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ARTICLE INFO ABSTRACT

Keywords: Colorectal cancer (CRC) is the third most diagnosed cancer and the second deadliest cancer worldwide repre-
Colorectal cancer senting a major public health problem. In recent years, increasing evidence has shown that microRNA (miRNA)
MiRNA-mRNA

can control the expression of targeted human messenger RNA (mRNA) by reducing their abundance or trans-
lation, acting as oncogenes or tumor suppressors in various cancers, including CRC. Due to the significant up-
regulation of oncogenic miRNAs in CRC, elucidating the underlying mechanism and identifying dysregulated
miRNA targets may provide a basis for improving current therapeutic interventions. In this paper, we proposed
Gra-CRC-miRTar, a pre-trained nucleotide-to-graph neural network framework, for identifying potential miRNA
targets in CRC. Different from previous studies, we constructed two pre-trained models to encode RNA sequences
and transformed them into de Bruijn graphs. We employed different graph neural networks to learn the latent
representations. The embeddings generated from de Bruijn graphs were then fed into a Multilayer Perceptron
(MLP) to perform the prediction tasks. Our extensive experiments show that Gra-CRC-miRTar achieves better
performance than other deep learning algorithms and existing predictors. In addition, our analyses also suc-
cessfully revealed 172 out of 201 functional interactions through experimentally validated miRNA-mRNA pairs
in CRC. Collectively, our effort provides an accurate and efficient framework to identify potential miRNA targets
in CRC, which can also be used to reveal miRNA target interactions in other malignancies, facilitating the
development of novel therapeutics. The Gra-CRC-miRTar web server can be found at: http://gra-crc-mirtar.com/

Protein Language Model
Graph neural network
Target Prediction

1. Introduction factors, including the economic advancement of transitioning and

low-to-medium Human Development Index nations, as well as shifts in

Colorectal cancer (CRC), or bowel cancer, occurs in the colon or the
rectum. CRC is the third most common malignancy and the second
leading cause of cancer death worldwide [1]. In 2020, there were
approximately 153,000 new cases of CRC were diagnosed, and 52,500
deaths from CRC occurred in the United States [2]. There has been a
notable increase in incident cases of colorectal cancer, with over 16 out
of 21 global regions experiencing a doubling or more in cases in the past
three decades [3]. By the year 2030, the global burden of CRC is ex-
pected to increase by 60 %, involving over 2.2 million new cases and 1.1
million annual deaths [4]. This escalation is attributed to multiple
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societal norms within developed countries [5]. The rise in CRC incidence
appears to be proportionate to economic development levels. This trend
is thought to be driven by alterations in the environment and lifestyles,
such as increasingly sedentary lifestyles, rising obesity rates, greater
consumption of processed foods, alcohol, and meat, as well as overall
increased life expectancy [6,7]. Although therapeutic approaches to
treat CRC have improved in the past decade, both the incidence and
mortality rates of CRC in adult patients below the age of 50 have
increased by 22 % and 13 %, respectively [8]. Specifically, about a
quarter of CRC patients were diagnosed at an advanced stage, where the
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cancer has metastasized, most often to liver [9]. Metastatic CRC is
associated with a particularly poor prognosis. Therefore, it is critical to
probe the molecular determinants in CRC initiation, progression and
metastasis to allow early detection and therapeutic intervention.
Numerous studies have consistently detected aberrant expression of
microRNAs (miRNAs) in CRC tissue and cells, suggesting that miRNAs
play important roles in CRC [10]. The miRNAs, approximately, ~22
nucleotide (nt) in length, are ubiquitous gene regulators that modulate a
broad range of essential cellular processes at the post-transcriptional
level. Most miRNAs function in the cytoplasm, where they associate
with Argonaute (AGO) proteins. AGO-miRNA complexes regulate target
messenger RNAs (mRNAs) through imperfect base-pairing with se-
quences in the 3" untranslated region (UTR) to repress translation and
cause mRNA deadenylation and decay [11,12]. The human genome may
encode as many as 1000 miRNAs and most genes are subject to regu-
lation by multiple miRNAs [13]. miRNAs have been shown to affect
diverse cellular pathways critical to human development and diseases.
Accumulating evidence suggests that various miRNAs are aberrantly
expressed in cancer cells, including CRC [14], underscoring the impor-
tance of elucidating the mechanism by which miRNAs recognize and
regulate their targets.

