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Stronger functional network connectivity and social support buffer against 
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A B S T R A C T   

Health and financial uncertainties, as well as enforced social distancing, during the COVID-19 pandemic have 
adversely affected the mental health of people. These impacts are expected to continue even after the pandemic, 
particularly for those who lack support from family and friends. The salience network (SN), default mode 
network (DMN), and frontoparietal network (FPN) function in an interconnected manner to support information 
processing and emotional regulation processes in stressful contexts. In this study, we examined whether func-
tional connectivity of the SN, DMN, and FPN, measured using resting-state functional magnetic resonance im-
aging before the pandemic, is a neurobiological marker of negative affect (NA) during the COVID-19 pandemic 
and after its peak in a large sample (N = 496, 360 females); the moderating role of social support in the brain-NA 
association was also investigated. We found that participants reported an increase in NA during the pandemic 
compared to before the pandemic, and the NA did not decrease, even after the peak period. People with higher 
connectivity within the SN and between the SN and the other two networks reported less NA during and after the 
COVID-19 outbreak peak, and the buffer effect was stronger if their social support was greater. These findings 
suggest that the functional networks that are responsible for affective processing and executive functioning, as 
well as the social support from family and friends, play an important role in protecting against NA under stressful 
and uncontrollable situations.   

1. Introduction 

The coronavirus disease 2019 (COVID-19) has presented humanity 
with one of the greatest global health and economic crises in the 21st 
century and has increased people’s negative moods, including worry, 
stress, sadness, despair, and fear. Poor psychological state and high 
anxiety were found in the general Chinese population in the early phase 
of the COVID-19 outbreak (Qian et al., 2020; Ren et al., 2020). More-
over, several recent longitudinal studies focusing on psychologically 
related distress during different COVID-19 phases have found no change 
in negative emotions, such as anxiety and depression, between the initial 
outbreak and the after-peak period in China (C. Wang et al., 2020; Y. 
Wang, Hu, Feng, Wilson and Chen, 2020), suggesting that the mental 
health consequences of the COVID-19 pandemic could last over time and 
that mental health problems could peak later than the actual pandemic 

(Gunnell et al., 2020). Considering the enormously uncertainty, 
life-threatening conditions, and the continued loss due to the pandemic, 
the impact of COVID-19 is expected to be detrimental to mental health 
both during and after the pandemic (Galea et al., 2020; Holmes et al., 
2020). Therefore, it is crucial to investigate neurobiological and social 
protective factors that buffer against the influence of negative affect 
(NA) not only during but also after the COVID-19 peak period. 

Many previous studies on the neural mechanism of NA have 
demonstrated that regions in the salience network (SN) (e.g., dorsal 
anterior cingulate cortex [dACC] and insula) are involved in the pro-
cesses of conflict resolution, emotional awareness, and regulation 
(Craig, 2009; Johnstone et al., 2007; Kerns et al., 2005). Some brain 
regions of the default mode network (DMN), such as the medial pre-
frontal cortex (mPFC), posterior cingulate cortex (PCC), and precuneus, 
are associated with negative emotional processes (Andrews-Hanna, 
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2012; Greicius et al., 2003; Raichle et al., 2001; Veer et al., 2011). The 
PFC of the frontoparietal network (FPN) is also crucial to negative 
emotional processes since it is associated with cognitive control and 
emotion regulation (Drabant et al., 2009; Ochsner and Gross, 2005; 
Quirk and Beer, 2006). In addition, accumulating studies have attemp-
ted to identify the functional connectivity (FC) of negative emotion with 
task-based and resting-state data (Elmira et al., 2018; Harrison et al., 
2008; Lydon-Staley et al., 2019). Notably, several meta-analysis studies 
have suggested that abnormal FCs within and between the SN, DMN, 
and FPN are associated with affective-related psychopathologies (Z. He 
et al., 2019; Kaiser et al., 2015; Xu et al., 2019). Researchers in Stanford 
University have proposed that interactions among the SN, DMN, and 
FPN constitute the Triple Network Model of psychopathology (V. 
Menon, 2011). These three networks are considered to function in an 
interconnected manner and participate in higher information processing 
of the entire internal and external environment of the organism to 
determine which behavioral strategy should be adopted during the 
processes of emotional response and regulation (B. Menon, 2019). 
Specifically, the SN functions as a switch between the FPN and the DMN 
suppressing the latter and activating the former when a salient stimulus 
occurs. Failure of this switch would lead to impaired detection and 
mapping of salient external stimuli and internal events, with significant 
consequences for both cognitive control and self-monitoring. In other 
words, weak mapping from the SN gives rise to aberrant engagement of 
the FPN and DMN, which would compromise cognition and 
goal-relevant adaptive behavior, as well as alter the self-referential 
mental activity (e.g., excessive rumination in patients with depression) 
(V. Menon, 2011; Miller and Cohen, 2001; Seth, 2005). In addition, 
aberrant communication between the FPN and DMN may reflect 
ongoing rumination or an underlying bias for control systems (Roselinde 
H Kaiser et al., 2015a,b). Previous studies have reported that greater 
strength of connectivity between the DMN and FPN is associated with 
poorer cognitive control performance and more repetitive negative 
thinking (Hampson et al., 2010; Lydon-Staley et al., 2019). Taken 
together, these findings suggest that the negative emotional response 
and regulation processes are associated with alterations of multiple 
brain regions in the SN, DMN, and FPN functional networks. 

