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Abstract: The hedgehog (Hh) pathway is a sophisticated conserved cell signaling pathway that plays
an essential role in controlling cell specification and proliferation, survival factors, and tissue pattern-
ing formation during embryonic development. Hh signal activity does not entirely disappear after
development and may be reactivated in adulthood within tissue-injury-associated diseases, including
idiopathic pulmonary fibrosis (IPF). The dysregulation of Hh-associated activating transcription
factors, genomic abnormalities, and microenvironments is a co-factor that induces the initiation and
progression of IPF.
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1. Introduction

Cell signaling is a multifactorial system that represents the knot-like schematics of
the signaling cascades that are used to transfer messages from the first messenger to the
receptor and decoded through the signaling intermediates of the second messengers [1,2].
Signal transduction, as an aspect of cell signaling, describes how cells interpret and react to
external events [3]. Hh is one of the major signal transduction networks for intercellular
communication during embryonic development and organogenesis [4] and it regulates
mitogenic and morphogenic functions during organ development [5]. Nevertheless, many
disease processes arise from defects or through the aberrant activation of these develop-
mental pathways.

The dysregulation of the Hh signaling network in controlled cell growth and division
induces autocrine and paracrine function distortions, leading to the development of tumori-
genesis and cancer progression [6,7]. Myofibroblast-associated Hh signaling is involved
in accelerated tumor growth in various cancers [8–10]. Moreover, Hh signaling is also
responsible for the development of numerous lung diseases [11]. Recent gene expression
studies and animal disease models have demonstrated that Hh signaling can induce the
fibroblast to myofibroblast transition (myofibroblast differentiation) in IPF [12]. Here, we
review the disturbances that may occur in the multilayered Hh signal transduction network
during the development of IPF.

2. Hh Signal Transduction

Vertebrate genome duplication categorized Hh genes into three different types of
hedgehog proteins: the Desert Hedgehog (Dhh), Indian Hedgehog (Ihh), and Sonic Hedge-
hog (Shh) proteins [13].
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2.1. Element of Hh Signal Transduction

Hh proteins undergo multiple processing steps that are required for the generation
and release of the active ligand from the producing cell. The core components that mediate
the Hh signal response in vertebrae are two patched receptors (Ptch1, Ptch2), a key signal
transducer smoothened receptor (Smo), three glioma-associated oncogene (Gli) transcrip-
tion factors (Gli1, Gli2, Gli3), the suppressed fusion homolog (Sufu), and kinesine protein 7
(Kif7) [14].

2.1.1. Hh Ligand

Hh genes are automatically cleaved into a 20 kDa N-terminal protein (Hh-N) and
a 25 kDa C-terminal protein (Hh-C) [15]. After translation, the Hh protein is then trans-
ported to the endoplasmic reticulum for dual lipid modification. The first modification
removes the C-terminal domain and attaches cholesterol to the C-terminal (the C-terminally
cholesterol-modified N-terminal Hh signaling domain (HhN)), leading to the association of
Hh with membranes [16]. Next, a palmitate molecule is attached to the N-terminal by Hh
acyltransferase (Hhat), resulting in a fully active dual lipid-modified HhNp [17]. The dual
lipid-modified HhNp is then transported to the cell surface.

2.1.2. Ptch

Hh ligands start to trigger signaling in the target cells by binding a 12-pass integral
membrane, the Ptch protein (complex Hh-Ptch). Vertebrates have two Ptch genes, Ptch1 and
Ptch2, but Ptch1 is the primary signaling regulator [18]. Ptch1 is essential for Hh signaling
and for generating stable signaling gradients due to negative feedback, the inhibition of
Hh ligands and Smo, and involvement in a double-negative circuit (in which Hh inhibits
Ptch and also blocks Smo). [19]. The Ptch1 protein has a sterol-sensing domain (SSD), two
large extracellular loops, and a C-terminal cytoplasmic tail [20]. SSD mediates the vesicular
trafficking of Ptch1 to regulate Smo activity [21].

2.1.3. Smo

The G protein-coupled receptor (GPCR), the Smo protein, which is predominantly
located in the membrane of intracellular endosomes, functions as a co-receptor and a
positive regulator of the Hh signaling pathway. Smo consists of an amino-terminal cysteine-
rich domain (CRD), three extracellular and three intracellular loops (ECL and ICL), seven
transmembrane domains (TM), and an intracellular carboxyl-terminal tail that is able to
undergo a range of post-translational modifications [22].