The advancement of next-generation sequencing techniques has
made it possible to generate and analyze vast amounts of high-
throughput genomic data, including gene expression profiles and RNA
sequencing data [15,16]. However, experimental detection and inves-
tigation of miRNA targets and miRNA-induced changes on cellular
function is challenging due to the large number of potential interactions
to be examined, which is expensive and time-consuming [17-20].
Leveraging computational approaches to predict the potential targets of
miRNAs simplifies the process, enabling an initial selection to decrease
the number of target sites requiring experimental validation. The
earliest computational methods for target prediction mostly employ
expert-based knowledge to categorize miRNA-mRNA pairs [21-25].
These methods heavily rely on pre-designed features that have been
shown to influence miRNA-mRNA interactions, and the underlying
intrinsic mechanisms of the binding process remain incompletely
elucidated. Additionally, the necessity of calculating interaction metrics
based on sequence data often introduces a laborious computation cost
and extra burden to the process, subsequently elongating the execution
time for inference. With the development of AI techniques and an
increasing number of experimentally validated miRNA-mRNA pairs,
many classic machine learning methods have been applied to miRNA
target prediction, including support vector machine [26,27], Naive
Bayes [28,29] and neural networks [30-33]. For example, Yousef et al.
described a target prediction named NBmiRTar [28] using a naive Bayes
classifier through sequence and miRNA-mRNA duplex information from
validated targets and artificially generated negative examples. Lee et al.
presented deepTarget [31], an end-to-end learning framework using
deep recurrent neural networks for miRNA target prediction without the
need for manual feature extraction. Wen et al. developed DeepMirTar
[32], a stacked de-noising auto-encoder, that combined expert-designed
features, e.g., seed match, free energy, sequence composition, and raw
sequence data to predict human miRNA targets. These models can
extract and learn the feature representations from miRNA-mRNA pairs,
predicting the likelihood of binding and improving the models’ perfor-
mance and efficiency compared with expert-based approaches.

Moreover, the advent of graph neural networks (GNNs) [34-36] has
recently gained significant attention and been applied to a variety of
bioinformatic problems such as protein-protein interaction [37,38],
RNA-disease association identification [39,40], RNA subcellular locali-
zation prediction [41,42], as well as RNA-RNA association prediction
[43,44]. Since miRNA-induced silencing complex (miRISC) molecules
directly attach to the targeted RNAs, creating intricate graph-like and
spatial secondary structures, GNNs present great potential to identify
RNA-RNA associations in an end-to-end manner through graph repre-
sentation of the duplex that can better learn complex interactions
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between RNAs in a regulatory network. He et al. presented a graph
convolutional neural network approach for predicting circRNA-miRNA
interactions [45]. Zhao et al. proposed a semantic embedded bipartite
graph network for predicting long noncoding RNA-miRNA associations
with a novel feature extraction method by combining segmentation,
Gaussian interaction profile and graph convolution network [43]. Wang
et al. designed a sequence pre-training-based graph neural network to
predict IncRNA-miRNA associations from RNA sequences by converting
the existing interactions represented as a graph [44]. However, GNN has
not been effectively applied to miRNA-mRNA target identification in
cancers, specifically in CRC.

To leverage the power of next-generation sequencing techniques and
graph-based representations, in this paper, we developed a GNN-based
framework using only RNA sequences extracted from CRC cell line
(HCT116) to identify potential miRNA targets. We first generate
experimental miRNA-mRNA interaction pairs based on AGO-CLASH (UV
crosslinking and sequencing of hybrids) method [46]. We then created
two pre-trained models to calculate the distributed representations of
k-mer for input miRNA and mRNA sequences to extract attribute char-
acteristics. We transformed these k-mers into nodes for generating node
features and graph construction. We finally fed the encoded attribute
features of the nodes into graph neural networks (specifically, graph
convolutional networks, graph attention networks, and graph isomor-
phism networks) to detect miRNA-mRNA interactions in CRC. The
overall architecture of the proposed graph-based framework is pre-
sented in Fig. 1. The experimental results indicate that our framework
could uncover hidden associations between miRNAs and mRNAs, effi-
ciently and accurately identifying miRNA biomarkers that can be used
for therapeutic targets in CRC. In the end, we compared our proposed
framework to several state-of-the-art methods and demonstrated the
superiority of our model in identifying miRNA targets in CRC.

2. Materials and methods
2.1. Datasets

To obtain experimentally verified miRNA-mRNA interaction pairs in
CRC, we utilized AGO-CLASH [47] data from colorectal cancer (CRC)
HCT116 cells, accessible through the NCBI database [48] (GSE164634).
Initially, adapter sequences were removed using Cutadapt software [49]
(version 3.4). Subsequently, the trimmed pair-end FASTQ files were
merged employing PEAR software [50] (version 0.9.6). Each FASTQ file
was then collapsed to a single sequence per unique read using Fastx -
collapser (version 0.0.14) in the FASTX-Toolkit [51]. Additionally, we
trimmed the 5' and 3’ ends of Unique Molecular Identifiers (UMISs) using
Cutadapt [49] to prepare the sequences for further analysis. To identify
interacted miRNA-target hybrids, we analyzed the cleaned FASTA files
using Hyb [47], a bioinformatics pipeline for processing
high-throughput ¢cDNA sequencing data from CLASH experiments. To
improve the specificity of experimental interaction pairs, we only
selected miRNA-mRNA hybrids, and those pairs with minimum inter-
action energy (AG) higher than —11.1 kcal/mol were excluded, as they
were deemed indicative of non-specific binding [52]. The remaining
pairs were labeled as the positive miRNA-target hybrids. Differently, to
obtain negative miRNA-target hybrids, we further processed the cleaned
FASTA files by mapping them to a human transcript database using
Bowtie2 [53]. Gene abundance was calculated based on the totality of
mapped reads. The top 100 abundant genes, which were not identified
in the positive miRNA-target hybrids were defined as negative controls.
Subsequently, reads corresponding to these negative control genes were
extracted from the SAM files. Finally, reads from these negative tran-
scripts were randomly connected to miRNAs listed in the positive
miRNA-target hybrids to form negative miRNA-target hybrids.

