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INTRODUCTION

The liver has a unique dual blood-supply system of hepatic arterial (HA) and portal venous (PV)
vasculatures, which are drained by a hepatic venous (HV) tree (Figure 1A). The blood reaches
the peripheral portal triads (PT) of ∼105 lobules, the functioning units of the liver (Ohno et al.,
2008).With a diameter of 1.0–1.3mm (Ricken et al., 2015), each lobule consists of∼106 hepatocytes
and 1,000 sinusoids (Wambaugh and Shah, 2010; Fu et al., 2018), which merge into central veins
(CV) (Ho et al., 2013a; Sluka et al., 2016), as shown in Figure 1B. The perfusion and active
transport of drug molecules between the blood and hepatocytes occur at sinusoids, which exhibit
spatial heterogeneity in transporters. Hepatocytes in a lobule are conventionally grouped into three
metabolic zones, namely Zones 1, 2, and 3 from the PT to the CV (Figure 1C) (Jungermann, 1995).
Such a zonal differentiation is crucial in spatially heterogeneous liver diseases. For example, an
overdose of the painkiller acetaminophen may lead to hepatotoxicity and necrosis of hepatocytes,
which mostly occur at Zone 3 (Means and Ho, 2019). Pediatric patients with non-alcoholic fatty
liver disease may show a higher prevalence of Zone 1 steatosis and periportal fibrosis as compared
with adult populations (Kleiner and Brunt, 2012).

In silico liver models are increasingly used to simulate hemodynamic and pharmacological
phenomena (Ricken et al., 2015; Schwen et al., 2016). In general, blood flow modeling aims to
reveal the hemodynamic features of hepatic circulation under healthy and pathological conditions
(Audebert et al., 2017; Ho and Qiu, 2019), and these models may be grouped into different spatial
scales. At the liver organ and hepatic vasculature level, the blood is treated as a continuum because
the relative size of blood cells is much smaller than blood vessels. However, at the lobule level, this
assumption does not hold because the diameter of sinusoids (23.5µm) is similar to that of red
blood cells (Wambaugh and Shah, 2010). Thus, a different modeling strategy for liver lobules is
required. Considering the very complex morphological structure of liver lobules, much simplified
lobular geometries, e.g., a hexagon with evenly distributed sinusoids and hepatocytes, are usually
adopted (Ricken et al., 2015; Cherkaoui-Rbati et al., 2017). An even simpler lobule representation
is a series of compartments arranged according to the above mentioned metabolic zones along the
PT-CV axis (Fan et al., 2010; Schwen et al., 2016), as shown in Figure 1E. This zonal representation
has been adopted by several pharmacokinetic (PK) studies dealing with metabolic heterogeneity
(Fu et al., 2018; Franiatte et al., 2019). Putting together, simulations for the blood and drug flow,
uptake, excretion, andmetabolism of drugs in hepatocytes constitute a typical example ofmultiscale
modeling, as illustrated in Figure 1.
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To build an integrated multiscale platform for the hepatic
blood flow and drug transport, the variety of models at different
spatial and temporal scales need to be connected (Christ et al.,
2017). Multiscale modeling for the liver has become an intensive
research area over the past one decade, e.g., for the metabolism
and clearance of acetaminophen (Sluka et al., 2016), hepatic virus
B infection dynamics (Cangelosi et al., 2017), the drug-drug
interaction (DDI) of midazolam (Cherkaoui-Rbati et al., 2017),
to name a few research topics. Among these in silico simulations,
virtual lobule models play a central role by linking macro- and
microscale blood flow and drug uptake/metabolism models. The
aim of this paper is to provide a mini-review of these works,
and to provide a roadmap for multiscale biomechanical and
pharmacological modeling for the liver.

MULTI-DIMENSIONAL MODELS FOR
HEPATIC CIRCULATION

Different mathematical/computational techniques are used for
modeling the hepatic blood flow. When subject-specific vascular
information are essential, for example, in radiotherapies where
drugs are administrated through a catheter at a specific vascular
site (Simoncini et al., 2018), vascular geometry is included in the
blood flow model in one or three dimensional (1D or 3D) partial
differential equations (Ho et al., 2013b; Audebert et al., 2017).
When the blood flow in vessels is considered as a steady Poiseulle
flow, the flow equations can be parameterised per the vascular
diameter, and length and effectively solved (Barléon et al., 2018).
Fast graph or distributed network- based method can be applied
to sinusoidal flow (Wambaugh and Shah, 2010), or the hepatic
flow in thousands of hepatic vessels (Barléon et al., 2018).

For medical image-based flow simulations, the diameter of the
smallest vessels digitized from clinical CT/MRI imaging is about
1mm. To reach sinusoids (23.5µm) in liver lobules, tree growing
algorithms such as the constructive constrained optimisation
(CCO) algorithm are used to extend hepatic vascular trees for
several generations, until reaching the peripheral PTs of lobules
(Schwen et al., 2015; Muller et al., 2017). For example, a CCO
algorithm-generated PT tree shown in Figure 1A contains more
than 8,000 vessels, ranging from the root PV (diameter∼10mm)
to lobular level portal triads (diameter ∼50µm) (Barléon et al.,
2018).