2.1.4. Gli

The Gli family of latent zinc-finger proteins function as transcriptional mediators
and are implicated in the activation and repression of the Hh target genes [23]. In detail,
Gli1 only acts as a transcriptional activator (GliA), Gli2 is the principal Hh-regulated
transcriptional activator, and Gli3 is the strongest Hh-regulated repressor (GliR) [24].
The differential activity of Gli is regulated on the level of ubiquitin-mediated proteolytic
processing [25] and the subcellular localization of a nuclear localization signal (NLS) and a
nuclear export signal (NES) [26].

2.1.5. Sufu

Sufu is an essential intracellular negative regulator of Hh signaling and acts by binding
and modulating the Gli transcription factors [27]. In the absence of signaling, Sufu inhibits
the Gli transcription factors by binding Gli through a C-terminal Sufu-interacting site (SIC)
that is responsible for the Sufu-mediated cytoplasmic retention of Gli1 via the N-terminal
Sufu-interacting (SIN) pathway [28].
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2.1.6. Kif7

Kif7 is a cilia-associated protein that regulates signaling from the Smo to the Gli [29].
However, Kif7 regulates the activity of Gli through both Sufu-dependent and -independent
mechanisms [30]. Additionally, Kif7 can act as both a positive and negative regulator of the
Gli activity [31].

2.2. Hh Signaling Pathway

The Hh activates canonical (either through ligand-dependent interaction or receptor-
induced signaling) and non-canonical (ligand-independent interaction) signaling pathways
(Figure 1).
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Figure 1. Hh pathway. (1) Canonical signaling. A. The production and secretion of Hh lig-
ands/proteins. After translation, the precursor of the Hh protein is transported to the endoplasmic
reticulum (ER) for autoclaved and dual-lipid modification. The first modification replaces the C-
terminal domain from Hh-N with cholesterol at the C terminus; then, a palmitate molecule is attached
to the N-terminal Hh-N by the Hh acyltransferase (Hhat). Disp1 on the cell surface and Scube2
regulates Hh-N secretion and distribution into the extracellular space of the producing cells. B. In the
absence of the Hh ligands, Ptch functions to suppress any inactive Smo that is inside the cell and
inhibits the migration of Smo to the membrane. Sufu restrains the GliFL protein in the cytoplasm, and
GliFL is then phosphorylated at multiple sites in the C-terminal region by PKA, GSK3, and CK1. Next,
the truncated GliR (Gli3) translocates to the nucleus and binds to the Hh target gene (target gene off).
C. Ptch1 binds to the Hh ligand and releases the Smo that has been inhibited by Ptch. Active Smo
induces the release of GliFL from cytoplasmic retention. The Hh–Ptch1 complex is then internalized
and is degraded in the lysosomes. In the end, GliFL is converted to its active form GliA (Gli1 and
Gli2) and migrates to the nucleus to activate several target genes (target gene on). Coreceptors for
the Hh ligand pathway activate positive regulators (Gas1), negative regulators (Hhip), and dual
functions (Glypican). (2) Non-canonical signaling. Type I, in the absence of Hh ligand, Ptch recruits
complex proteins Dral, Tucan-1, and caspase-9 that followed by caspase-3 activation, which further
amplifies cell apoptosis. The binding of Hh ligand to Ptch disorganizes the interaction of Cyclin B1
and the proapoptotic complex, leading to increased proliferation and survival. Type II, activation of
Smo leads to dissociation of Gi, activation of PI3K and RhoA and Rac1, which then modulate the
actin cytoskeleton and induce elevation of intracellular calcium.
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2.2.1. Canonical Pathway

The canonical signaling pathways focus on the mechanism by which Hh regulates the
Gli [32]. This pathway can be operated in both the presence and absence of Hh ligands.

In the absence of Hh ligands, Ptch1 functions to suppress any inactive Smo that is
inside the cell and inhibits the migration of Smo to the membrane [33]. The mechanism
through which Ptch1 inhibits Smo is not precise. It is supposed that Ptch1 is transported out
of the cell as an endogenous intracellular small molecule that acts as an agonist for Smo and
that does not bind to Smo [34]. Ptch1 requires extracellular Na+ and membrane cholesterol
to regulate Smo [35]. Furthermore, Ptch1 might inhibit Smo through an indirect mechanism,
possibly through changes in the distribution or concentration of a small molecule [36].

