFC (Fig. 6). We interpret this baseline difference as the possible 

effect of long-term physiological alterations by single pulses 58 (but see ref. 73) that carry 

over from “strong TMS” trials to “no TMS” trials. We explicitly implemented this 

interpretation in the following way: we generated trial-by-trial responses biased depending 

on the sequence of stimuli according to a given baseline serial bias curve (a, “Vertex” 

condition where TMS is ineffective). In the “PFC” condition the serial bias strength changed 

depending on TMS conditions: in “weak tms” trials the pulse had the acute effect of 

increasing the bias strength momentarily by an additive factor (3 times the baseline bias 

strength), in “strong tms” trials the effect of the pulse was chronic: the bias changed with a 

negative additive component (equal in magnitude to the baseline strength), which decayed 

slowly through subsequent trials (10% decay/trial). When collapsing together “responses” 

obtained on the basis of this model through a sequence of randomly selected “no tms”, 

“weak tms” and “strong tms” trials, serial bias curves showed the pattern observed 

experimentally, where sham (“no tms”) trials show repulsion in the “PFC” condition (panel 

b) and not in the “Vertex” condition (panel a). The difference of serial bias curves for “weak 

tms” and “no tms” then showed the modulation clearly in “PFC” and not in “Vertex” (panel 

c), as seen in the data (Fig. 6).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Previous-trial stimulus code reactivates prior to the forthcoming stimulus.
a) General task design (monkeys / EEG / TMS) and serial bias for 4 monkeys (n=11670 

consecutive trial pairs). Trials with counter-clockwise previous reports relative to the current 

stimulus were collapsed into clockwise trials (folded errors, Methods). Positive (negative) 

values indicate response attraction (repulsion) toward previous locations presented at that 

relative distance from the current stimulus. Shading indicates bootstrapped ±s.e.m. Black 

solid bars represent p<0.05 (one-sided permutation test). b) Averaged, normalized firing rate 

of n=206 neurons during the ITI (spike counts of 300-ms causal square kernel, z-scored in 

interval [−4.5 s, 1.5 s]). Gray bars mark response and stimulus cue periods. c) Decoding 

accuracy of previous-trial stimulus from n=94 independent ensembles, computed as the 

distance from the mean of decoding accuracy in shuffled surrogates, in units of their 

standard deviation σ (Methods), averaged over ensembles with strong (red) and weak (gray) 

decoding in delay (Methods). Aligned with anticipatory ramping in late fixation (panel b), 
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previous-trial stimulus code reappears, specifically in ensembles with better delay code 

(Extended Data Fig. 1). Black bars mark timepoints for which decoding accuracy 99.5% C.I. 

is above zero. d) Tuning to previous-trial stimulus, aligning responses to preferred cue as 

defined in delay, and computed in different trial epochs (color-coded in c, two-sided 

bootstrap-test at preferred location: p=0.015, C.I.=[−0.3,−0.03], Cohen’s d=−0.17 (cyan), 

p=0.865, C.I.=[−0.12, 0.14], Cohen’s d=0.012 (deep blue), p=0.025, C.I.=[0.024,0.33], 

Cohen’s d=0.15 (orange), n=206 neurons, shading depicts ±s.e.m.). Unless stated otherwise, 

in all panels error-shading marks bootstrapped 95% C.I.
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Figure 2. In human EEG, the delay code also reactivates in fixation.
a) Serial bias for human subjects. Shading, ±s.e.m. b) Temporal generalization of previous-

stimulus code for all combinations of training and testing times from previous-trial stimulus 

onset (Sn-1) and response (Rn-1), to current-trial fixation (Fn) and stimulus onset (Sn). Solid 

lines mark the discontinuity of EEG fragments aligned to Sn-1, Rn-1, and Sn. Dashed lines 

indicate the temporal center of transversal sections shown in c. c) Decoding of previous 

stimulus during previous-trial delay (left), response (middle), and current-trial fixation 

period (right), for decoders trained in previous-trial delay (mid-delay, 0.5s - 1.0s after Sn-1, 

lower dashed line in b, and during previous-trial response (in a 0.5s window centered on 

Rn-1, upper dashed line in b). The delay code is stable during delay, disappears during 

response, and reappears in current-trial fixation, see also panel d. In contrast, previous-trial 

response-related information is dynamic and not present in fixation. Error-shading, 95% C.I. 

d) Demeaned reconstruction of previous stimulus at different epochs for the delay decoder, 

marked in c (two-sided bootstrap-test preferred vs. anti-preferred location: p<1e-6, 

C.I.=[0.55, 0.73], Cohen’s d=3.619 (red), p=0.69, C.I.=[−0.22, 0.16], Cohen’s d=0.10 