When the exact vascular geometry is not required but systemic
circulation features are the modeling focus, electrical analog, or
0D models are used, for example, to quantify the hepatic venous
pressure gradient (Wang et al., 2017), the hepatic arterial buffer
response (Ho et al., 2013a; Becker et al., 2019). 0D models have
also been used to simulate blood flows in hepatectomy (Yu et al.,
2020).

PHARMACOKINETICS MODELS FOR THE
LIVER

PK models aim to quantify the drug absorption, disposition,
metabolism, and excretion (ADME) in the human body. They
may be grouped into physiologically based pharmacokinetic

(PBPK) models at the whole-body scale (Jones and Rowland-
Yeo, 2013) (one such a model is shown in Figure 1D), and
liver-specific models as shown in Figure 1E. In PBPK models,
the liver compartment is treated as “well-stirred,” i.e., the drug
concentration is evenly distributed in the organ (Jones and
Rowland-Yeo, 2013). By contrast, the “parallel-tube” model
assumes plug flow where drug concentration decays in an
exponential fashion along the length of a sinusoid (Liu and Pang,
2006), and the “dispersion” model where a certain degree of
mixing between sinusoidal blood and lateral hepatocytes occurs
(Liu and Pang, 2006).

To quantify the transmembrane transport and metabolism
as other determinants of hepatic drug clearances, liver-specific
models include the liver tissue, sinusoids and biliary tracts
in separate compartments (Liu and Pang, 2006; Meyer et al.,
2017; Audebert and Vignon-Clementel, 2018), as shown in the
blue colored compartments in Figure 1D. An extra layer of
complexity arises when metabolic heterogeneity is considered,
where these compartments are grouped in units to represent
metabolic zones (Meyer et al., 2017) (Figure 1D).

VIRTUAL LIVER LOBULE MODELS

The dimension of liver lobule is about 1mm, i.e., sits between
the spatial scales of hepatic vessels (1–10mm) and hepatocytes
(∼10µm). Many virtual lobule models have been proposed for
the sinusoidal flow, the drug perfusion and/or active transport.
The research questions for modelers are therefore to implement
the interface between the blood and hepatocytes, and between the
hepatocytes and intra-cellular chemical species.

Concerning the morphological layout of liver lobules, a
concept of “sinusoidal segment” (SS) is proposed in Sheikh-
Bahaei et al. (2010), where the hepatocytes in a lobule is grouped
into hundreds of SSs. Each SS is a software agent that can be
used to schedule its own events. In Ohno et al. (2008), the
kinetics of ammonia detoxification is incorporated into the eight
compartments arranged in a series along the PT-CV axis, each has
its own set of ammonia metabolism parameters. Similar strategy
is used inMeyer et al. (2017), where a series of cytoplasm and bile
canaliculi compartments are grouped into three units to simulate
the heterogenous efflux of fluorescent tracer CFDA across three
metabolic zones. In Diaz Ochoa et al. (2013), a different strategy
for lobule is used, where each of the six representative sinusoids
in a liver lobule transports blood from PT to CV. Moreover,
metabolic zonation is prescribed by assuming the CYP3A4 (the
metabolism enzyme for acetaminophen) activity is similar in
Zones 1 and 2, but 1.3 times higher in Zone 3. The model thus
simulates the necrosis of hepatocytes starting from Zone 3 after a
bolus overdose of acetaminophen (Diaz Ochoa et al., 2013).

In the micro-dosimetry model of Wambaugh and Shah
(2010), hepatocytes are arranged in several 2D plates aligned
along a 3D polyhedron, and each 2D plate consists of six
PTs branching toward the CV. In comparison, an anatomically
accurate model is presented in Hoehme et al. (2010), where the
sinusoid network and hepatocytes are constructed based on 3D
confocal laser scan images. Such a lobular structure has been
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FIGURE 1 | A numerical scheme for multiscale biomechanical and pharmacological modeling for the liver: (A) Vasculatures generated from the CCO algorithm ranging

from root vessels to portal triads at the peripherals of liver lobules (Barléon et al., 2018); (B) a 3D representation of the liver lobule; (C) a 2D cross-section of the liver

lobule, highlighting the three metabolic zones; (D) a PBPK model where the liver is modeled as a “well-stirred” organ. Liver-specific PK can be modeled through (E) a

compartmental model for drug clearance in the liver incorporating the blood, sinusoids, tissue, and bile compartments (shown in yellow blocks). Spatial heterogeneity

in metabolism can be simulated by arranging the compartments in a series with different metabolism and clearance parameters (Meyer et al., 2017). In the

drug-transport equation, the influx/efflux of drug molecules across the sinusoidal wall are included inside the red block (Franiatte et al., 2019). PT, portal triad; CV,

central vein; Clm, drug clearance through metabolism; CCO, constructive constrained optimisation; PBPK, pharmacokinetics based pharmacokinetic modeling.

employed to study the liver tissue regeneration after damage
by CCl4 (Hoehme et al., 2010), and ammonia detoxification
(Schliess et al., 2014).