Given that the emotional state is affected by the interaction of the 
brain and environment (Schmidt et al., 2010; Schmidt et al., 2010), the 
influence of social support on the pandemic-related NA level under 
COVID-19 social isolation should be focused on. Numerous studies have 
indicated that social support is an essential resource for coping with 
adversity and maintaining physical and psychological health (d’Arbeloff 
et al., 2018; Michalak et al., 2003; Ozbay et al., 2007; Palinkas et al., 
2004; Resick, 2001). The National Cancer Institute defines social sup-
port as “a network of family, friends, neighbors, and community mem-
bers that is available in times of need to give psychological, physical, 
and financial help” (www.cancer.gov). According to the stress-buffering 
hypothesis (Cohen and McKay, 2020; Cohen and Wills, 1985), social 
support moderates the relationship between NA or stress and the 
physiological reaction (Giesbrecht et al., 2013; Puterman et al., 2014), 
such as the amygdala action (Hyde et al., 2011). Thus, identifying the 
buffering impact of social support on NA might be crucial for improving 
people’s mental health during and after the COVID-19 pandemic. 

Previous neuropsychological studies have advanced our under-
standing of the neural basis of NA in routine life. Many studies have also 
explored the neural mechanism of the negative mental state during the 
COVID-19 pandemic (Chahal et al., 2021; L. He et al., 2021; Liu et al., 
2021). However, to the best of our knowledge, no study has used 
resting-state functional connectivity (rsFC) to predict NA at the different 
stages of the COVID-19 pandemic in healthy people. More importantly, 
to date, no effort has been made to identify a protective factor that 
moderates the relationship between the neural mechanism and the 
mental symptoms. 

Thus, in the present study, we used the intrinsic rsFC, which is a 
powerful indicator for detecting spontaneous brain activity and 

investigating the neural bases underlying behavior at the individual 
level (Biswal, 2012; Kunisato et al., 2011; Lei et al., 2015), to identify 
the inherent brain functional networks, i.e., resting-state networks 
(RSNs) (Dijk et al., 2010). We determined whether social support 
moderates the association between rsFC of the SN, DMN, and FPN before 
the COVID-19 (T1) outbreak and NA levels during the COVID-19 
outbreak and after the peak period. Based on previous studies (Chahal 
et al., 2021; L. He et al., 2021; C. Wang et al., 2020; Y. Wang et al., 
2020), we expected that, on average, participants would report higher 
NA levels during the pandemic than before the pandemic, and that the 
NA level would not decrease immediately after the pandemic outbreak 
peak (hypothesis 1). According to literatures mentioned above, we hy-
pothesized that greater connectivity of intra-SN, SN− FPN, and 
SN− DMN, as well as the decreased connectivity of FPN− DMN are 
associated with the reduced NA brought by the COVID-19 pandemic 
(hypothesis 2). Importantly, we expected that social support moderates 
this neural-NA association, and individuals with a higher level of social 
support would show stronger correlations between network connectiv-
ity and NA (hypothesis 3). 

2. Methods and materials 

2.1. Participants 

Data were derived from the “Behavioral Brain Research Project of 
Chinese Personality” (BBP). A three-wave panel study was conducted 
over an 8-month period. Specifically, before the pandemic (September 
17, 2019–January 11, 2020, T1), participants of the BBP had completed 
the NA measurement before and after resting-state fMRI scanning. On 
January 23, 2020, China imposed a lockdown in Wuhan to quarantine 
the center of an outbreak of COVID-19. On February 17, 2020, the 
number of existing confirmed cases reached its peak in China. A total of 
901 undergraduates from the BBP were recruited via mobile telephone 
text message to complete the first online pandemic questionnaire survey 
from February 22 to 28, 2020 (T2). On April 8, 2020, the Wuhan lock-
down officially ended. The second online pandemic questionnaire sur-
vey was performed during the remission period of the pandemic (April 
24− May 1, 2020, T3). In total, 496 participants with pre-pandemic 
brain imaging data and pandemic-related NA scores in the two stages 
of the pandemic were included in the present analysis (360 females, 
mean age = 19.22 years; standard deviation (SD) = 0.86, age range =
17–26 years). 