(blue), p=1e-6, C.I.=[0.17, 0.36], Cohen’s d=1.35 (orange), shading, ±s.e.m.). Upper bars, 
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significant deviation from zero (bootstrap), p<0.05 in a, p<0.005 in c (both two-sided). All 

panels, n=15 independent subjects.
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Figure 3. Cross-correlation selectivity to previous-trial stimulus suggests an activity-silent trace 
in PFC.
a) Trial selection scheme: For neuron pairs with similar preferred location (< 60°), we 

separated trials with stimulus near the pair’s preferred locations (pref) from trials with far 

locations (anti-pref). b) Cross-correlation of sample PFC pair shows zero-lag peak 

selectivity to previous-trial stimulus in activity-silent period (one-sided permutation test, 

p=0.025, Cohen’s d=0.10, n=44 independent trials). c) CCSI was consistently positive in 

activity-silent period, but became negative for inh interaction pairs during reactivation (two-
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sided permutation test, interaction period ✕ exc/inh, p=0.03, Cohen’s d=−0.6). At 

reactivation, CCSI for exc (n=27 pairs) and inh (n=20 pairs) differed significantly (**, two-

sided permutation test, p=0.006, d=0.75). P-values in figure panel report results of one-tailed 

permutation tests according to our hypotheses (CCSI>0 for exc, CCSI<0 for inh). d) CCSI 

in the ITI (1-s windows, 50-ms steps) for exc (n=27 pairs) and inh pairs (n=20 pairs). Except 

immediately after the report, where neurons show anti-tuning (Fig. 1d), CCSI was positive 

for exc interactions. CCSI was negative for inh interactions during previous delay and 

reactivation. Smoothed with a 5-sample square filter. e) Trial-by-trial correlation between 

exc pairs’ previous-delay spike counts and ITI cross-correlation central peak (activity-silent 

period in d, Methods) is positive only for the pref condition (one-sided permutation test 

p=0.017, interaction p=0.01, n=320 and 769 trials, for pref and anti-pref, respectively). f) 
Absence of mean firing rate difference between pref and anti-pref conditions (same pairs as 

in d) discards confound between rate selectivity and CCSI. Error bars in b and e, 

bootstrapped 95% C.I; in c and d, s.e.m.
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Figure 4. Bump-attractor model with STP accounts for serial dependence and neurophysiology.
a) Average firing rate tuning (black) and synaptic tuning (green) for 5,000 simulations of 

two successive trials during delay (Methods). In the mnemonic period (red triangle), both 

rate and synaptic tuning are at their maximum, both driven by persistent bump-attractor 

activity (red plot in b). Following the memory period, a nonspecific inhibitory input resets 

the baseline network state for the duration of the ITI (deep blue triangle and plot in b). This 

is reflected in vanishing rate tuning, but long-lasting synaptic tuning that can regenerate 

firing rate tuning (orange plot in b) through reactivation by a non-specific input drive (cyan 

bar). b) Averaged single-neuron tuning to previous-trial stimulus at different epochs marked 

with colored triangles in a. c) Cross-correlation of model neurons in the ITI differed for 

previous-trial stimulus in the preferred location (pref, black) and for anti-pref trials (gray) 

despite no firing rate selectivity (a,b, deep blue). d) Serial bias plots computed from 

“behavioral responses” (Methods) in 3 different conditions of non-specific excitatory drive. 
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A weak anticipatory drive increases attractive serial biases and produces repulsion from 

more distinct previous memories, while a strong drive removes serial biases.
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Figure 5. Bump reactivation from a hidden trace increases serial biases. Serial bias for trials with 
high previous-trial stimulus information (upper quartile, red) and for all other trials (black), in 
monkeys (a-c, n = 1362 trials) and in humans (d-f, n = 15 subjects, with a range of [792, 908] 
trials in this analysis). See
Extended Data Fig. 6 for different quantiles. a) Trials selected based on a decoder trained 

and tested early in the fixation period (black triangle in c), did not reveal differences in serial 

bias. b) Serial biases were markedly enhanced for high-decoding trials when training and 

testing the decoder at the time of reactivation (Fig. 1c, orange triangle in c). c) Difference in 

serial bias curves between high-decoding and other trials became significant only at pre-cue, 

concomitant with reactivation (Fig. 1c). Triangles mark center of decoding windows for the 

splits shown in a, b. d-f) same analyses for human EEG (n=15 independent subjects). Note 

that for humans, d corresponds to an activity-silent period in late fixation (black triangle in 

f), and e to the reactivation period in early fixation (Fig. 2c, orange triangle in f). f) As for 

monkeys, serial bias differences in humans were significant only during reactivation. In c 

and f, time courses of differences between high-decoding and other trials were smoothed in 

time using a 5-sample (monkey) and 16-sample (human) square filter. Black bars mark 

significant differences between high-decoding and other trials (p<0.05, one-sided 

permutation test). Error-shading in c and f, 95% C.I; in a,b,d,e, ±s.e.m.
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Figure 6. Single-pulse TMS on dlPFC during fixation modulates serial biases non-linearly
Serial bias plots computed in vertex (a) and PFC (b) blocks, separately for trials with strong 

fixation-applied TMS pulse (130% of resting motor threshold, RMT, deep blue), weak (70% 

RMT, cyan) and sham (0% RMT, black) for the first 225 trials in each session (n=20 

participants, 2 sessions/participant, Extended Data Figs. 7–9). Serial biases were modulated 

by TMS in PFC, but not in Vertex (previous-current stimulus distance (prev-curr) ✕ TMS 
intensity ✕ coil location, t18272=2.21, p=0.027. For dlPFC: prev-curr ✕ TMS intensity, 

t11087=2.13, p=0.032. For Vertex: t7166=0.03, p=0.97. Methods, Linear mixed models; 
analysis performed on the whole session). In PFC, serial bias modulation depended 

nonlinearly with stimulation strength (ΔAIC=4.6, relative likelihood 0.9, for the comparison 

of regression models with non-linear vs. linear TMS intensity factor; Methods). c) 

Difference between serial biases computed for sham and weak-tms trials in vertex (black) 

and in PFC (red) blocks. Error bars are bootstrapped ±s.e.m.. Solid black bars mark 

significant differences (two-sided permutation test, p<0.05, n=20 independent subjects).
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