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Abstract

Gene network information has been used to improve gene selection in microarray-based studies by selecting marker genes
based both on their expression and the coordinate expression of genes within their gene network under a given condition.
Here we propose a new network-embedded gene selection model. In this model, we first address the limitations of
microarray data. Microarray data, although widely used for gene selection, measures only mRNA abundance, which does not
always reflect the ultimate gene phenotype, since it does not account for post-transcriptional effects. To overcome this
important (critical in certain cases) but ignored-in-almost-all-existing-studies limitation, we design a new strategy to
integrate together microarray data with the information of microRNA, the major post-transcriptional regulatory factor. We
also handle the challenges led by gene collaboration mechanism. To incorporate the biological facts that genes without
direct interactions may work closely due to signal transduction and that two genes may be functionally connected through
multi paths, we adopt the concept of diffusion distance. This concept permits us to simulate biological signal propagation
and therefore to estimate the collaboration probability for all gene pairs, directly or indirectly-connected, according to multi
paths connecting them. We demonstrate, using type 2 diabetes (DM2) as an example, that the proposed strategies can
enhance the identification of functional gene partners, which is the key issue in a network-embedded gene selection model.
More importantly, we show that our gene selection model outperforms related ones. Genes selected by our model 1) have
improved classification capability; 2) agree with biological evidence of DM2-association; and 3) are involved in many well-
known DM2-associated pathways.
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Introduction

A fundamental goal of modern biology is to understand

complex biological phenomena at the molecular level. In most

cases, the first step towards achieving this goal is to isolate genes

that are important to a particular biological process. Various

statistical concepts and machine learning models have been used

to identify genes in microarray data that reveal differential

expression patterns according to a selected phenotype status,

including t-, F- and Wilcoxon statistics and signal-noise-ratio [1],

mutual information [2], support vector machine [3], Bayesian

network [4], and random forest [5] approaches. Strategies have

also been proposed to address different issues, such as noisy data

and small sample size [6,7,8]. More recently, gene interaction

information has been introduced into the gene selection (GS)

process to account for the known ability of genes to interact or

react within pathways or common modules. These approaches

first identify differentially-expressed genes within microarray data,

and then evaluate the performance of pre-defined functional gene

categories (or networks) to identify the genes that associate with the

phenotype of interest (see [9] for a comprehensive review of these

approaches). Gene functional category or network information can

improve the sensitivity of GS, detecting useful genes that only

present subtle expression changes among different assayed

phenotypes. For example, in a pioneering study, gene set

enrichment analysis (GSEA) was used to identify a set of oxidative

phosphorylation-related genes that modestly but coordinately

decrease in skeletal muscle of diabetic human subjects. Research-

ers have since further modified this type of analysis by

incorporating the topology of gene networks. Rahnenführer et

al. [10] have emphasized gene pairs with little network distance to

score the cooperativeness of a gene network. Rapaport et al. [11],

after assuming that genes and their network neighbors should

show similar expression levels, have used a spectral-graph-based

method to reduce microarray data noise in order to enhance

classification accuracy. More recently, Wei and Li [12] designed a

Markov random field model to evaluate genes based on both their

own expression and the expression of their directly-connected

neighbors. The results from all these studies demonstrate that

analyzing the topology of gene networks can improve GS and

classification.

Microarray values represent the levels of gene transcripts (i.e.,

mRNAs), and are routinely used as direct surrogates for gene

expression in most GS methods developed to date, including all

the methods cited above. This requires the implicit assumption

that gene expression directly mirrors gene transcript levels. This

assumption appears to be acceptable since it is consistent with

biological observation in most cases [13]. Direct overlay of mRNA
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expression levels onto gene networks can therefore work well and

produce promising results. However, improvement is still needed,

since post-transcriptional processes have been widely reported to

impact gene expression levels, sometimes to great effect.

MicroRNA expression has recently been shown to be a very

important means of posttranscriptional regulation of gene

expression. MicroRNAs regulate metazoan gene expression by

complementarily binding to frequently-imperfect recognition

sequences that are predominantly located within the 39 untrans-

lated regions (UTR) of a target mRNA, with few exceptions

[14,15]. MicroRNAs can regulate the expression of their target

genes at multiple levels, blocking mRNA translation and/or

inducing mRNA degradation [16], and have been suggested to

play roles in a broad range of biological processes, such as

developmental timing, cell growth and differentiation, apoptosis

and cell proliferation. Furthermore, accumulating evidence implies

that microRNAs are associated with bio-molecular characteristics

of various human complex diseases, such as cancer [17,18] and

diabetes [19,20]. With these observations, and supported by the

advances already made in the study of microRNA, it is necessary

and possible for a GS model to address potential regulatory

microRNA effects.