All participants were college students in Southwest China, and none 
reported a history of psychiatric or neurological illnesses. All partici-
pants signed informed consent forms before participating in the study 
and were monetarily compensated at the end of the study. Ethical 
approval for this study was granted by the Ethics Committee of the 
University, and all procedures involved were in accordance with the 
sixth revision of the Declaration of Helsinki. 

2.2. Measures 

2.2.1. The NA questionnaire (T1, T2, and T3 assessments) 
We used eleven items to assess the negative emotions experienced, 

including distressed, upset, guilty, scared, hostile, irritable, alert, 
ashamed, nervous, jittery, and afraid. The factor structure of the 11-item 
negative emotional scale replicates the original Positive and Negative 
Affect Schedule factor structure (Watson et al., 1988) in Chinese samples 
(Jackson and Chen, 2015). To be attention, this scale included alert as a 
negative emotion rather than positive, as alert has negative meaning in 
Chinese language and culture. Items were rated from 1 (not at all) to 5 
(very much). The average score of NA measured before and after the 
resting-state fMRI scanning was computed and used as a baseline of NA. 
In this study, the Cronbach’s alpha of the NA in different stages ranged 
0.90–0.93. 

M. Xiao et al.                                                                                                                                                                                                                                    

http://www.cancer.gov


Neurobiology of Stress 15 (2021) 100418

3

2.2.2. The Social Support Scale (T2 assessment) 
The scale of perceived social support (X. Wang, Wang and Ma, 1999) 

is a 12-item measure that assesses participants’ perceived social support 
(e.g., “when I have problems, some people [i.e., relatives, friends, 
classmates] were there accompanying me”). Responses were rated on a 
5-point Likert-type scale (1 = never to 5 = always). Cronbach’s alpha of 
the Social Support Scale in the current study was 0.94. 

2.3. rsfMRI data acquisition and preprocessing 

2.3.1. Image acquisition (T1 assessment) 
For each participant, rsfMRI scanning was performed with a 3 T 

Prisma Siemens Trio MRI scanner (Siemens Medical Systems, Erlangen, 
Germany) using a 32-chanel brain coil. We used a gradient echo-planar 
imaging sequence to obtain the resting-state functional image, and the 
scanning parameters were as follows: repetition time (TR) = 2000 ms; 
echo time (TE) = 30 ms; slices = 62; slice thickness = 2 mm; field of view 
read = 224 × 224 mm2; flip angle = 90◦; resolution matrix = 112 × 112; 
voxel size = 2 × 2 × 2 mm3; phase encoding direction = PC » AC. Each 
section contained 240 volumes. High-resolution T1-weighted structural 
images were acquired for coregistration purposes (parameters: TR =
2530 ms; TE = 2.98 ms; field of view read = 256 × 256 mm2; flip angle 
= 7◦; base resolution = 256 × 256; slice per slab = 192; slice over-
sampling = 33.3%; voxel size = 0.5 × 0.5 × 1 mm3; phase encoding 
direction = AC » PC). 

2.3.2. Image data preprocessing 
Data Processing & Analysis for (Resting-State) Brain Imaging (Yan 

et al., 2016), based on the statistical parametric mapping software 
(SPM8, http://www.fil.ion.ucl.ac.uk/spm), was used to preprocess the 
image data. The preprocessing was conducted as follows. The first 10 
images were discarded to allow for participant familiarization and 
fMRI-signal stabilization. The remaining images were corrected for 
temporal shifts between slices and realigned to the middle volume. Next, 
using the EPI templates in SPM8 (Ashburner, 2007), each image volume 
was spatially normalized to the Montreal Neurological Institute (MNI) 
152-brain template, with a resolution voxel size of 3 × 3 × 3 mm3. The 
images were then spatially smoothed with a 4-mm full width at half 
maximum Gaussian kernel, and linear trends were subsequently 
removed. We regressed nuisance signals (including white matter, cere-
brospinal fluid, and head-motion parameters) and their derivatives 
using a Friston 24-parameter model to control for potential physiolog-
ical effects (Friston et al., 1996; Hallquist et al., 2013). Linear and 
quadratic trends were also included as regressors, because the 
blood-oxygen-level-dependent signal exhibits low-frequency drifts. To 
remove the effects of very-low-frequency drifts and high-frequency 
noises, all images were filtered using a temporal band-pass filter 
(0.01–0.08 Hz). 

During scanning, each participant was asked to remain still and 
relaxed, with eyes closed, and not think of anything deliberately. Foam 
pads and earplugs were employed to reduce head motion and scanning 
noise. In final formal analysis, no participant had head motion of >2.0 
mm in any direction between volumes, rotation of >2.0 in any axis 
during scanning, or mean framewise displacement (FD) of >0.50 (Chen 
et al., 2021; Tie et al., 2015). 