The datasets to construct pre-training models for miRNA and mRNA
sequences were obtained from RNAcentral miRbase [54] and Ensembl
[55] databases, respectively. RNAcentral [56] is a comprehensive
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Fig. 1. The overall architecture of the proposed framework Gra-CRC-miRTar. (A) The creation of pre-training models miRNA2Vec and mRNA2Vec. (B) Semantic
node features extraction and graph construction. We use 3-mer as an example for the splitting and embedding of the RNA sequences. (C) Feature integration with

graph neural networks for miRNA target prediction.

non-coding RNA (ncRNA) sequence collection representing all ncRNA
types from a wide variety of organisms and 51 Expert Databases, with
over 34 million RNA sequences in different categories. We extracted raw
miRNA sequences from the top 29 mammalian species with the largest
miRNA size including humans, mice and hamsters, etc. We removed the
duplicates of selected species and ended up with 16,253 unique miRNA
sequences ranging from 15 nt to 30 nt in length, which will be utilized as
miRNA corpus to create the miRNA pre-trained model. In alignment, we
selected the same host species of miRNA to collect mRNA sequences
from the Ensembl database. We filtered other RNA categories and only
kept mRNA sequences from the collection. The average length of the
remaining mRNA sequences is 2609.9, where the longest mRNA is 123,
179 nt and the shortest is 35 nt. A total of 1,090,566 mRNA sequences
were obtained as mRNA corpus after duplicate removal for the con-
struction of the mRNA pre-trained model. The distribution and charac-
teristics of RNA corpus collection on each host species can be found in
Supplementary Materials S1.

2.2. Pre-trained model

We used k-mer methods to explore the semantic features of RNA
sequences. Specifically, the k-mer units in RNA sequences exhibit similar
structures as words in sentences. Therefore, employing continuous
distributed word representations of k-mer allows for a natural

representation of the contextual information of nucleotides in RNA se-
quences. We segmented the raw RNA sequences into subsequences by
sliding windows and the length of this window is K, thus, each subse-
quence is a k-mer. For instance, we assume an RNA sequence contains N
nucleotides, and it will generate N - K + 1 overlapping subsequences. We
then performed unsupervised training on the collected miRNA and
mRNA corpus to construct pre-trained models (miRNA2Vec and
mRNA2Vec) based on word2vec [57] that characterize miRNA and
mRNA sequences, respectively. We selected Skip-gram in our experi-
ments to predict the context surrounding a given targeted k-mer. During
the training process, we utilized negative sampling [58] and softmax
[59] to optimize the update procedure over all words. We finally
decomposed the aggregated model by k-mer lengths. After training, we
can obtain high-quality and relatively low-dimensional vectors to
represent k-mer subsequences. Here, we set the parameter k to 3-6 to
train the RNA dataset and finally get the embedded vectors. We applied
fine-tuning strategy to determine the value of k with the best predictive
performance. Fig. 2 illustrates the process of the semantic pre-training
process of RNA sequences.

2.3. Nucleotide to graph

We encoded input RNA sequences into the embedded matrix based
on established pre-trained models miRNA2Vec and mRNA2Vec (Fig. 1A)
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Fig. 2. The construction of pre-training of semantic embedding process with Skip-gram architecture.
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and transformed miRNA and mRNA sequences into de Bruijn graph [60,
61] representation through node features (Fig. 1B). The de Bruijn graph
was originally invented for problems in combinatorics and graph theory
and was designed to be an efficient directed graph representation to
show overlaps between sequences of symbols. It is now widely used in
bioinformatics, particularly in genome assembly and RNA subcellular
localization problems [41,60], since it preserves local sequence order
and captures patterns and motifs of varying lengths. To transform input
RNA sequence (miRNA or mRNA) into graph representation, we first
denoted it as (Sy, So, Ss, ..., Si.1, S1), where S is one of the nucleotide
bases and L is the length of the RNA sequence. For instance, we selected
k =3 as an example, and the k-mer composition set is denoted as
{S1S2S3, S2S3S4, ..., SL.2SL-1SL}. After 3-mer segmentation, we assigned
these 3-mers as nodes, following the order of the 3-mer composition set.
We added these nodes one by one to form a de Bruijn graph [61,62].
Subsequently, we allocated weights to each directed edge, with each
weight representing the frequency of an edge that connected two 3-mer
nodes in the graph. To mitigate the impact of the absolute difference
between edge frequencies, we normalized the edge weights in the graph
as follows, where e;; denotes the frequency weight of the edge from node
j to node i, and Nj is the set of neighbor nodes of node i.
Weightnurmal =

\/ qu”/ Cia quNl €ig

2.4. Graph neural networks

To make full use of the attributes of nodes generated from RNA se-
quences and improve the feature difference between semantic
embedded node features, we leveraged GNNs that can better represent
the graph structure characteristics of the nodes. We obtained node fea-
tures representing k-mers of each input RNA sequence after the con-
struction of de Bruijn graph. We then leveraged GNNs to extract and
integrate high-level embedded features from the de Bruijn graph
(Fig. 1C). The graph topology and node features generated from mRNA
and miRNA sequences were fed into a set of GNN layers, respectively. In
this work, we tested and compared three different GNN architectures in
Gra-CRC-miRTar, including graph convolutional networks [63] (GCNs),
graph attention networks [64] (GATs) and graph isomorphism networks
[65] (GINs). The output feature vector of each paired miRNA-mRNA
sequence after graph layers were concatenated, followed by a 2-layer
MLP for the final prediction.