We herein propose a microRNA-integrated network-embedded

gene selection (MiNeGS) model to investigate the ability of

microRNA information to enhance GS. Our model has two major

contributions. First, microarray data and microRNA binding

information are integrated prior to evaluation of gene correlation,

since mRNA expression level and microRNA-mediated post-

transcriptional regulation are known to be key factors influencing

gene expression. We propose that two genes are closely correlated

when their mRNA levels vary coordinately in the face of similar

potential microRNA regulation on them. Gene transcript levels

are directly derived from microarray data, while microRNA

regulatory effects are modeled using mRNA sequence information,

with the assumption that mRNA with similar putative microRNA

binding sites are likely to experience similar posttranscriptional

regulation. Second, we introduce the concept of diffusion distance

to detect the nearest functional partners (NFPs) of a gene. Genes

generally interact in highly complicated patterns. Genes, either

having direct or indirect network connections to each other, may

function closely [21], through signal transduction. Also the signal

transduction from one gene to another can be done through

multiple paths, instead of a single one. We therefore utilize the

concepts of diffuse distance and diffuse maps [22] in order to

detect both directly- and indirectly-interacting NFPs as well as to

capture potential multi-path connections between genes.

Results and Discussion

A. Overview of the proposed MiNeGS model
Our microRNA-integrated network-embedded gene selection

model (MiNeGS) includes three components (A, B and C), as

depicted in Fig. 1 and further described in Materials and Methods.

Briefly, in Part A, the expression similarity between two genes is

calculated based on two factors: their steady-state mRNA

expression levels, recorded by microarray data, and their potential

from microRNA-mediated posttranscriptional regulation, as

indicated by their microRNA binding sites. In Part B, gene

correlations estimated in Part A are used to weight the edges of our

gene network. Based on this weighted gene network, the functional

distance of any two genes are evaluated using the concept of

diffusion distance, and the genes with the k smallest functional

distance to gene g are selected as its nearest functional partners

(NFPs). Small k values prevent the exploitation of network

information, restricting the contributions of our network-based

GS strategy, while large k values may link genes with NFPs that do

not share the same functions or fall within the same pathways. In

this study, we set k with a modest value, k = 3, to avoid over- and

under-identification of NFPs. Finally, in Part C, gene-phenotype

associations are estimated for all genes by averaging the

expression-based correlations of genes and their NFPs. Compu-

tational analyses performed using these three components allow

genes with high phenotype correlations to be selected from the

dataset. Our major contributions lie in the development of a

method to integrate gene expression and microRNA binding

information (Part A) and a diffusion-distance-based strategy for

network-embedded NFP identification (Part B).

In order to evaluate the utility of the MiNeGS approach, we

have compared it with a classical GS model in which all genes are

treated individually. We have also evaluated the relative individual

contributions of the two new aspects of the MiNeGS model by

comparing MiNeGS with a microRNA-integrated GS model

(MiGS; Parts A and C) and a network-embedded GS model

(NeGS; Parts B and C). In the MiGS model, only the microRNA-

integrated strategy is used to modify the classic GS. For a given a

gene g, MiGS simply selects the highest-correlated k genes (k = 3

for consistency with MiNeGS) from g’s first-order neighbors (i.e.,

those directly linked to g in a given network). In the NeGS model,

gene-gene correlations are estimated solely using microarray

mRNA expression data. Comparisons between MiGS and

MiNeGS reveal the benefits of a diffusion-distance-based NFP

identification strategy, while comparisons between NeGS and

MiNeGS indicate the contributions of integrating microRNA

information with microarray data.

We used these models to analyze a diabetes microarray dataset.

This dataset, published by Mootha et al [23], records the

expression profiles of 22,000 genes in skeletal muscle biopsies of

43 age-matched men – 17 with normal glucose tolerance (NGT), 8

with impaired glucose tolerance (IGT) and 18 with type 2 diabetes

mellitus (DM2). We used the 17 NGT and 18 DM2 samples from

this dataset in order to focus our analysis on the detection of DM2-

associated genes.

B. MiNeGS identifies functionally coordinated genes
We first evaluated the NFP-identification performance of

MiNeGS. Since most genes act within a single functional pathway,

rather than across different pathways (i.e., do not play a role in

crosstalk between pathways), we identified the 3 closest functional

gene partners for each gene as its NFPs. It thus could be expected

that genes and their NFPs are located within the same functional

pathway, sharing common GO annotations or pathway assign-

ments. With this idea, we estimated the functional coordination

status of each gene and its NFPs. We considered a given gene g

and its three NFPs (assuming that all of them have been annotated

with a GO term or pathway assignment) to be functionally

coordinated when at least 3 of them could be placed into common

GO categories or pathways. In order to avoid erroneously

estimates, we discarded large GO annotation categories and

pathways (.200 genes) during our coordination analysis.