2.4. Data analysis 

2.4.1. Functional network connectivity (FNC) analysis 
The FC within and between the three RSNs that correlate with NA 

was assessed on the network level using the CONN toolbox, version 17f 
(Whitfield-Gabrieli and Nieto-Castanon, 2012). The connectivity 
strength between the 17 regions of interest (ROIs; brain regions indi-
cated in parentheses) of the following three RSNs was included in the 
analysis: DMN (mPFC, bilateral lateral parietal cortex, and PCC [this ROI 
also covers parts of the precuneus]), SN (dACC, bilateral anterior insula 

[AI], bilateral rostral PFC, bilateral supramarginal gyrus [SMG], and 
bilateral amygdala), FPN (bilateral dorsolateral PFC [dlPFC] and bilat-
eral posterior parietal cortex [PPC]). All the 17 ROIs were derived from 
the CONN toolbox. The bilateral amygdala ROIs were derived from the 
FSL Harvard-Oxford Atlas maximum likelihood subcortical atlas (Desi-
kan et al., 2006; Schouten et al., 2016; Van Duijvenvoorde, Westhoff, de 
Vos, Wierenga and Crone, 2019), while the other ROIs were defined 
from CONN’s ICA analyses of the HCP dataset (497 subjects) (W. Shen 
et al., 2019; Wehrle et al., 2018; Whitfield-Gabrieli and Nieto-Castanon, 
2012) (for peak MNI coordinates and images of these ROIs, see Table S1 
and Fig. S1). To produce first-level correlation maps for each partici-
pant, the average BOLD time series for all voxels in each seed ROI was 
extracted and Fisher z-transformed. Then, pairwise bivariate correlation 
coefficient (i.e., Pearson’s correlation), which is computationally less 
expensive and preferable for large datasets (Mahadevan et al., 2021), 
was calculated using the time courses for each of the ROI, producing a 
symmetrical 17 × 17 correlation matrix (i.e., ROI-to-ROI connectivity 
matrix). At the second level, the resultant correlation coefficients were 
further correlated with NA scores using multiple regression analyses to 
test the relationship between FNC and negative emotion. For these an-
alyses, we used a false discovery rate (FDR) corrected threshold of p <
0.05 (two-sided). This correction was applied at the seed level, after 
testing for connectivity between all seed-target ROI pairs in the given 
network. In these analyses we included age, sex, mean FD, and the NA 
level of baseline as covariates of no interest to ensure that our results 
only revealed FC correlations and differences uniquely explained by NA 
and not attributable to differences in age, sex, head motion, or the 
emotional state during scanning. Finally, the mean connectivity strength 
values (Z-scores) within and among the three networks was calculated 
based on the ROI-to-ROI connectivity that correlated with NA (Chen 
et al., 2021; Domakonda et al., 2019). 

2.4.2. Prediction analysis 
This study conducted a traditional regression analysis to test the 

relationship between resting-state networks and NA scores. We treated 
the average FC values within or between the three networks as the in-
dependent variable, NA (T2) or NA (T3) as the dependent variable. Age, 
sex, FD and the NA level of baseline were set as controlling variables. 
Notably, given that the machine learning approach allows for the pre-
diction of unseen participants, offering information at the individual 
level rather than group level (Cui et al., 2018; X. Shen et al., 2017; 
Yarkoni and Westfall, 2017), and given that a ten-fold cross-validation 
may provide more stable estimates of predictive performance (Varo-
quaux et al., 2017), we further performed a machine-learning method 
named linear support vector regression (SVR) and ten-fold cross--
validation (Beaty et al., 2018; Supekar et al., 2013) to test the robustness 
of the brain-behavior relationship. We divided the data randomly into 
ten folds, and used nine folds to build a linear regression model which 
we subsequently tested on the tenth fold data. In the linear regression 
algorithm, the NA scores (T2 and T3) were taken as the dependent 
variables respectively and the corresponding functional network con-
nectivity (i.e., the mean within- and between-network connectivity 
values) was taken as the independent variable. After repeating this 
procedure ten times, we obtained the predicted NA scores (T2 and T3) of 
each participant. The predictive power of the model was assessed by the 
magnitude and statistical significance of Pearson’s correlation between 
actual and predicted behavioral values. If actual and predicted NA 
scores were significantly positively related, this would indicate that the 
model was successful in its prediction. Then, permutation testing was 
used to test the significance of the prediction results. We randomly 
shuffled the label between observed NA scores (T2 and T3) and func-
tional network connectivity each time and reran the above ten-fold 
prediction procedure. The 5000 Pearson correlations between 
observed and predicted scores composed null distributions of r values. 
The number of null r values was greater than the observed r value and 
was then divided by 5000, providing an estimated p value. 
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2.4.3. Moderation analyses 
To investigate the role of social support, we carried out moderation 