2.4.1. Graph convolutional networks

The GCNs were originally proposed by Kipf and Welling [63] for
semi-supervised learning on graph-structured data based on efficient
variants of convolutional neural networks. The propagation rule of GCN
is formulated by the following equation to update the network
parameters:

where A = A + I, is the adjacency matrix of the graph with added self-
connections and I, is the identify matrix. D denotes the degree matrix
of the adjacency matrix A, W! and H! indicate the weight and the
embedding matrix of the I layer, respectively, and ¢ is the non-linear
activation function. The fundamental concept behind the GCN layer
involves acquiring a transformation function to create a new embedding
matrix H! for node i. This is implemented by aggregating the intrinsic
characteristics of the nodes and the neighboring features of the nodes
with normalized edge weights. Through the integration of multiple GCN
layers, we can implement inter-node message passing and capture the
semantic features of the graph from RNA sequences. More specifically,
GCN aggregates the embedded matrixes of all nodes and generates the
final graph representation with the readout function, such as mean -
pooling, max pooling and min pooling, on the learned node
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representations. Finally, we fed the graph encoding vector to a 2-layer
MLP with a ReLU activation function to predict the miRNA targets in
CRC.

2.4.2. Graph attention networks

Different from GCNs, GATs employ self-attention mechanisms and
adapt them to the context of graph data. The fundamental idea behind
GATs is to enable nodes in a graph to selectively aggregate information
from their neighbors, prioritizing certain nodes or edges over others,
based on learned attention coefficients. For each node i in the graph, the
attention mechanism computes the attention coefficients by considering
the features of both the central node and its neighbors. The mathemat-
ical equation representing the attention mechanism in GATs is defined
as follows:

— —
e = LeakyReLU(aT{Wo hil| We hj])
where e; represents the unnormalized attention score for the node

and a is a learned weight vector that is applied to the concatenated node
feature representations. LeakyReLU is an activation function that in-

troduces small gradients for negative inputs, and Wi and ﬁj are the
feature representations of nodes i and j, respectively. W is the weight
matrix applied to the node features and the symbol || denotes the
concatenation of the node features. Once e; is computed for all node
pairs, the scores will go through a Softmax to obtain normalized atten-
tion coefficients that sum up to 1 for each node:

Oy = e

en; EXP(€i)

where q; is the normalized attention coefficient between node i and
node j, and N; represents the set of neighboring nodes of node i. The
attention coefficients a; will be obtained through Softmax and are used
to weigh the representations of neighboring nodes when aggregating
information for the central node. This weighted aggregation is carried
out for each node in the graph, allowing them to update their own
representations based on the information from their neighbors. The
node representation is then calculated by summing all neighboring
embeddings and the corresponding weights. Similar to the GCN, a
readout function is finally applied to obtain the graph representation for
the prediction.

2.4.3. Graph isomorphism networks

GIN is designed to learn embeddings of graphs that are invariant
under graph isomorphism [65]. The main idea of GIN lies in message
passing and aggregation mechanisms that iteratively update node rep-
resentations by considering the local neighborhood structure. These
networks aim to capture important graph properties and structural in-
formation while being invariant to node permutations. Each GIN in-
volves an aggregation function that aims to iteratively update node
representations considering their local neighborhood structure in the

graph. It is assumed that hf,k) is the hidden representation of node v at the
k-th iteration and the node representations are updated below:

)

where N(v) represents the neighborhood of node v and £ is a parameter
that aids in preserving permutation invariance. MLP refers to a multi-
layer perceptron that transforms the aggregated information to the
sum of the current node representation and the sum of the representa-
tions of its neighbors. The use of an MLP helps the GIN to capture
complex and nonlinear relationships between nodes and their neigh-
borhoods and enables the learning of invariant graph representations
that remain consistent for isomorphic graphs. The aggregation and
transformation processes are designed to ensure that the network pro-
duces the same output regardless of the ordering or labeling of nodes in
isomorphic graphs.