The coordination rates of MiGS (43%) and MiNeGS (42%) are

better, albeit not remarkably so, than that of NeGS (40%). These

comparisons suggest that microRNA:gene target information can

improve NFP identification. NFP coordination rates of MiGS and

MiNeGS are similar, but MiGS only considers first-order network

neighbors and is thus unable to assign NFPs to genes that have

fewer than 3 first-order network connections in our study, while

MiNeGS, which is not limited to first-order connections, can

assign NFPs to all given genes. Due to the scale-free nature of gene

MiRNA Network Gene Selection
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networks and limitations on the ability to computationally detect

gene interactions, a large number of genes have few detected

connections. In our study, 52% of the data set (1029 genes) had

fewer than 3 first-order neighbors and could thus not be analyzed

by MiGS. Under such situations, MiNeGS exploits more network

information than MiGS, and MiNeGS outperforms MiGS in

terms of GS, as indicated later.

Built-in factors of datasets may influence coordination rates. We

therefore performed two additional analyses in order to determine the

potential contribution of built-in dataset factors. First, to analyze the

possible contributions of GO annotations and pathway assignments,

we generated NFPs by randomly selecting 3 genes as the NFPs for a

given gene and determined the coordination rate on the entire gene

set. After repeating this process 100 times, the coordination rate

distribution of the randomized NFPs was estimated. Second, to

evaluate the influence of network topology, we generated network-

based random NFPs for each gene by randomly selecting 3 genes

from its first order network neighbors. After repeating this process

100 times we established the coordination rate distribution of the

network-based random NFPs. Coordination rates derived from these

two randomization processes, depicted as violin plots in Fig. 2, are

significantly lower than that of MiNeGS (one sample t-test p-values

were estimated as 46102136 when compared with the randomized

NFPs and as 3610271 when compared with network-based

randomized NFPs). With these almost-zero p-values, we can conclude

that built-in dataset factors are not responsible for the coordination

rate achieved by MiNeGS and, thus, that MiNeGS is able to

effectively identify functional NFPs.

C. MiNeGS increases classification accuracy
The utility of a GS model ultimately rests in its classification

performance, the ability to identify genes that can distinct the

samples with different phenotypes. When the genes selected by a

GS model enable classifiers to achieve high classification accuracy,

the tested GS model can be regarded as good. We therefore

examined the performance of MiNeGS by the corresponding

classification results. We employed two typical classifiers, i.e.,

neural networks and support vector machine, for our evaluation.

In order to avoid the ‘‘information leakage’’ and the randomness

caused by partitioning analysis samples into training and testing

groups, we adopted a cross validation scheme, and independently

ran this scheme 20 times. In order to make comprehensive

comparisons, we used each model to produce a series of gene

subsets, containing from 1 to 30 selected genes, and measured

classification performance by the area under the receiver operating

characteristic curve (AUC), as detailed in Materials and Methods.

Results of these analyses are shown in Fig. 3. Large AUCs indicate

good classification performance, and thus correspond to a

promising GS model. MiNeGS AUCs were generally better than

those achieved by the classic GS model when using either neural

Figure 1. Outline of the proposed method.
doi:10.1371/journal.pone.0013748.g001

MiRNA Network Gene Selection

PLoS ONE | www.plosone.org 3 October 2010 | Volume 5 | Issue 10 | e13748



networks (NN) or support vector machine (SVM) classifiers. With

the classification improvements, we conclude that the effective use

of microRNA target and gene network information can enhance

the performance of GS. Also, in our example, SVM basically

outperforms NN in that, using the classic GS model, AUCs

reached by NNs is less than 0.7 at almost all cases, while SVMs

can arrive AUC.0.75 in the most cases when the number of

selected genes .7. As such the improvements measured by SVM

AUC are thus not as remarkable as by NN AUC.

D. MiNeGS detects more DM2-associated genes than
other GS methods

DM2 has been actively studied for decades, resulting in the

accumulation of a large body of biological and clinical results that

can be explored to evaluate the performance of our GS models.

We assemble a list of DM2-associated genes from multiple sources,

a recently published article [24] and three public databases. The

public databases are T2D-Db (available at http://t2ddb.ibab.ac.

in/home.shtml), HuGe Navigator [25] and the curated database

of the Ingenuity Pathway Analysis software. Based on information

from these sources, we identified 119 DM2-associated genes from

our gene set, and used them as ‘‘hallmark’’ genes to evaluate the

performance of our GS model. We considered the inclusion of

these hallmark genes in a GS result as an indicator of appropriate

GS, and that increases in the number of these hallmark genes

indicated improved GS performance.

As shown in Fig. 4, all MiGS, NeGS and MiNeGS identified

more DM2 hallmark genes than classical GS when they were used

to select relatively large gene sets. MiNeGS identify the most

hallmark genes, followed by NeGS and MiGS. This suggests that

inclusion of microRNA and network information can improve the

performance of GS. MiGS and NeGS address different informa-

tion and modify the GS model from different perspectives. NeGS

performs modestly better than MiGS, possibly due to 1) modest or

variable miRNA regulatory effects [26] and/or 2) potential noise

contamination of the currently available microRNA binding

information [16]. However, despite these potential problems,

microRNA information retains selective power since more

hallmark genes can be detected out when MiGS is compared

with the classic GS, and MiNeGS is compared with NeGS.