analyses using the PROCESS macro in SPSS (Hayes, 2013). We first 
treated the average FC values within or between the three networks as 
the independent variable, NA (T2) or NA (T3) as the dependent variable, 
and social support as the moderator variable. Age, sex, and FD were set 
as controlling variables. All variables were standardized prior to anal-
ysis. The significance of the moderating effect was assessed using a 
bootstrapping method with 5000 iterations. If the 95% confidence in-
terval (CI) did not contain zero, the moderating effect was considered 
significant. We employed the Johnson-Neyman technique to quantify 
the moderation effect, which investigates the strength of the relationship 
between the predictor and outcome variable across the spectrum of 
possible values of the moderating variable, and identifies the values of 
the moderating variable at which this relationship either becomes, or 
ceases to be, significant (Hayes and Matthes, 2009; Spiller et al., 2013). 

2.4.4. Exploratory analyses 
Association between network connectivity and specific NA items at T2 

and T3. After the aforementioned FNC analyses provided significant 
connectivity, the mean within-network connectivity and mean cross- 
network connectivity were calculated by averaging ROI-to-ROI pair-
wise correlations in/across each network (Chen et al., 2021; Domakonda 
et al., 2019). Pearson’s correlations of mean network connectivity with 
specific NA items at T2 and T3 were further assessed while correcting for 
age, sex, FD, and NA (T1) using partial correlation. Statistical analyses 
were performed using SPSS. 

Sex differences in network connectivity associated with NA. Potential sex 
differences in FNC associated with NA scores were further assessed using 
an analysis of covariance model (i.e., comparing regressions of the male 
and female groups) implemented in the CONN toolbox. Statistical sig-
nificance was set at p < 0.05 with FDR correction. Age, FD, and NA (T1) 
were defined as covariates of no interest. 

Associations between whole brain network connectivity and NA. To 
explore the effects of whole-brain network connectivity patterns on NA, 
we further performed the whole brain analysis with the DMN (4 ROIs), 
sensorimotor network (SMN; 3 ROIs), visual network (VN; 4 ROIs), SN 
(9 ROIs), dorsal attention network (DAN; 4 ROIs), FPN (4 ROIs), lan-
guage network (LN; 4 ROIs), and cerebellar network (CN; 2 ROIs). All 
the ROIs were defined from CONN’s ICA analyses of the HCP dataset 
(497 subjects). The covariates and statistical thresholds were the same as 
those mentioned in the FNC analyses section above. 

2.4.5. Sensitivity analyses 
Sensitivity analyses using other definitions of RSN were carried out 

to assess the sensitivity of the current ROI (i.e., SN, DMN, and FPN). 
Specifically, the ROI for the left and right executive control network 
(CEN, 12 ROI), the anterior and posterior SN (19 ROI), and dorsal and 
ventral DMN (19 ROI) were defined based on the well-established freely 
available atlas of regions defined by correlated activation patterns 
(http://findlab.stanford.edu/functional_ROIs.html) (Chen et al., 2021; 
Shirer et al., 2012). The analyses to test network connectivity in relation 
to NA scores were the same as those mentioned in the functional 
network connectivity analyses section. 

3. Results 

3.1. Sample description and behavioral results 

Descriptive statistics and correlation analysis for age, FD, and 
behavioral variables are listed in Table 1. Paired-sample t-test showed 
that NA was significantly higher during (t = − 15.31, p < 0.0001) and 
after (t = − 14.89, p < 0.0001) the COVID-19 peak than before the 
pandemic. However, there was no significant difference between during 
and after the COVID-19 peak in NA measurement (t = − 0.51, p = 0.61). 
The score differences for each item at the two stages of the pandemic are 
described in Table S2 and Fig. S2. Sex differences were significant in NA 
(T2) (female = 2.38 ± 0.77; male = 2.12 ± 0.78; t = 3.21, p < 0.005) but 
not in NA (T3) (female = 2.36 ± 0.80; male = 2.24 ± 0.87; t = 1.50, p >
0.05) (see Fig. S3). The correlation between age and NA (T2) was sig-
nificant (r = 0.10, p < 0.05) but not that with NA (T3) (r = 0.003, p >
0.05). We set sex, age, FD, and NA (T1) as the control variables in the 
further analysis. 

3.2. Functional network connectivity analysis 

To reveal the relationships between the current networks and NA 
under COVID-19 conditions, we correlated the NA levels (T2 and T3) 
with the FNC within and between the three networks. NA (T2) was 
negatively related to FC within the SN and between the SN and DMN, SN 
and FPN, and DMN and FPN (Table 2 and Fig. 1). We also found that NA 
(T3) was negatively related to FC within the SN and between the SN and 
FPN (Table 3 and Fig. 2). Within-network and between-network corre-
lation matrices are shown in Fig. S5. We also test that whether the 
within-system connectivity generally is greater than between-system 
connectivity (Tables S5 and S6). 