(k) _ k k (k-1) (k—1)
h® = MLP<><(1+ e®) o RV 1 ZMN(V)hu
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3. Experimental setup
3.1. Implementation and evaluation

We utilized Gensim package [66] 4.3.0 for the implementation of
word2vec embeddings and the construction of pre-trained models. All
the models are implemented through Scikit-learn [67] and PyTorch
[68]. For the generated 247,700 paired miRNA-mRNA samples in the
dataset, we randomly selected 90 % of cases as the training set and 10 %
as the testing set, both of which are balanced datasets. We labeled the
interacted miRNA-mRNA pairs as “1” and non-interacted pairs as “0”,
which denote positive and negative samples, respectively. We con-
structed and trained our models using the training set with stratified
5-fold cross-validation, ensuring that datasets in each fold are balanced,
and evaluated the model’s capability on the testing set for miRNA target
prediction. For GNN-based models, we applied a minimum batch size of
128 for optimization. The learning rate is 0.001 and a drop-out strategy
was performed with a rate of 0.3. All the models are iterated for 150
training epochs. For the ablation study, we investigated how different
k-mers could influence the model’s performance. Additionally, we
retrieved 201 experimentally validated CRC-specific miRNA-target pairs
from miRTarBase which are not included in our training and testing
datasets for external evaluation. We adopted six different metrics to
evaluate the predictive performance for all models on the testing set,
including accuracy, precision, recall, F1-score, the area under Receiver
operating characteristic (AUROC) and the area under Precision-Recall
(AUPR) curves.

3.2. Baseline approaches

We compared our proposed framework with two types of baseline
methods for identifying miRNA targets in CRC. The first category in-
volves classic deep learning algorithms, namely, convolutional neural
networks (CNNs), recurrent neural networks (RNNs) with the gated
recurrent unit (GRU), Bidirectional GRU (BiGRU) and the combinations
of these architectures involving attention mechanisms, including CNN
+ GRU, CNN + BiGRU, GRU -+ attention mechanism and BiGRU
+ attention mechanism. The parameters and hyperparameters of these
approaches can be found in Supplementary Materials S2. The second
category of the baselines is the existing state-of-the-art model developed
by others for miRNA target prediction. Here, we selected five repre-
sentatives, namely, preMLI [69], CIRNN [70], LncmirNet [71], Pmlipred
[72] and PmliHFM [73]. A brief description of these models is shown in
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we used the same feature matrix generated from our constructed
pre-trained models. For the implementation of others’ models, we fol-
lowed the original settings as a fair comparison. We also ensured that the
training and testing datasets were identical for all compared methods.

4. Results

4.1. Comparative performance between our model and classic deep
learning classifiers

We compared our proposed framework with several classic archi-
tectures of deep neural networks involving both CNN and RNN models,
as well as the combination of these models with attention mechanisms.
We kept the same experimental setup, such as training and testing set
when predicting miRNA targets based on pre-trained embedded fea-
tures. We used 5-mer as subsequences to construct graph-based models
that proved to be the best k-mer for the performance (Table 2). We
conducted the experiments repeatedly five times using different random
seeds to split training and validation sets. The prediction outcomes of
testing dataset were averaged as shown in Table 1 with standard devi-
ation in the bracket, from which we can observe that all the models
obtained decent predictive performance. In more detail, we found that
our proposed framework presents comparable results compared with
other deep learning models. Gra-CRC-miRTar with GIN architecture
achieved the best values in accuracy (0.887), precision (0.881), F1-score
(0.888), AUROC (0.958), and AUPR (0.959), while GRU model with
attention mechanisms show better recall values, respectively. Even
though our proposed model with GCN and GAT architectures did not
display superior performance as with GIN, it still outperformed several
other baseline models, such as CNN and CNN+GRU. This is probably
because our task is a graph classification problem since we transformed
RNA sequences into graphs. We know that GIN is designed to be maxi-
mally expressive in the sense of the Weisfeiler-Lehman graph isomor-
phism test, which allows GIN to better capture the local graph structures
up to isomorphism and distinguish between different graph topologies
more effectively than GCN and GAT [64]. Meanwhile, comparing the
mean aggregator in GCN and the attention mechanisms in GAT, using
the sum-based aggregator in GIN to update the node representations
enables GNN to capture more discriminative features about the graph.

5. Ablation study

Previous studies have indicated that k-mer frequency is one of the

Supplementary Materials S3. For the first category baseline approaches, most critical parameters that will generate distinct graph
Table 1
Comparison between our proposed framework with three different GNN architectures and baseline deep learning classifiers.
Model Accuracy Precision Recall F1-score AUROC AUPR
CNN 0.853 0.835 0.880 0.857 0.933 0.934
(£ 0.002) (£ 0.003) (+0.005) (£ 0.002) (£ 0.001) (£0.001)
GRU 0.875 0.867 0.885 0.876 0.947 0.947
(+0.002) (+0.005) (+0.008) (+0.002) (+0.001) (£ 0.001)
BiGRU 0.875 0.866 0.888 0.877 0.950 0.951
(£ 0.004) (£ 0.009) (£0.014) (£ 0.004) (£0.003) (4 0.003)
CNN+GRU 0.832 0.813 0.862 0.837 0.916 0.916
(£ 0.002) (£ 0.007) (£ 0.009) (£ 0.002) (£ 0.001) (£0.001)
CNN+BiGRU 0.823 0.811 0.842 0.826 0.909 0.908
(+ 0.004) (+0.009) (+0.021) (+0.007) (+0.003) (£ 0.003)
GRU+attention 0.871 0.853 0.898 0.874 0.946 0.946
(+0.003) (+0.019) (+ 0.022) (£ 0.002) (£ 0.001) (+£0.001)
BiGRU+-attention 0.875 0.870 0.883 0.876 0.949 0.949
(+ 0.009) (+0.014) (+£0.012) (+0.008) (+0.006) (= 0.006)
Gra-CRC-miRTar (GCN) 0.875 0.871 0.881 0.876 0.951 0.952
(£ 0.002) (£ 0.007) (£ 0.005) (£ 0.002) (£ 0.001) (£ 0.001)
Gra-CRC-miRTar (GAT) 0.875 0.870 0.882 0.876 0.950 0.952
(+0.001) (£ 0.005) (£ 0.005) (£ 0.001) (£ 0.001) (£0.001)
Gra-CRC-miRTar (GIN) 0.887 0.881 0.896 0.888 0.958 0.959
(0.002) (+ 0.006) (£ 0.007) ( + 0.002) (+ 0.000) ( + 0.000)