Table 1 lists the first 20 genes selected by MiNeGS. Of these

genes, some play functions in energy metabolism and inflamma-

tion, the processes known to have close DM2 associations. Also,

among these 20 genes, 6 are hallmark genes. Several of the

remaining genes, moreover, are either associated with DM2-

related conditions, such as obesity, or are supported by recently

published evidence. For example, F13A1 has been linked to two

DM2 related diseases, obesity and inflammation, according to the

HuGe knowledge base. The protein encoded by DYNLL1 is part

of the cytoplasmic dynein motor, which can regulate glucose-

induced insulin secretion [27]. Several of the remaining genes have

not been well studied, having few or no references in the HuGe or

NCBI GeneRIF databases, so that it is difficult to evaluate their

potential DM2 association.

E. Genes selected by MiNeGS are involved in DM2 related
pathways/processes

Finally, we examined the biological significance of gene

selection results through comparing selected genes with functional

Figure 2. MiNeGS can identify functional coordinated NFPs
with high significance.
doi:10.1371/journal.pone.0013748.g002

Figure 3. Comparisons of the classification performance of classic GS and MiNeGS approaches, using ROC AUC to measure
classification performance.
doi:10.1371/journal.pone.0013748.g003
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gene categories. These categories, generally defined based on

biological evidence, consist of genes that exert the same or related

functional roles, participate in the same signaling or metabolic

pathways, or are located within the same cytogenetic band. We

organized functional gene subsets based on gene annotation and

pathway information. We downloaded gene annotations from

Gene ontology database (http://www.geneontology.org/), and

pathway information from two databases, the molecular signature

database (MSigDB) and the pathway interaction database (PID).

MsigDB (available at http://www.broad.mit.edu/gsea/msigdb/

index.jsp), compiles information from multiple different sites

(BioCarta, KEGG, GenMAPP, etc.), while the PID database

(http://pid.nci.nih.gov/) is curated by editors of the Nature

Publishing Group and reviewed by experts in the field. The above

databases result to 4152 distinct functional gene subsets, 3404 of

which are derived from GO categories and the rest from the

pathway databases.

We used the DM2 hallmark genes (as introduced in the last

section) to identify DM2-associated functional gene subsets in a

statistic way. Briefly, for each functional gene subset, its

enrichment p-value was estimated under a hyper-geometric

statistics framework. After that, all enrichment p-values were

corrected according to the multiple hypotheses testing scheme

proposed by Benjamini et al [28] to control the false-positive rate

of this analysis. Small (,10 genes) and large (.200 genes)

functional gene subsets were excluded in order to achieve reliable

enrichment estimations. Based on these initial parameters and

using a corrected p-value of p,0.1 as the threshold for statistical

significance, we detected 60 DM2-associated functional gene

subsets, representing 34 GO categories and 26 pathways (5 from

PID and 21 from MsigDB). The majority of these gene subsets

represent processes with well-established DM2 associations (such

as, glucose metabolism, peroxisome proliferator-activated receptor

(PPAR) signaling, insulin signaling, lipid metabolism, etc.), while a

few are fundamental or essential biological processes (for instance,

MAPK signaling, cell adherance, and molecular transport, etc.).

We compared each GS result against all DM2-associated genes

in the way mentioned in the last paragraph, i.e., using

hypergeometric distribution-based significance enrichment evalu-

ation with Benjamini false-discovery rate correction, to detect

functional gene subsets enriched by the selection. The relative

selective performance of four different GS models is presented in

Fig. 5, with more selected DM2-associated subsets indicating

better selective performance. All four methods produce similar

results when used to select 100 genes. Note, however, that with

increasing numbers of selected genes all three of the modified GS

models (MiGS, NeGS and MiNeGS) identify more DM2-

associated gene sets than the classical GS model, whose

identification rate does not change. MiNeGS identified the most

DM2-associated gene subsets when 200 or 300 genes were selected

Figure 4. Evaluations based on the DM2 hallmark genes.
doi:10.1371/journal.pone.0013748.g004

Table 1. Top 20 MiNeGS selected genes.

Gene Name Rank DM2 hallmark GeneRIF HuGe

Energy metabolism

PFKFB1 2 Yes 1 0

FH 3 Yes 28 8

PDK4 6 Yes 14 1

NDUFA10 7 Yes 0 2

Cytoskeleton and cell motility

TCAP 9 No 11 0

DYSF 10 No 35 0

FLNC 11 No 11 0

ACTN2 12 No 5 1

MYH7 13 No 32 11

PLS3 14 No 6 0

GSN 15 No 47 0

Inflammation

EGFR 16 Yes 1013 65

AGE-R1 17 Yes 0 0

Others

SLA 1 No 1 0

ADSL 4 No 8 0

TRIM38 5 No 0 0

EIF3S9 8 No 1 0

ZNF207 18 No 0 0

F13A1 19 No 63 81

DYNLL1 20 No 12 0

The numbers listed in the last two columns indicate, respectively, the number
of functional annotations and diseases linked to the corresponding genes in the
Entrez Gene database and HuGE Navigator knowledge base.
doi:10.1371/journal.pone.0013748.t001

Figure 5. Comparisons in terms of biological meaning. The
numbers of DM2 gene sets identified by different methods are
compared.
doi:10.1371/journal.pone.0013748.g005

MiRNA Network Gene Selection

PLoS ONE | www.plosone.org 5 October 2010 | Volume 5 | Issue 10 | e13748



by each model, and tied with the NeGS model upon selection of

100 or 400 genes.