The inhibition of Smo activity is an essential step for activating this pathway in
mammals [37]. The full-length Gli (GliFL) is then phosphorylated at multiple sites in the
C-terminal region by protein kinase A (PKA), glycogen synthase kinase-3 (GSK3), and
casein kinase 1 (CK1) [38]. Kif7 acts as a scaffolding protein for PKA, GSK3, and CK1
during the Gli phosphorylation [32]. Without Hh, Sufu restrains the GliFL protein in the
cytoplasm, whereas ligand binding will proteolytically cleave Gli from Sufu [39]. The
truncated GliR (Gli3) then translocates to the nucleus and binds to the Hh target gene [40].

The Ptch1 protein stops inhibiting Smo after binding the Hh ligand and limits the
half-life of the ligand [41]. Smo activation induces the stabilization and release of Gli, the
transducer of the significant cellular effects of canonical Hh signaling, from cytoplasmic re-
tention [42]. The Hh–Ptch1 complex is then internalized and degraded in the lysosomes [43].
Hh signaling is subsequently activated and transmitted via a protein complex that includes
Kif7 and Sufu [44]. Finally, GliFL is converted to its active form GliA (Gli1 and Gli2) and
migrates to the nucleus to activate several target genes [45]. Canonical Hh signaling leads
to Gli code regulation, which covers the sum of all of the positive and negative functions of
all of the Gli proteins [40].

2.2.2. Non-Canonical Pathway

Contrary to canonical complex signaling network resulting in activation of the Gli
family of transcription factors, some Hh signaling proceeds through Gli independent
activation. In detail, non-canonical Hh delivers signals via (1) Ptch1 in the presence of
Hh ligand, (2) Ptch1 in the absence of Hh ligand, and (3) Smo-dependent and Gi protein
modulating Ca2+ and actin skeleton [32,46–48].

After embryogenesis, the Hh pathway continues to signal to discrete populations of
stem and progenitor cells within various organs in order to maintain tissue homeostasis
and repair [49]. In the lungs, the Hh pathway never entirely disappears from development
to adulthood, but the activation domain shifts dramatically and repurposes itself in order
to maintain cellular homeostasis and organ function [50]. It seems that the Hh pathway
is silenced until it is reactivated by tissue injury in order to mediate cellular regeneration
and repair.

3. Hh Signaling in Lung Development

It is already known that the Hh signaling pathway plays a critical role as the prin-
cipal regulator in the normal development of many tissues such as those in the lung.
Lung morphogenesis relies on intricate interactions and the coordinated development
of the endoderm layer-derived epithelial cells into the surrounding mesoderm-derived
mesenchyme [51].

Embryonic lung development follows the principle of branching morphogenesis into
five phases; the first four phases (embryonic, pseudo glandular, canalicular, and saccular)
result in a typical branching structure that ends with alveolar sacs with a surrounding stro-
mal scaffold and vascular structures where during the final (postnatal) alveolar phase, the
terminal sacs give rise to mature alveolar ducts and alveoli [11]. The first two development
stages regulate the establishment of the conducting airways, and the last three stages are
responsible for vascular development, alveolar development, and reducing mesenchymal
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tissue, which is crucial for the formation of the thin air–blood interface that is indispensable
for gas exchange [52]. Hh signaling is a crucial aspect that can be used to orchestrate a
network of growth factors, transcription factors, and extracellular matrix molecules during
lung embryogenesis [11].

During embryogenesis, the Shh that is secreted by the epithelial cells during the early
steps of embryogenesis, act as a spatial regulator of bronchial bud formation and are
essential for the mesenchymal–epithelial cross-talk that guides branching and epithelial
tube elongation, as well as smooth muscle cell/myofibroblast differentiation [53]. Other
elements of Hh signaling, such as Ptch1, Smo, and Gli1-3, are mainly expressed in the ep-
ithelium but are expressed weakly in the mesenchyme of the developing human lung [54].
Inhibition of the Shh pathway in mouse models causes severe lung malformations, resulting
in hypoplasia and tracheal malformations and non-viable phenotypes [55]. He et al. demon-
strated that Shh signaling controlled multiple morphogen signaling pathways, such as
Fgf10 expression, in lung morphogenesis via heparan sulfate (HS) glycosaminoglycans [56].