3024



R. Yin et al.

Computational and Structural Biotechnology Journal 23 (2024) 3020-3029

Table 2
Performance comparison of our proposed framework Gra-CRC-miRTar with different k-mers on three GNN architectures for miRNA targets prediction in CRC.
k-mer Gra-CRC-miRTar Accuracy Precision Recall Fl-score AUROC AUPR
3-mer GCN 0.836 0.818 0.864 0.840 0.921 0.925
GAT 0.826 0.805 0.859 0.831 0.912 0.917
GIN 0.856 0.845 0.872 0.858 0.936 0.939
4-mer GCN 0.867 0.859 0.879 0.869 0.945 0.947
GAT 0.861 0.849 0.878 0.863 0.940 0.943
GIN 0.881 0.876 0.888 0.882 0.954 0.956
5-mer GCN 0.875 0.871 0.882 0.876 0.951 0.952
GAT 0.875 0.870 0.882 0.876 0.950 0.952
GIN 0.887 0.880 0.896 0.888 0.958 0.959
6-mer GCN 0.871 0.865 0.879 0.872 0.947 0.948
GAT 0.872 0.868 0.878 0.873 0.948 0.949
GIN 0.878 0.873 0.886 0.879 0.951 0.952

representations and, as a result, affect the model performance. There-
fore, we examined different values of k in the k-mer in our proposed
framework for three distinct GNN architectures. We kept the other pa-
rameters and hyperparameters the same as in Table 1 for different k-
mers. The prediction results of the testing dataset indicate that when we
selected 5-mer or 6-mer, the models obtained slightly better perfor-
mance than with 3-mer and 4-mer on average (Table 2). In each k-mer,
where k € {3, 4, 5, 6}, GIN shows better results than GCN and GAT in all
the metrics. Among all the combinations of k-mer and GNN architec-
tures, we found that GIN with 5-mer demonstrated the best performance
across all 6 performance metrics including accuracy (0.887), precision
(0.880), recall (0.896), Fl-score (0.888), AUROC (0.958) and AUPR
(0.959) for predicting miRNA targets in CRC. Nevertheless, we observed
that there is no significant difference in performance using distinct k-
mers for the prediction. We finally chose the GIN structure with 5-mer as
representative for miRNA target identification in comparison with other
state-of-the-art methods for external validation.

5.1. Comparison with other existing tools on miRNA targets identification

To further evaluate the capability of Gra-CRC-miRTar in identifying
miRNA targets in CRC, we compared it with several well-known tools on
the independent testing set. To make a fair comparison, we re-
implemented these models and trained them with the same dataset
following the raw settings. We used AUROC and AUPR as metrics, which
is the quality measure of binary classification, and the results are shown

ROC Curves

in Fig. 3, We could observe that Gra-CRC-miRTar (GIN) demonstrates
the best AUROC (0.958) and AUPR (0.960) over other tools. Though
Gra-CRC-miRTar (GCN) and Gra-CRC-miRTar (GAT) did not obviously
show better performance than preML], they significantly exceeded
LncMirNet and PmliHFM, and are slightly better than PmliPred and
CIRNN for miRNA target prediction in CRC. These results suggest that
our proposed framework is an effective tool for predicting miRNA tar-
gets in CRC and Gra-CRC-miRTar (GIN) proves to be the best architec-
ture among all the models.

5.2. t-SNE visualization of graph vectors

To demonstrate the effectiveness of graph neural networks, we
visualized the embedding spaces of feature representations of input RNA
sequences before and after the graph-based architectures by projecting
them into two dimensions using the t-distributed stochastic neighbor
embedding [74,75] (t-SNE). Fig. 4 displays t-SNE visualizations
comparing miRNA-mRNA pair feature representations using different
k-mers, before and after GNN. Here, we selected GIN as the architecture
of GNN. The interactive miRNA-mRNA pairs are colored in orange,
while the non-interactive ones are in blue. According to the plots, we can
find that the two classes before feeding into the graph layers are loosely
distributed regardless of the value of k. However, we noted that the
samples of the same class are separated into clusters after the trans-
formation of GNNs. It is obvious that after learning through the GIN
layers, the feature vectors can clearly distinguish between interactive
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Fig. 3. The comparison of ROC and PR curves of Gra-CRC-miRTar and existing state-of-the-art methods for predicting miRNA targets in CRC on the testing set.
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Fig. 4. T-SNE visualization of feature vectors of miRNA-mRNA pairs before (top) and after (bottom) GNN based on our constructed pre-trained miRNA2Vec and
mRNA2Vec models. Each dot represents a miRNA-target pair, and its color represents its interaction status. (A) k =3, (B) k=4, (C) k=5 and (D) k = 6.