MiNeGS detected 35 DM2-associated functional subsets, with a

p-value,0.1, when used to select 300 genes. The subsets with the

highest significance (p-value,0.01) amongst these 35 subsets are

listed in Table 2. This list covers a number of DM2-assocated

processes or functions, such as fatty acid oxidation, hormone

activity, insulin signaling, and glucose metabolism, among others.

Based on these results, MiNeGS offers a clear advantage over

classical GS in the identification of functional gene sets when used

to select increasing numbers of genes, and performs as well or

better than NeGS when used to select any number of genes.

F. Conclusions
Microarray data analysis for the selection of candidate genes is

often the crucial step in the analysis of the molecular mechanisms

of complex biological phenomena and diseases. Gene network

information has been incorporated into microarray-based GS

studies to reflect the fact that a gene may interact with several

other genes to exert its phenotype.

In this paper, we present a novel network-embedded GS model.

In a network-embedded model, identifying gene functional

partners is the crucial aspect. To effectively cope with this issue,

we address two challenges and make contributions from two

perspectives. First, in order to improve upon the limitations of

microarray data, we now propose a method to combine

microarray expression data with mRNA:microRNA binding

information. This approach attempts to account for microRNA

posttranscriptional effects on mRNA levels in order to better

estimate the ultimate expression of a given gene. Second, we

introduce the concept of diffusion distance to estimate the degree

of interaction of all gene pairs. With this concept, we can include

network connections, and take into account all possible paths

connecting gene pairs. These capabilities are needed to reflect the

complicated mechanism of gene interaction that can occur in even

simple biological systems.

We have evaluated these proposed strategies from both

computational and biological perspectives. Our results show that

an approach that integrates microRNA binding data with

expression data can enhance the identification performance of

functional partners of genes. More importantly, comparison of

MiNeGS and it component methods with classical GS method-

ology clearly shows the advantages of the proposed strategies since,

after applying these strategies, GS performance is enhanced and

selected genes demonstrate higher classification capabilities.

MiNeGS selected more previously-reported disease genes than

the classic GS model when these methods were used to analyze a

DM2 data set. Gene-set-enrichment analysis results also showed

that the MiNeGS gene lists contained many well-known or newly-

confirmed DM2-associated processes and pathways. In summary,

these results suggest that GS results from the MiNeGS method

provide high-quality, and functionally relevant biological infor-

mation, in this case showing promise to identify genes involved in

DM2.

Materials and Methods

A. Data
In order to evaluate our GS models we used a previously

published microarray data [23] which was derived from the

skeletal muscle biopsies of 43 age-matched men with normal

glucose tolerance (NGT, number of samples = 17), impaired

glucose tolerance (IGT, N = 8), or diabetes type II (DM2,

N = 18). We omitted all IGT subject data to compare DM2-

associated changes between NGT and DM2 groups. Similar to

the original study by Mootha et. al. [23], we deleted genes that

demonstrated low expression over the entire data set. Genes with

expression values ,100 were considered to be unexpressed, and

genes whose average expression were ,100 were excluded from

our analysis. Genes with low variation (standard deviations

,0.2) across samples were also excluded from analysis, since, for

these genes, experimental noise may markedly contribute to

variation.

The microRNA:gene target and gene network data used in our

models downloaded from public databases. We download

experimentally-verified microRNA targets from TarBase (http://

diana.cslab.ece.ntua.gr/tarbase/) and computationally predicted

microRNA target results from PicTar (http://pictar.mdc-berlin.

de/) and TargetScan (http://www.targetscan.org/). Due to the

scarcity of experimentally-verified results, microRNA:target as-

signments are largely derived from computational predictions.

Most existing prediction models, such as TargetScan, miRanda,

PicTar, RNA22, etc, adopt similar principles (the microRNA

binding sites must match to the seeds of microRNAs in a Watson-

Crick pairing way and must be evolutionarily conserved) and differ

only in their technical details [16]. Also in order to control false

positive rate of prediction, we concentrated on the methods that

use stringent seed-matching criteria and consider the evolutionary

conservation of binding sites [34]. Two well-developed tools,

PicTar and Targetscan, were thus considered in our study. A

microRNA is considered to bind an mRNA when this relationship

is supported by experimental evidence, or predicted by either

PicTar or Targetscan. Finally, microRNAs that have ,100 targets

were considered not to be well-studied and were excluded from

this study.