In contrast with its crucial roles during embryonic development, Hh signaling has
more restricted roles after birth. Postnatally, mature lung development begins with the
formation of the alveolar septum (alveolarization) followed by secondary septa and mi-
crovascular maturation [57]. The Hh pathway also regulates mesenchymal proliferation
and myofibroblast function during the septum alveolarization and maturation phase [58].
Overall, Hh signaling plays a vital role in lung embryogenesis, homeostasis, and regenera-
tion via the fine cellular distribution of the Hh pathway components, which orchestrate
complex cross-talk between lung cell populations, leading to proper lung development [59].

Recent studies indicate that the growth signaling pathways may be reactivated in
tissue remodeling and cancer development. IPF and lung cancer share similar cellular and
molecular pathological processes, including aberrant embryological pathways [60]. Hh
signaling is one of the pathways that is responsible for the activation and proliferation of
both the myofibroblasts in IPF and cancer-associated fibroblasts (CAF) [61].

Several studies showed the involvement of the Hh pathway during fibroblast activa-
tion and during myofibroblast transformation in biliary and liver fibrosis [62–65] as well as
in kidney fibrosis [66,67]. Froidure et al. proposed that minimal aberrance in Hh signaling
could induce the development and progression of pulmonary fibrosis rather than repair
in a chronically injured lung [68]. However, a recent study declared that overexpression
of Hh signaling in diabetic myocardial ischemia reduces cardiac fibrosis via suppressed
myocardial apoptosis and improved myocardial angiogenesis [69].

4. Reactivation of the Hh Pathway in IPF

IPF is a chronic, progressive, irreversible disease that is characterized by the pathogenic
cellular fibroblast to myofibroblast transition, the plasticity of alveolar epithelial cells,
the recruitment of fibroblasts, cell–matrix interactions, and immune system activation
within the alveolar wall [70]. The pathogenesis underlying pulmonary fibrosis remains
elusive. Previously, persistent chronic inflammation has been shown to result in remodeling
fibrosis; however, the paradigm has recently changed. Some studies have shown that
fibrosis without inflammation is possible; therefore, any abnormality in the pathways that
are involved in at least aberrant wound healing and/or inflammation may lead to the
development of IPF [71,72].

The reactivation and deregulation of the Hh signaling pathway and its cross-talk with
tumor growth factor-β (TGF-β) contribute to IPF pathogenesis by inducing myofibroblast
differentiation and epithelial–mesenchymal transition (EMT) and by producing excessive
amounts of extracellular matrix (ECM) [73].

The histopathological hallmark of IPF is usually interstitial pneumonia (UIP), which is
characterized by variations in temporospatial heterogeneity fibrosis, the accumulation of
fibroblasts (fibroblast foci), and subpleural and paraseptal honeycombing [74]. Although
other cell types certainly make significant contributions, fibroblasts and alveolar epithelial
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and alveolar macrophages are the most crucial drivers that are involved in the progression
of pulmonary fibrosis.

The alveolar epithelium consists of type I (AECI) and type II cells (AECIIs). AECIIs
are capable of self-renewing and self-differentiation into AECIs [75]. Honeycombing is
constructed via the hyperplasia and hypertrophy of AECIIs as well as widespread fi-
brotic areas [76]. Lung epithelia is susceptible to recurrent micro-injury resulting from
environmental exposure. Repetitive and subclinical epithelial injury that has been superim-
posed onto accelerated epithelial aging, host defense abnormalities, and the dysbiosis of
microbiome induce aberrant wound healing and deposition of ECM through the myofi-
broblasts [77]. Damage to the epithelium disrupts the basement membrane, and thus the
alveolar–capillary barrier, leading to fibrin and fibronectin leakage, coagulation cascade
activation, and abnormal vascular remodeling [78]. The inability of the dysfunctional
epithelium to generate appropriate healing following repetitive injury is central to the
pathogenesis of IPF [79].