and non-interactive miRNA-mRNA pairs. Interestingly, the visualization
shows that the samples of interactive and non-interactive miRNA-mRNA
pairs were much more disordered and interweaved before the GNN layer
when we used 6-mer for embedding, while we can still gain comparative
prediction performance, which further highlights the effectiveness of
GNNss for classifying miRNA-mRNA interaction pairs.

5.3. Novel CRC-specific miRNA target identification through external
dataset

To further validate the power of our proposed model, we applied it to

Table 3

an external dataset that contains experimentally validated CRC-specific
miRNA-mRNA interactions. We collected 201 new wet lab validated
miRNA-target pairs for CRC from miRTarBase [76] that consist of 75
unique miRNAs and 89 mRNAs. We applied our proposed framework to
this dataset along with five other existing methods, including preMLI,
CIRNN, LncmirNet, Pmlipred and PmliHFM, to evaluate the miRNA
target prediction in CRC. Since this dataset only contains validated
interactive pairs, we used recall to measure the performance. The results
indicate that our proposed framework can identify 150 (GCN), 146
(GAT), and 158 (GIN) miRNA-target pairs with 0.746, 0.726 and 0.786
in recall, respectively. However, the best tool in comparison is PreMLI

The prediction results on externally validated samples by eight compared methods for miRNA-target identification in CRC. Only 25 out of 201 samples are shown in
this table. The complete list of prediction outcomes can be found in Supplementary Materials S4.

miRTarBaseID miRNA Target CIRNN PmliPred PmliHFM LncMirNet PreMLI GCN GAT GIN
MIRT001190 hsa-miR—21 —5p PTEN v v v v
MIRT003054 hsa-miR—21 —5p PDCD4 v v v v v
MIRT003542 hsa-miR—-133a—3p FSCN1 v v v v v v
MIRT003543 hsa-miR—145 —5p FSCN1 v v v v v 4 v v
MIRT004036 hsa-miR—185 —5p RHOA v v v 4 v v v v
MIRT004037 hsa-miR—185 —5p CDC42 v v v v v v v v
MIRT004821 hsa-miR—34a—5p E2F1 v v v v v v v v
MIRT005347 hsa-miR—103a—3p DICER1 v v v v v v v v
MIRT005429 hsa-miR—21 —5p MSH2 v v v v
MIRT005430 hsa-miR—-21 —5p MSH6 v v v 4 v 4 v v
MIRT005553 hsa-miR—96 —5p KRAS v v v v v v v
MIRT005631 hsa-miR—20a—5p SMAD4 v v v v v v v v
MIRT005852 hsa-miR—-17 —5p RBL2 v v v v v v v v
MIRT005865 hsa-miR—106b—5p PTEN v v v v
MIRT005869 hsa-miR—144 —3p NOTCH1 v v v v v v v
MIRT682763 hsa-miR—425 —5p MDM2 v v v v v 4 v v
MIRT732287 hsa-miR—5582 —5p A1BG v v 4 v v v
MIRT732233 hsa-miR—138 —5p CD274 v v v

MIRT732288 hsa-miR—5582 —5p SHC1 v v v v v v v
MIRT732305 hsa-miR—30a—5p ITGB3 v v v 4 v v
MIRT002286 hsa-miR—200c—3p ZEB1 v v v v v v 4 v
MIRT005965 hsa-miR—330 —3p CDC42 v v v v v
MIRT006443 hsa-miR—342 —3p DNMT1 v v 4 v 4 v v
MIRT006469 hsa-miR—143 —3p MACC1 v v v v

MIRT006664 hsa-miR—34a—5p AXL v v v v v v v
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obtained 0.716 in recall, followed by LncMirNet (0.701), CIRNN
(0.647), PmliPred (0.647) and PmliHFM (0.577). Table 3 shows the
predicted results of 25 miRNA-target pairs with concrete miRNAs and
targeted genes for CRC by eight different methods. The enhancement
observed could be attributed to the integration of large-scale datasets
that our model trained as well as the graph-based methods we selected,
which could better capture the underlying patterns of identifying miR-
NA-target interactions.

6. Discussion

Numerous studies have highlighted the association of miRNAs with
cancers, including CRC [77-80]. Nowadays, computational techniques
have allowed for the analysis of miRNA targets on a large scale. Yet,
many of these approaches frequently generate large amounts of false
positives, potentially misrepresenting actual miRNA-mRNA in-
teractions, particularly in disease contexts. Current prediction tools
cannot always make accurate and reliable predictions due to the
complexity of miRNA targeting, especially in heterogeneous patholog-
ical conditions. Consequently, there is a rationale and need for creating
models tailored to specific diseases to reduce the likelihood of incorrect
predictions. Although many studies have shown that miRNA function is
tissue-specific, so far, few studies have offered an algorithm to predict
miRNA targets for a specific disease. The increasingly available RNA
data by next-generation sequencing techniques, alongside advance-
ments in natural language processing and graph neural networks, are
paving the way for groundbreaking discoveries in genomics and tran-
scriptomics, offering unprecedented insights into complex biological
systems and enhancing our ability to understand, diagnose, and treat a
vast array of diseases including cancers.