Following other studies [11,12,29], we used protein-protein

interaction databases to build our network. Here we explored

information provided by STRING (search tool for the retrieval of

interacting genes/proteins). STRING is a comprehensive data-

base, collecting the interactions from well-known resources, such

as MINT, HPRD, BIND, DIP, BioGRID, KEGG, NCI-Nature

Pathway Interaction, among others [30]. The interactions

provided in STRING cover a wide spectrum of cell types and

environmental conditions, and a part of them work in our studied

scenario. To exclude irrelevant interactions, we eliminated those

having negative mRNA-based correlations.

Table 2. Gene subsets enriched by highly significant
(corrected p value,0.01) MiNeGS genes.

Functional Gene Subset

1 GO:0006635 fatty acid beta-oxidation process

2 GO:0005179 hormone activity function

3 GO:0046982 protein heterodimerization activity function

4 GO:0008286 insulin receptor signaling pathway

5 GO:0004871 signal transducer activity function

6 GO:0006006 glucose metabolic process

7 KEGG IL4 receptor in B lypthocytes

8 KEGG Type II diabetes mellitus

9 PID insulin pathway

10 PID the ptp1b-mediated signaling pathway

11 PID the txa2-medicated signaling pathway

doi:10.1371/journal.pone.0013748.t002

MiRNA Network Gene Selection
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After filtering out the genes having small variations and no

interactions with others, and the microRNAs having sparse

binding targets, we finally arrived at 1977 genes and 489

microRNAs. Among those genes, 1338 (67%) are (potentially)

bound by microRNAs. Also, we have up to 80,000 interactions.

The distribution of connection degrees of genes follows a power

law – 637 genes (32%) have less-than 10 connections, while only

24 genes (4.3%) have more-than-150 ones.

B. Methods
Our system, as overviewed in Fig. 1, includes three components

(A, B and C), and uses as input microarray expression data,

microRNA binding composition data and a priori known gene

networks. Through integrating the first two types of data, the

correlations between genes are evaluated. Then after overlaying

those gene correlation estimates onto gene networks, by using the

concept of diffusion distance, the nearest functional partners

(NFPs) of each gene are detected. Finally, based on microarray

expression data and NFP identifications, the gene-phenotype

association is estimated for each gene, and the genes having high

associations are naturally marked out as biomarker gene. Our

main contributions lie in the part A and B.

Suppose we have a gene expression dataset D = {X, Y}.

X = [x1,…xj,…,xn] records the transcriptional profiles having m

genes for n samples, and xi = [xi1,…xij,…,xin]
T (1ƒiƒm) where xij

is the transcriptional expression of the ith gene in the jth sample.

Y = [y1,…yj,…,yn] where yj indicates the phenotypic responses of

the jth samples. Also the potential binding relationships between m

genes and k microRNAs are collected in a binary matrix

Z = [ziq]m6k, where ziq = 1 indicates that the ith gene can be

hybridized and then regulated by the qth microRNA based on

experimental or computational prediction results, otherwise

ziq = 0. To construct Z, we combine the results of biological

experiments and well-developed microRNA target predication

tools, as detailed in the last section. Finally, we have a graph

V= {V, E} to reflect a prior known gene networks. The vertex set

V is our gene set, covering all studied m genes. The edge matrix

E = [eij]m6m. When the ith gene and the jth are connected together

based on known gene networks, we have eij = 1; otherwise eij = 0.

B.1 MicroRNA-integrated Gene Correlation. In order to

search NFPs of genes, estimating gene correlation is the first step.

For this purpose, we consider two factors – one is the

transcriptional expressions of genes, which are given in

microarray gene expression data, and the other is the potential

post-transcriptional effects on gene expression, which is critical in

certain cases and which we believe has not received enough

emphasis in current GS studies.

Given two genes (say, the ith and jth genes in our data), their

transcriptional expressions are stored in xi and xj, and their

microRNA binding compositions are described by zi and zj. To

evaluate the correlation between xi and xj, we use Pearson

correlation coefficient (PCC). As to microRNA-binding composition

binary variables, we explore the concept of Jaccard similarity

coefficient. Jaccard similarity coefficient (J), measuring the percent-

age of nonzero coordinates that are same, is defined in a way of

Jij~
S

(11)
ij

S
(10)
ij zS

(01)
ij zS

(11)
ij

, 1ƒi,jƒm ð1Þ

where S
(11)
ij is the number of r satisfying zir = zjr = 1. Similarly, S

(10)
ij is

the number of r with zir = 1 and zjr = 0, while S
(01)
ij is for zir = 0 and

zjr = 1. A large Jij indicates that two genes are regulated by much like

microRNA sets. Jij arrives its maximum 1 when two corresponding

genes are regulated by the same group of microRNAs. Moreover,

we have J = 1 between two non-microRNA-binding genes, while

J = 0 between a microRNA-binding and a non-microRNA-binding

gene.