The differentiation of airway fibroblasts to myofibroblasts (myofibroblast transdiffer-
entiation) leads to the secretion of excessive amounts of ECM [80]. However, the primary
origin of the myofibroblasts that are involved in IPF has not yet been established; hence,
three cells, including resident fibroblasts, circulating bone marrow-derived progenitors, and
EMT, have been proposed as potential sources of myofibroblasts [81,82]. EMT is a process
by which fully differentiated AECIIs undergo a phenotypic transition into mesenchymal-
like cells, such as fibroblasts and myofibroblasts, losing their epithelial functionality and
characteristics [83].

Bidirectional interactions between AECIIs and fibroblasts drive the progression of IPF.
AECIIs regulate the immune response to ameliorate lung injury by stabilizing host immune
competence and by repairing most of the damaged epithelium [84]. Repetitive cycles of
epithelial injury provoke myofibroblast differentiation and, as a response, these activated
fibroblasts induce further AECII injury and death and create a vicious cycle of profibrotic
epithelial cell–fibroblast interactions [85].

Monocytes and tissue-resident macrophages are innate immune cells that also play
a critical role in driving tissue repair, regeneration, and fibrosis [86]. While the classic
activated macrophages M1 play essential roles in wound healing after alveolar epithelial
injury (proinflammation), alternatively activated macrophages M2 are required to resolve
inflammatory responses in the lung or to terminate inflammatory responses in the lung
(profibrotic) [87].

Recent studies have reported a dysregulation of Hh signaling in IPF. The inhibition
of the Hh signaling pathway by up-regulating Sufu prevents lung fibrosis in mouse mod-
els [88]. Another study showed that the expression of Hh pathway genes and Hh-induced
CXCL14 was elevated in IPF lung tissues [89]. On the contrary, the role of Gli1, but not
Gli2, in bleomycin-induced fibrosis was limited [90]. Indeed, Smo-independent signaling
might contribute more to hedgehog pathway activity in the pathogenesis of IPF [91].

Taken together, the successful use of Taladegib, a small-molecule inhibitor of the Hh
signaling pathway that has been approved for the treatment of cancers, might inspire
the use of Hh as a targeted therapy for IPF. The reactivation of Hh signaling drives pul-
monary fibrosis via the dysregulation of epithelial injury, EMT, fibroblast activation and
myofibroblast differentiation, and macrophage polarization (Figure 2).
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Figure 2. Model of uncontrolled reactivation of Hh signaling in the pathogenesis of IPF. Microen-
vironment factors provoke repetitive epithelial injury followed by secretion of the Hh signaling
pathway-regulated various products, such as TGF-β, SDF-1, Snail 1/2, OPN, ZEB-1, and NF-κβ.
Epithelial cell Hh also warns neighboring cells via paracrine signals, induces apoptosis, and initiates
crosstalk with immune and mesenchymal cells. Growth factor and microenvironment-induced epithe-
lial and mesenchymal crosstalk promote the formation of EMT characterized by increased N-cadherin,
mesenchymal markers, FSP1, and type I collagen. Hh signaling as one of activating transcriptional
factors AECIIs regulates the immune response to ameliorate lung injury by undergoing EMT mecha-
nism, promoting macrophage M2-associated inflammatory components, and fibroblasts recruitment
to the injured site. Furthermore, Hh signaling pathway regulates myofibroblast differentiation and
ECM production in parallel with other pro-fibrogenic proteins and cytokines, including CTGF, TGF-β,
α-SMA, ET-1, OPN, and WISP-1. In conjunction with other pro-fibrogenic factors and cytokines, the
Hh pathway regulates the accumulation of ECM-associated myofibroblast, collagen synthesis, and
lung architecture is replaced with scar tissue fibrosis.

4.1. Hh Signaling Regulates Lung Epithelial Repairment

The pathogenesis of IPF is started by a usually unknown epithelial injury. Recurrent
injuries lead to epithelial apoptosis that is mediated by misfolded proteins and an un-
folded protein response [92]. Epithelial injury-associated apoptosis can drive aberrant cell
cross-talk and fibrogenesis regardless of the triggers [93]. Dysfunctional epithelial quality
control network-associated cell crosstalk results in diverse cellular endophenotypes and
molecular signatures of IPF [94]. The aberrant activation of epithelial cells may undergo
transdifferentiation into EMT as a direct source of fibroblasts–myofibroblasts and as an
escape from apoptosis in response to injury [95].
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In normal conditions, Hh is one of the signaling cascades that regulate and maintain
the balance of wound healing, chronic fibrosis, and cancer [96]. Following injury, epithelial
cell Hh warn neighboring cells, generate matrix deposition and fibroblasts proliferation,
preventing transudation, and communicate with other immune systems [97].