In this study, we developed a novel miRNA target-prediction
framework specific for CRC, which is based on pre-trained nucleotide-
to-graph neural networks and uses cancer-specific miRNA-target pairs.
The high-quality training data was derived from AGO-CLASH experi-
ments, where the precise binding sites of miRNA-mRNA pairs were
verified46. This foundation enhances the model’s efficiency, as algo-
rithms powered by data are capable of discerning significant and
authentic targeting traits within the data. While many current target
prediction algorithms aim to achieve high sensitivity in recognizing true
positive interactions, they fall short in identifying disease-specific in-
teractions, leading to a higher rate of false positives overall. Our model
specifically identifies miRNA targets in CRC with superior performance
compared with other benchmark methods in most of the evaluation
metrics. One of the possible explanations is that our constructed graph
representation can capture the information on the spatial structure of a
miRNA-mRNA duplex, which would be beneficial to the prediction of
miRNA targets. Our results also revealed that GIN demonstrated the best
architecture among all three GNNs that achieved 0.958 in AUROC when
using 5-mer for node embedding of RNA sequences, whereas the selec-
tion of k-mer from 3-mer to 6-mer will not have a significant impact on
the prediction results.

We further applied our proposed framework to 201 experimentally
validated miRNA-mRNA pairs in CRC from miRTarBase based on
western blot, reporter assays, real-time polymerase chain reaction, etc.
Our framework successfully identified 172 non-overlapped functional
interaction pairs in total using three different GNN structures. The
maximum number of predicted targets was 26 for miR-21-5p, followed
by 8 and 7 for miR-20a-5p and miRNA-145-5p, respectively. All these
predictions can be found in Supplementary Materials S4. The evidence
shows that miR-21-5p inhibited the Krev interaction trapped protein 1
(KRIT1) in recipient human umbilical vein endothelial cells, leading to
the activation of the p-catenin signaling pathway and an increase in its
downstream targets, VEGFa and Ccnd1 [81]. This process ultimately
enhanced angiogenesis and vascular permeability in CRC, indicating
that miR-21-5p may be used as a potential new therapeutic target.
Similarly, miR-20a-5p enhanced the invasion and metastasis capabilities
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of CRC cells by inhibiting Smad4 expression, and elevated levels of
miR-20a-5p were associated with a worse prognosis for patients with
CRC [82]. The miR-145-5p acts as a suppressor of CRC at the early stage,
while promoting CRC metastasis at a late stage through regulating AKT
signaling evoked epithelial-mesenchymal transition-mediated anoikis
[83]. Our results show that our model is sensitive to discovering target
mRNAs whose miRNAs are validated to play critical roles in the regu-
lation of CRC progression, which we believe could serve as an efficient
tool to uncover novel dysregulated miRNAs and their targets in CRC.

There are several limitations in this study. First, we lacked a gold
standard to collect a set of negative samples as it is challenging to verify
truly non-interactive pairs with current techniques. Second, it is essen-
tial to delve into and understand the representations learned by GNN-
based models to reveal the intrinsic characteristics of the miRNA-
mRNA duplex. Gaining these insights will enhance our comprehension
of miRNA binding mechanisms and improve our knowledge of the bio-
logical processes associated with target prediction. Third, though our
proposed model has successfully identified potential novel miRNA-
target pairs in CRC, it is critical to further validate their physiological
interaction and function at protein levels. Future studies would focus on
collecting diverse and larger datasets, particularly those encompassing
various tissues and cell types, along with a broader spectrum of miRNA-
mRNA interactions for generalizability evaluation. We will improve the
model’s interpretability by incorporating explainability methods (e.g.,
Shapley Additive exPlanations [84] and Local Interpretable
Model-Agnostic Explanations [85]). Moreover, we will build a transfer
learning-based model to identify miRNA targets in other cancer types
using Gra-CRC-miTar.

7. Conclusion

In this paper, we presented a novel framework named Gra-CRC-
miTar for miRNA target prediction in CRC. We converted miRNA
target prediction into a graph classification task. We created two pre-
trained models to encode RNA sequences for graph representation
based on word2vec techniques, followed by graph neural networks for
the prediction task. The extensive experiments and comprehensive
comparison with other methods have demonstrated that Gra-CRC-miTar
achieved superior performance for miRNA target prediction in CRC. In
addition, our proposed framework successfully identified other experi-
mentally verified miRNA targets with high performance in CRC. Our
research introduces a novel path for investigating miRNA-mRNA in-
teractions and creating models that are both more precise and more
efficient. As a result, we view our proposed framework as a valuable
instrument that has potential applications not only in CRC but also in the
identification of miRNA targets for various other diseases.
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