Combining the Pearson correlation coefficient PCCij and

Jaccard similarity coefficient Jij together, we finally have the

correlation between the ith and the jth gene as

Cij~PCCijzJij , 1ƒi,jƒm ð2Þ

B.2 Network-embedded Functional Nearest Partners

based on Diffusion Map. It has been reported that the

sensitivity and specificity of GS can be enhanced by inclusion of

gene network data. Our study examines the capability of a gene not

only based on its expression but also on the expression of its working

partners. For each gene, we detect its nearest functional partners

(NFPs). The idea behind our NFP identification is that, in order to

work together, a gene (say, gi) and its NFPs must have highly-correlated

expressions, and at the same time belong to the same pathway.

Given a gene network, two genes are first-order neighbor to each

other when they have a direct connection. Two genes are high-

order neighbors to each other when they are connected through

other genes. Based on the gene network and our gene correlation

estimates (eq. 2), the straightforward way to identify the NFPs of gi is

to sort out the genes having top expressional correlations to gi,

among all the first-order neighbors of gi. Focusing on first-order

neighbors is not enough when it is known that, through the

propagation of biological signals, a gene may interplay with its high-

order neighbors. In order to include high-order neighbors for

functional neighbor examination, one may consider the concept of

shortest path in the graphic theory and measure the distance of two

genes as the length of the shortest path between them. The problem

underlying this idea is that, in complicate gene networks, two genes

may be connected through different paths, and two genes may

closely collaborate when they are modestly connected through

many paths in a gene network. As such, the shortest path is not

comprehensive enough to capture the information of all the paths

connecting two genes. To this end, we resort to diffusion distance

and diffusion maps to detect NFPs. Diffusion distance is defined to

measure the distance between graph nodes with considerations of

the information of high-order neighborhood, whilst diffusion maps

allows us to evaluate diffusion distance in an effective way.

Diffusion distance was first proposed by Coinfman et al. [22]

and has been used for dimensionality reduction and graph-based

data clustering [31,32]. The final goal of diffusion-distance-based

methodologies is to reduce the complexity of a given dataset while

retaining original geometry as much as possible. To achieve this

goal, a finite graph is firstly constructed to accurately reflect

geometric relations among given data points. In our example, such

graph is built through weighting the edges of the gene network V
with gene correlation estimates. In this correlation-weighted

graph, the vertices are all studied genes, while the edge matrix,

below denoted as W~½wij �1ƒi,jƒm, is determined by

wij~eij|Cij for Cijw0, and wij~0 for Cijv0, 1ƒi,jƒm,

where eij is an edge of V. eij is 1 when the ith and jth genes are

connected in the network V; otherwise eij = 0. W is symmetric since

W~W T , i.e., wij~wji. Also, W is pointwise positive because of

wij§0 (1ƒi,jƒm). Further, a diagonal matrix D is built so that its

diagonal element djj (1ƒjƒm) is the sum of similarities of the jth
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gene to all genes, i.e., djj~
Pm

i~1 wij . Normalizing W with D,

we arrive at Q~D{1W . Clearly, we have
Pm

i~1 qij~Pm
i~1 wij

�
djj~1, i.e., the sum of elements in a column of Q is 1.

With this observation, Q can be seen as a Markov random

transition matrix, and qij is thus interpreted as the probability of

transition from the ith to the jth gene in one time step. Instatistical

nomenclature, qij~ Prfx(t0zDtg~gj Dx(t0g~gig, where t0 and

Dt are the initial time and a time step, respectively. By Q, the

first-order neighbor closeness between genes is explicitly reflected.

Furthermore, Q2 is a Markov transition matrix sincePN
i~1

PN
k~1 (qikqkj)~

PN
k~1 qik

PN
k~1 qkj

� �
~1. An element in

Q2 (below denoted as Q2 for the sake of convenience) can be

regarded the probability of one gene to another in two random

walk steps. For example, we have q2,ij~ Prfx(t0z2Dtg~
gj Dx(t0g~gig. Along this reasoning direction, an element in Ql

gives us the probability of signal propagating from one gene onto

another after l random walking steps. The above analysis shows

that, by taking powers of Q, the signals are diffused forward in the

gene networks, and the elements in Ql reflect gene similarity after

considering high-order neighborhood. Below, for simplification, we

set t0 = 0, and denote p(t,gj Dgi) and Qt respectively as

Prfx(t)~gj Dx(0)~gig and the transition matrix at the tth time unit.

Based on the matrix Qt, the next step is to measure the distance

between graph nodes. Given a graph, two nodes will be close if

they are connected through several paths. The more paths two

nodes are connected by, the closer they may be. To reflect this

fact, the diffusion distance at the time t is defined as the weighted

Euclidean distance, i.e.,

D2
t (gi,gj)~ p(t,gijgk){p(t,gj jgk)

�� ��2

1=w0

~
XN

k~1

(p(t,gijgk){p(t,gj jgk))2

w0(gk)
,

ð3Þ

where w0(gk) is the normalized degree of gk, i.e., w0(gk)~
DkkPN
j~1 Djj

. With w0(gk)(1ƒkƒN), the diffusion distance (eq. 3)

takes into account the empirical local density of graph nodes (i.e.,

genes in our example), giving the emphasis on the low-density

nodes and avoiding the dominant of the high-density ones.