The dysfunction of Hh-associated lung epithelial repair and regeneration induce fibro-
genesis. Normally, epithelial cells preserve the mesenchymal quiescence through paracrine
Hh signaling, simultaneously as negative feedback to maintain epithelial quiescence [50].
Hh maintains a balance between proliferation in the acute phase of injury (downregulated
as the mesenchyme proliferates) and quiescence (returns to baseline during injury resolu-
tion) [98]. Steward et al. first demonstrated that Hh pathway expression is up-regulated in
lung fibrosis and plays a role in remodeling damaged lung epithelium [99]. Furthermore,
the secretion of Hh signaling by the AECIIs was up-regulated after stimulation by oxidative
stress [100].

Injury to the AECIIs causes the release of many soluble factors that participate in
epithelial repair, including growth factors (TGF-β), cytokines, chemokines, stromal cell-
derived factor-(SDF-)1, vasoconstrictor endothelin-1 (ET-1), interleukins, prostaglandins,
and matrix components [92,101,102]. The concentration of SDF-1, which plays an essential
role in tissue repair and remodeling, was increased in the plasma and in the lungs of humans
with IPF [103,104]. Additionally, SDF-1-induced pancreatic cancer cell invasions and EMT
via Hh signaling defined the molecular basis of active bidirectional communication between
the SDF-1 and Hh pathways [105,106].

In response to injury, the airway epithelial cells induced TGF-β activation through
αvβ6 and αvβ8 [107]. Zhang et al. demonstrated that TGF-β induced EMT and pro-
fibrosis via the upregulation of YY1 expression [108]. Although the knowledge of TGF-
β-Hh signaling cross talk is still limited, both pathways can directly regulate critical
components of each other [109]. ET-1 is also involved in the pathogenesis of lung fibrosis
via myofibroblast differentiation, angiogenesis, and EMT through interaction with TGF-β
and other pro-fibrotic mediators [110,111]

In general, the various products that are created following the lung epithelial injury-
related activation of the Hh signaling pathway is involved in the following fibrogenesis
process, including myofibroblasts differentiation, macrophage polarization, and EMT.

4.2. Hh Signaling Controls Fibroblast Activation and Myofibroblast Differentiation

Fibroblast activation and myofibroblast differentiation are the central pathogenesis of
pulmonary fibrosis [112–114]. The secretion of profibrotic cytokines and TGF-β induces
the differentiation of fibroblasts to myofibroblasts that produce extensive ECM, increased
tissue stiffness, and deteriorating lung function [115]. Indeed, mechanical stiffness, will
activate TGF-β1, which plays a pivotal role in the ability of the ECM to influence the effect
that the tissue microenvironment has on cell phenotype and the function and to promote
progressive pulmonary fibrosis [113]. Cigna et al. identified that Hh signaling can activate
myofibroblast differentiation [116] with and without TGF-β1 [117]. Interestingly, both the
TGF-β and Hh genes could induce each other in driving myofibroblast differentiation [118].
However, compared to TGF-β, Hh stimulation was not fully adequate in myofibroblast
differentiation [119].

It is known that control of Hh-associated lung fibrogenesis is varied in each Hh gene.
Horn et al. demonstrated that the activation of the Hh pathway in patients with systemic
sclerosis (SSc) was increased, which was characterized by the accumulation of Gli1-2, Smo,
and Ptch1-2 [120]. Consequently, the inhibition of the Hh genes in SSc with GANT61 and
Gli2 siRNA reduces pro-fibrotic markers and downregulates fibroblast activation [121].
Similarly, the inhibition of Gli but not Smo stimulated an antifibrotic environment and
decreased lung fibrosis and lung collagen accumulation [122], whereas Hu et al. showed
that Hh signaling, mainly Shh signaling, stimulated myofibroblast differentiation in a
Smo- and Gli1-dependent manner and via the Gli1 activation of the α-smooth muscle actin
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(α-SMA) promoter [118]. In short, both the canonical and non-canonical Hh pathways
regulate ECM accumulation and myofibroblast differentiation.