3.3. Prediction results 

The associations between the resting-state networks and NA were 
tested by performing the regression analyses and results showed that 
functional network connectivity significantly predicted the NA scores 
(effect on NA (T2) ranged from − 0.22 to − 0.12, t-values ranged from 
− 4.80 to − 2.83, p < 0.005; effect on NA (T3) ranged from − 0.15 to 
− 0.14; t-values ranged from − 3.31 to − 3.18; p < 0.002). The results of 
SVR showed a close relationship between NA (T2) and functional 
network connectivity [r (predicted, observed) = 0.191, p < 0.001, see 
Fig. 3a], as well as between NA (T3) and functional network connec-
tivity [r (predicted, observed) = 0.152, p < 0.001, see Fig. 3b]. The qualita-
tively similar results provided added confidence in the robustness of our 
findings. 

3.4. The moderation models 

The 5000 bootstrap simulations suggested that social support 
moderated the relationship between SN–DMN connectivity and NA (T2) 
(interaction effect = − 0.09, 95% CI = [− 0.171, − 0.004], p < 0.05) The 
moderation effect was quantified using the Johnson-Neyman analysis. 
The range of simple slopes provided by the Johnson-Neyman analysis 
demonstrated that the relationship between SN–DMN connectivity and 

Table 1 
Descriptive statistics and correlation analysis (N = 496).  

Variables Range Mean SD 1 2 3 4 5 

1 Age 16.62–25.89 19.22 0.86 1     
2 FD 0.02–0.26 0.05 0.03 0.01 1    
3 NA (T1) 1–3.73 1.76 0.55 − 0.02 0.04 1   
4 NA (T2) 1–4.18 2.31 0.78 0.10* − 0.03 0.33** 1  
5 NA (T3) 1–4.09 2.33 0.82 0.00 − 0.05 0.29** 0.53** 1 
6 SS (T2) 1.33–5 3.45 0.73 − 0.02 0.10* − 0.03 − 0.09* − 0.21** 

Note: *p < 0.05; **p < 0.01. Abbreviations: N = number; SD = standard deviation; FD = framewise displacement; NA = negative affect; SS = social support. 
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NA (T2) was not significant for social support scores of 3.10 or below. 
However, once social support scores passed this threshold, the rela-
tionship between SN–DMN connectivity and NA (T2) was significant and 
became stronger as social support increased (Fig. 4a). 

The moderation analysis showed that social support also moderated 
the relationship between intra-SN connectivity and NA (T3) (interaction 
effect = − 0.08, 95% CI = [− 0.167, 0.002], p = 0.05). The results pro-
vided by the Johnson-Neyman analysis suggested that the relationship 
between intra-SN connectivity and NA (T3) was not significant for social 
support scores of 3.03 or below. Once social support scores passed this 
threshold, the relationship between intra-SN connectivity and NA (T3) 
was significant and became stronger as social support increased 
(Fig. 4b). 

3.5. Exploratory analyses 

Association between network connectivity and specific NA items at T2 
and T3. Partial correlation analyses showed that most items were 
significantly associated with the current mean FNC (see Tables S3 and 
S4). 

Sex differences in network connectivity associated with NA. Significant 
sex difference was not observed in the association between the NA scores 
and the FNCs, no matter what stage of the pandemic. 

Association between whole brain network connectivity and NA. The an-
alyses exploring the effects of whole-brain network connectivity pat-
terns on NA are presented in Fig. S6. The results showed that the NA (T2) 
score was inversely associated with the intra-SN, intra-DMN, SN− FPN, 

SN− SMN, and DMN− DAN connectivity. Furthermore, the NA (T3) score 
was inversely associated with the intra-SN, SN− FPN, and FPN− SMN 
connectivity (FDR seed-level corrected p < 0.05, two-sided). 

3.6. Sensitivity analyses 

The analyses exploring the sensitivity and specificity of our original 
ROIs are presented in Fig. S4. The results showed that the NA (T2) score 
was inversely associated with the intra-SN, intra-DMN, intra-CEN, 
SN− DMN, SN− CEN, and DMN− CEN connectivity (FDR seed-level cor-
rected p < 0.05, two-sided). Furthermore, the NA (T3) score was 
inversely associated with the intra-SN and SN− CEN connectivity (FDR 
seed-level corrected p < 0.05, two-sided). 