Following the studies in the spectral clustering, the eigenvectors

of the transit matrix Qt are used to map the original space to a new

space where the clusters of the points are presented in a clearer

way than in the original space. Our m-dimensional Markov

transition matrix Q has m eigenvalues1~l0§l1§:::§lm, with

the corresponding eigenvectors { j , 1ƒjƒm} that satisfy

M j~l j . Using the top rescaled L eigenvectors as a new set of

coordinates, the original genes (represented by the correlation-

weighted graph) are mapped to an L-dimensional Euclidean space by

Yt(g)~(lt
1 1(g),lt

2 2(g),:::,lt
L L(g)):

Such a process is called diffusion mapping. As proved by Nadler et al.

[33], the diffusion distance (eq. 3) can be accurately approximated by

the Euclidean distance in the new space, i.e.,

D2
t (gi,gj)~ Yt(gi){Yt(gi)k k2, ð4Þ

The diffusion distance (eqs. 3–4) negatively reflects the

collaboration relationship between genes. Based on this index,

for a given gene, we detect out its k nearest neighbors. After

placing gene correlation estimation onto gene networks, we

construct a weighted graph whose nodes cover all genes, and

whose edges reflect the first-order collaboration probability

between genes. Upon this graph, the Markov matrix Qt makes

us simulate the situation of biological signal propagation, reflecting

interplay between genes, either directly or indirectly connected.

With Qt, the diffusion distance (eqs. 3–4) enables us to follow the

biological nature that genes may collaborate through the multi-

paths to estimate their collaboration closeness.

B.2 Network-embedded Gene-phenotype association. A

gene always varies in a similar way with their functional partners.

Based on this idea, Chuang et al. [29] averaged the normalized

expression levels of the genes within a sub-network, and used this

average to check whether that sub-network was associated to breast

cancer metastasis or not. A gene sub-network here is a set of genes that

are functional partners to each other. Rapaport et al. [11] detected

working partners for each gene from its first-order-neighbors. Then,

after assuming that genes have the similar expressions with their

working partners, they filtered out high-frequency noise in expression

data to enhance the performance of GS and classification.

Based upon microarray data, we first evaluate the correlation

between genes and the phenotype response. Many indexes, such as

student t test, Kruskal-Wallis test and mutual information (MI),

can be used for this purpose. In this study, MI is employed in that

MI is a flexible nonparametric tool and can measure the

relationship of variables with arbitrary distributions. Given a gene

(say gi, its expression variable is xi), the MI of that gene to the

discrete phenotype response variable y is defined as

MI(gi,y)~
X

y

ð
xi

p(xi,y) log
p(xi,y)

p(xi)p(y)
dxi, 1ƒiƒm: ð5Þ

We estimate MI (eq. 5) in a popularly-used way where the space of

xi is equally divided into 10 bins at first and histograms for p(x,y)

and p(x) are then built.

Based on MI estimates and NFP identifications, we determine

the gene-phenotype association (GPA) as the average of MIs of

genes and their NFPs. That is, for the gene gi, we have

GPA(gi)~
1

DNFP(gi)D

X
gk[NFP(gi )

MI(gk,y), 1ƒiƒm

where |a| denotes the number of the items in a. Based on GPA

estimates, the genes are finally ranked in terms of association.

C. Classification Scheme
GS models are evaluated in terms of classification performance.

A GS model is firstly required to select J genes. Then by using

those J genes, two typical classification models are built. Good

performance of the built classifiers naturally implies a good gene

subset, or equivalently, a promising GS model.

To avoid ‘‘information leakage’’, we adopted a cross validation

scheme. The 35 samples of our dataset were partitioned into 6

groups, each containing 6 samples (3 DM2 and 3 NGT) except for

the last group that has 5 samples (2 NGT and 3 DM2). For each

run, five data groups are used for GS and classifier training, while

the remained group is used for a classification test. This process is

repeated 6 times, with each of the 6 groups used in turn. After that

all the testing results are summarized together. In order to

minimize random variations introduced by data-partitioning, we

independently ran the cross-validation process 20 times, and

averaged the results of these trials.

MiRNA Network Gene Selection
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Two classification models are used in our study. They are neural

networks and support vector machine, which are available at

NetLab (http://www.ncrg.aston.ac.uk/netlab/index.php) and the

University of Southhampton ISIS website (http://www.isis.ecs.

soton.ac.uk/resources/svminfo/), respectively. The number of

hidden neurons of neural networks are set as J1/2 , where a

is denoted as the integral part of the value a and J is the number of

the genes we use for classification. For support vector machines,

we use radial base functions as their kernels. Other parameters and

initial values for our classifiers are set by the model defaults.
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