The Hh signaling pathway regulates myofibroblast function in parallel with other
pro-fibrogenic proteins and cytokines. The cross-talk linking connective tissue growth
factor (CTGF) and TGF-β induced myofibroblast differentiation and ECM production [123].
Osteopontin (OPN), a matricellular protein that is abundantly expressed during inflam-
mation and repair, was highly up-regulated and may exert a profibrotic effect in IPF [124].
Hh up-regulated and directly promoted OPN-induced liver fibrosis [125]. Recently, Hou
et al. demonstrated that Hh stimulates pulmonary fibrosis by OPN-mediated macrophage
alternative activation [126].

In addition, targeting the RAS axis decreased collagen deposition, myofibroblast dif-
ferentiation, and α-SMA expression via the inhibition of the Hh genes that are involved
in silicosis [127]. Next, Cao and his colleagues found that the Shh pathway regulates my-
ofibroblastic activation and pulmonary fibrosis via cross-talk with Wnt10a signaling [128].
A recent study on ligamentum flavum (LF) fibrosis affirmed that Wnt1-inducible signaling
pathway protein 1 (WISP-1)–Hh cross-talk was a novel profibrotic pivot [129].

A hypoxic microenvironment drives fibrosis progression. Wang et al. showed that
hypoxia significantly enhanced the expression of Hh signaling in pulmonary vascular
smooth cell proliferation [130]. Next, hypoxia-induced CTGF-activated Hh signaling in
α-SMA and collagen accumulation [131]. Altogether, it is supposed that Hh signaling
dysregulation combined with various growth factors, genetics, and the microenvironment
could determine lung fibrogenesis.

4.3. Hh Signaling Regulates EMT

Even though the specific roles of EMT in IPF have been widely hypothesized; its
precise mechanisms are not entirely understood. Kalluri and Weinberg classified three
classes of EMT. Type 1 EMT regulates embryogenesis and organ development. Next,
type 2 EMT determines routine wound healing, tissue regeneration, and inflammation-
associated organ fibrosis. On the other hand, type 3 EMT has been linked with the epithelial
cells, which underwent genetic and epigenetic changes and then transformed into cancer
cells [132].

The Hh pathway regulates the EMT mechanism of lung fibrosis through cross-talk with
various EMT-activating transcriptional factors, such as zinc finger E-box–binding homeobox
(ZEB) and Snail 1/2, and by responding to signals from the microenvironment [133].
Furthermore, the EMT of the AECIIs indirectly promotes a pro-fibrotic microenvironment
through the dysregulation of paracrine signaling between epithelial and mesenchymal
cells rather than by directly affecting mesenchymal population [134,135]. Hh signaling was
involved in the ZEB1-mediated EMT of the AECII augments that were involved in local
myofibroblast differentiation via paracrine signal tissue plasminogen activator (tPA) [136].
The inhibition of Hh signaling could prevent house dust mite-promoted EMT, which is
characterized by the downregulation of mesenchymal markers, fibroblast-specific protein 1
(FSP1), and type I collagen and the increased expression of the adherens junction protein
E-cadherin [137].

EMT might also be induced by various growth factors. Blocking the Hh pathway
in the primary cilium abrogated the TGF-β1-induced mesenchymal differentiation of the
AECIIs [138]. Furthermore, a novel study proved that mesenchymal stem cells (MSC)
convert the EMT process in LPS-induced lung injury by blocking nucleus factor κβ (NF-κβ)
and the Hh pathways [139]. A new study by Mammoto et al. showed that hypoxia-
induced endothelial Twist1, which stimulated the accumulation of α-SMA [140]. Even
the precise mechanism of Hh pathway-induced EMT in IPF pathogenesis is still limited;
recent evidence supports that the cross-talk between Hh genes with other developmental
pathways, growth factors, and microenvironments induce fibrogenesis.
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4.4. Hh Signaling Regulates Macrophage Activation and Polarization

The macrophage balance in the absence of injury, in the early phases of injury, and in
the fibrotic phase is different. Misharin et al. revealed that the monocyte-derived alveolar
macrophages (Mo-AMs) that persevere in the lung after injury resolution express higher
proinflammatory and profibrotic genes than tissue-resident alveolar macrophages (TR-
AMs) [141]. However, by stimulating complex microenvironment factors, both Mo-AMs
and TR-AMs can be polarized into macrophage M1 or M2 phenotypes in IPF [142].