4. Discussion 

One of the novelties of the current study is the investigation of the 
protective factors of NA not only during the outbreak but also after the 
outbreak peak in China, which has significant implications for other 
countries that still have not reached theirs after peak. Our results are 
consistent with the prediction that the prevalence of negative emotion is 
higher during the pandemic than before the pandemic but does not 
decrease after the pandemic outbreak peak compared with during the 
pandemic, probably due to the far-reaching influences of COVID-19, 
such as economic uncertainty, fear of economic crisis and recession, 
and increased unemployment (Baker et al., 2020; Nicola et al., 2020). 
These aftereffects could all contribute to continuing NA after the actual 
pandemic peak (Y. Wang et al., 2020). 

We also investigated the neurobiological relevance of NA under the 
COVID-19 outbreak, as well as the possible modulatory mechanisms of 
social support, in a large healthy sample. The results showed that inter- 
individual differences in NA related to COVID-19 were primarily pre-
dicted by rsFC within and between the SN (e.g., the amygdala, dACC, 
and SMG) and FPN (e.g., dlPFC), for which neural activity has been 
demonstrated to be associated with affective processing and executive 
function problems (J. Gong et al., 2018; Li et al., 2017; V. Menon, 2011; 
Palaniyappan and Liddle, 2013). The validity of the functional networks 
underlaying NA was tested using a machine-learning method. Notably, 
social support moderated the association between the network connec-
tivity and NA, that is, individuals with a higher level of social support 
displayed the stronger correlations between intra-SN/SN− DMN con-
nectivity and NA. 

Our results showed that the greatest number of significantly corre-
lated functional connections corresponded to the hubs of the SN. 
Consistently, studies have demonstrated that SN regional activity and 
connectivity between the SN and other brain regions are associated with 
anxiety (Roselinde H. Kaiser et al., 2015a,b), subjective emotional rat-
ings (Seeley et al., 2007), and several affective disorders (Cullen et al., 
2009; J. Gong et al., 2018; Horn et al., 2010; Sheline et al., 2010). 
Moreover, decreased connectivity between the SN and FPN is associated 
with increased repetitive negative emotion (Lydon-Staley et al., 2019) 
and greater impairment in emotion control (Andrei et al., 2013; Belleau 
et al., 2015; Ellard et al., 2018), suggesting that dysfunction of the SN 
and FPN is implicated in the circuitry responsible for behavior and 
emotion regulation (Q. Gong and He, 2015; Lui et al., 2011). Addi-
tionally, some regions in the SN and FPN, such as the amygdala (in the 
SN) and dlPFC (in the FPN), play a crucial role in predicting individual 
NA. The amygdala receives sensory information and processes 
social-emotional stimuli (Pang et al., 2016), while the dlPFC is believed 
to support top-down semantic assessment and alter the emotional re-
sponses of marginal areas using cognitive control (Drabant et al., 2009; 
Ochsner and Gross, 2005; Quirk and Beer, 2006). Specifically, coupling 
between the amygdala and dlPFC is considered the key to the theoretical 
models of emotion processing (John et al., 2013; Pang et al., 2016; 
Phelps, 2006). Notably, clinical studies have demonstrated that lower 
rsFC between the amygdala and prefrontal regions including the dlPFC 

Table 2 
Functional connectivity within the SN, and among the three examined networks: 
Negative correlations with NA (T2) scoresa.  

Functional network 
connectivity 

t- 
values 

p- 
valuesb 

Connectivity value (Z- 
scores)c 

(a) Within SN 
SN.ACC− SN.SMG (R) − 3.92 0.0016 0.34 (±0.25) 
SN.Amyg (R)− SN.rPFC (L) − 3.59 0.0030 − 0.01 (±0.21) 
SN.SMG (R)− SN.rPFC (L) − 3.05 0.0095 0.36 (±0.27) 
SN.Amyg (R)− SN.ACC − 3.10 0.0108 0.08 (±0.22) 
SN.AI (L)− SN.SMG (R) − 2.90 0.0369 0.38 (±0.28) 
SN.Amyg (R)− SN.rPFC (R) − 3.01 0.0110 − 0.03 (±0.21) 
SN.ACC− SN.SMG (L) − 2.90 0.0208 0.33 (±0.26) 
SN.Amyg (L)− SN.AI (R) − 2.90 0.0410 0.21 (±0.22) 
SN.Amyg (R)− SN.AI (R) − 2.67 0.0210 0.20 (±0.23) 
SN.Amyg (L)− SN.ACC − 2.66 0.0410 0.10 (±0.22) 
SN.Amyg (L)− SN.rPFC (R) − 2.58 0.0410 − 0.03 (±0.21) 
(b) Between SN and FPN 
SN.Amyg (R)− FPN.dlPFC (R) − 3.91 0.0017 0.03 (±0.20) 
SN.SMG (R)− FPN.PPC (L) − 2.92 0.0103 0.08 (±0.26) 
SN.AI (L)− FPN.dlPFC (R) − 2.85 0.0369 0.21 (±0.26) 
SN.Amyg (L)− FPN.dlPFC (R) − 2.69 0.0392 0.02 (±0.20) 
SN.AI (R)− FPN.dlPFC (L) − 2.64 0.0456 0.21 (±0.25) 
SN.AI (L)− FPN.PPC (L) − 2.66 0.0427 0.30 (±0.24) 
SN.Amyg (R)− FPN.PPC (L) − 2.72 0.0210 0.01 (±0.20) 
SN.Amyg (R)− FPN.dlPFC (L) − 2.51 0.0248 0.05 (±0.21) 
(c) Between SN and DMN 
SN.SMG (R)− DMN.lPC (L) − 3.26 0.0094 − 0.01 (±0.29) 
SN.SMG (R)− DMN.lPC (R) − 3.11 0.0095 0.03 (±0.31) 
SN.SMG (L)− DMN.lPC (R) − 2.79 0.0435 0.12 (±0.29) 
SN.SMG (R)− DMN.mPFC − 2.62 0.0205 − 0.17 (±0.29) 
SN.Amyg (R)− DMN.PCC − 2.54 0.0248 0.19 (±0.19) 
(d) Between DMN and FPN 
FPN.PPC (L)− DMN.PCC − 2.83 0.0320 0.23 (±0.22) 