From a mathematical modeling’s perspective, the sinusoidal
flow may be modeled with a partial differential equation (PDE),

where the spatial variable x transverses a sinusoid, and the
temporal variable t spans a designated time. The dependant
variable c is the concentration of a drug in the blood, while cTissue
is the drug concentration in hepatocytes or liver tissue (Franiatte
et al., 2019). The influx and efflux of drug molecules across the
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sinusoidal wall are modeled by the two terms inside the red block
in the listed equation in Figure 1. When the spatial dimension is
not considered but the temporal profile is critical, such as the time
course of drug concentration in the liver, ordinary differential
equations (ODEs) are used to quantify the drug metabolism in
hepatocytes or liver tissues (Reddyhoff et al., 2015; Franiatte
et al., 2019). In this way, cellular and intra-cellular dynamics are
coupled. This approach has been used in a number of studies,
e.g., to describe the glucose homeostasis where the metabolism
kinetics of glucose, lactate, and glycogen is coupled with the
finite element model of sinusoids (Ricken et al., 2015). The zonal
hepatotoxicity due to overdose of acetaminophen is simulated in
a similar fashion (Franiatte et al., 2019; Means and Ho, 2019).

It is worth stressing that simulation results need to be
compared with in vivo/in vitro measurements and/or clinical
observations. For example, blood flow simulations need to
be validated by Doppler ultrasound measurements, or blood
pressure measured invasively with a catheter or non-invasively
with blood pressure devices. Simulated drug concentration
profiles from PKmodels need to be compared with that measured
from blood, or from cell line data (Liu and Pang, 2006).
Moreover, PK models are prone to errors, as PK parameters
(e.g., the volume of distribution, drug clearance parameters) are
often not available but have to be estimated. Hence, parameter
analysis methods, such as the Latin Hypercube sampling method
(Zhang et al., 2020), the genetic algorithm (Koza, 1992), are very
helpful and should be routinely practiced. In addition, errors in
biomechanical models may arise from the choice of numerical
schemes. For example, when solving arterial flow equations,
the selection of mesh sizes and temporal steps must meet the
Courant–Friedrichs–Lewy (CFL) condition to avoid numerical
instabilities and errors (Du et al., 2016).

DISCUSSION AND CONCLUSION

In the pharmaceutical industry, there is a tremendous
competition to develop innovative therapies in a highly regulated
environment (Leil and Ermakov, 2015). The research and
development (R&D) costs for bringing new drugs to market is as
high as ∼$1.3 billion per drug (Leil and Ermakov, 2015). Liver,
the major organ for drug metabolism and detoxification, has
been modeled in different aspects and with different numerical
approaches. In this mini-review, we have briefly introduced some
recent virtual lobule models which bridge biomechanical models
of blood flow and PK models in the liver. We have outlined a
multiscale framework for the connections between models at
different scales, as shown in Figure 1.

There are many applications for such a framework. For
example, one may consider Small for Size Syndrome (SFSS)

after hepatectomy or liver transplantation (Gondolesi, 2002),
where the portal flow in the remnant liver increases radically,
in some cases almost doubled post-surgery (Gondolesi, 2002).
At the sinusoidal level, the flow rate increases accordingly,
leading to an elevated shear stress and rate, which may damage
sinusoidal cells (Li et al., 2010). Therefore, a biomechanical
model needs to address blood flow in different scales, i.e., at the
organ and sinusoidal levels. Pharmaceutical therapies, such as
application of somatostatin, are used to treat the symptoms by
reducing the portal blood flow (Xu et al., 2006). This is a typical
scenario for combined biomechanical and pharmacological
modeling. Numerical challenges arise, for example, while the
pulsatile arterial flow can be characterized by the pressure and
velocity waveforms for several cardiac cycles lasting for several
seconds, the clearance of xenobiotic agents may require hours
or even days. Tuning the parameters in such a framework
allows simulating various pathological conditions, e.g., portal
hypertension, steatosis in fatty liver donors, which are otherwise
difficult or costly to experiment and observe in an in vivo or
in vitro setup.

Future directions to apply the in silico framework lie on
novel applications employing experimental data, such as the data
from genome-wide reconstruction of the spatial zonation in the
liver (Halpern et al., 2017), where the entire transcriptome of
thousands of mouse liver cells have been used to infer a panel
of zonated landmark genes. This kind of data have important
basic research and clinical implications, and could be utilized to
tweak the heterogeneity parameters (e.g., the influx and efflux
parameters in the listed equation in Figure 1). The ultimate
aim is to aid clinical research, and to reduce R&D costs in
drug development.

In conclusion, a multiscale modeling framework has been
introduced for the liver, in particular for liver lobules.
We deem this research direction for hepatic circulation
and pharmacokinetics is very promising in innovative drug
development as well as hepatology research.
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