Hh-associated macrophage function promotes fibrogenesis. Several pieces of evidence
have demonstrated Hh genes were expressed in human monocytes and macrophages;
therefore, Hhs act as potent chemoattractants [143,144]. Additionally, Pereira and his
colleagues showed that Hh signaling-induced M2 activation leads to hepatic fibrosis and
angiogenesis [145]. The inhibition of Hh signaling in breast cancer altered macrophage
polarization by setting the macrophages on a path that caused them to revert to M1
macrophages [146]. It has been stated that OPN plays a role in IPF pathogenesis. Shh pro-
moted an OPN-dependent mechanism for M2 polarization by activating the JAK2/STAT3
signaling pathway [126].

5. Targeting the Hh Signaling Pathway as Therapy for Pulmonary Fibrosis

Since Hh resembles the Achilles’ heel in IPF, targeting the Hh signaling pathway and
Hh-related tumor microenvironments can help achieve better therapy outcomes. Ligus-
trazine reduced the expression of the profibrotic factor, suppressed total collagen produc-
tion, and ameliorated oxidative stress, resulting in attenuating paraquat (PQ)-induced lung
fibrosis [147]. Recently, microcystin–leucine–arginine (MC-LR)-induced liver fibrosis was
abrogated via downregulated Gli1/2 gene expression [148]. Zhang et al. conducted in vivo
and in vitro studies that confirmed that Astilbin attenuated lung fibrosis by suppressing
the Hh pathway [149].

A variety of Smo antagonists that target Hh signaling have been developed for cancer
and fibrosis diseases. Vismodegib is the first oral Hh inhibitor that has been approved to
treat patients with locally advanced or metastatic basal cell carcinoma [150]. However, a
phase 1b study determining the appropriateness of using vismodegib for IPF treatment was
discontinued due to safety issues [91]. Another Smo antagonist, cyclopamine, reduced the
migration and myofibroblast differentiation of human dermal fibroblasts [151]. Taladegib is
a potent, synthetic, small-molecule inhibitor of Smo, which suppresses Shh signaling [152].
Currently, a phase 2 study testing Taladegib as a monotherapy in patients with IPF is still
ongoing [153].

Furthermore, targeting the Gli transcription factor in the nucleus could be a therapeutic
option. The administration of the Gli inhibitor GANT61 reduced lung fibrosis and lung
collagen accumulation in a mouse model [154]. A study comparing SSc-ILD patients and
normal subjects determined that Pirfenidone has antifibrotic effects on fibroblasts via the
inhibited phosphorylation of GSK-3β interference via the Hh pathway [155].

6. Conclusions

The aberrant activation of Hh signaling is one of the core pathways that is involved
in the development of pulmonary fibrosis. Recent evidence has shown high Hh signaling
expression in the epithelial cells, fibroblasts, myofibroblasts, and macrophages, as well as
in other IPF cells. When uncontrolled, the activation of Hh signaling is responsible for
the development growth factors and other various products following a tissue-associated
epithelial injury, the progressive accumulation of ECM by the myofibroblasts, crosstalk
between the fibroblasts and EMT, and M2 macrophage polarization.

Even though IPF progression could potentially be reversed through the targeting of
Hh genes, the detailed mechanism of the Hh pathway in lung fibrosis and other organ
fibrosis remains to be investigated in more detail. Hh signaling regulates mesenchymal
and epithelial quiescence/proliferation during normal repairs. In IPF patients, the presence
of a repetitive injury induces chronic epithelial proliferation more than mesenchymal
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quiescence. Instead, it seems different in the ischemic heart; Hh signaling reduces fibrosis.
These discrepancies might be because Hh is acutely and not chronically overexpressed in
the ischemic heart.

Furthermore, a concept “apoptosis paradox” in IPF, where epithelial apoptosis can
stop collagen deposition, but apoptosis resistance in myofibroblasts leads to increased
fibrosis, may correlate with Hh non-canonical signaling. Therefore, further research is still
needed to discover the detailed Hh signaling pathway-related inflammation and abnormal
repairment mechanism in IPF.
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