Abbreviations: NA = negative affect; SN = salience network; DMN = default 
mode network; FPN = frontoparietal network; Amyg = amygdala; rPFC = rostral 
prefrontal cortex; dACC = dorsal anterior cingulate cortex; AI = anterior insula 
cortex; SMG = supramarginal gyrus; dlPFC = dorsolateral prefrontal cortex; 
PPC = posterior parietal cortex; mPFC = medial prefrontal cortex; PCC = pos-
terior cingulate cortex; lPC = lateral parietal cortex. 

a Table 2 only shows the significant results (N = 496). 
b False discovery rate (FDR) seed-level corrected p < 0.05, two-sided. 
c Values are mean ± standard deviation (SD). 
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is associated with major depressive disorder and trait anxiety (Connolly 
et al., 2017; Pannekoek et al., 2014; Wheelock et al., 2014). Thus, given 
that the FCs within the SN and between the SN and FPN could negatively 
predict NA even after the outbreak peak, it appears plausible to suggest 
that increased involvement of SN-mediated emotion processing (e.g., 
emotion control, emotion regulation) manifesting as enhanced syn-
chrony within the SN and between the SN and FPN may assuage nega-
tive emotions and help individuals to recover from the impact of the 
pandemic as soon as possible. 

The current study also showed that SN–DMN connectivity could 
predict NA during the outbreak. Consistently, previous task-based 
studies also demonstrated the important role of SN–DMN connectivity 
on experimentally induced negative emotion responses (Habel et al., 

2005; Harrison et al., 2008; Pelletier et al., 2003); individuals with 
greater connectivity between the amygdala and DMN during an un-
pleasant condition reported higher levels of trait reappraisal (Ferri et al., 
2016), which is an important and efficient regulation strategy to reduce 
negative emotion rumination. Taken together, weak engagement of the 
DMN by SN might suggest the failure to adequately suppress DMN ac-
tivity during emotional processing (L. Wang et al., 2017), and result in 
the altered self-referential mental activity (e.g., excessive rumination) 
(V. Menon, 2011), which might lead to the difficulties in adjusting 
perceptual and emotional responses to pandemic-related information 
and environmental changes in the early stages of the pandemic. We have 
also found the FC between PCC (in DMN) and PPC (in FPN) was nega-
tively associated with NA (T2). Considering that this is the only signif-
icant result reported between DMN and FPN areas in the present sample, 
future researches are needed to explore this finding in an independent 
sample. 

Further analysis results showed that social support moderated the 
relationship between SN connections and NA (T2 and T3). These results 
expanded the previous finding that social support could moderate the 
relationship between amygdala activation and anxiety (Hyde et al., 
2011), suggesting that individuals with less social support might need 
greater activation in certain brain regions, such as the amygdala and 
prefrontal cortex, to regulate negative emotion (Schweizer et al., 2016). 
Additionally, accumulating studies have suggested that lower social 
support from family could persistently alter the neural circuitry of 
emotion regulation (McLaughlin et al., 2015; Moutsiana et al., 2014; 
Schweizer et al., 2016; Taylor et al., 2006). Thus, behavioral expressions 
of potential variability in brain function might be shaped by external 
factors, and the association between neural factors and behavior could 
be moderated by social context. Social support is also associated with the 
neural regions of threat processing and stress response, such as the 
amygdala, dACC, and AI (Eisenberger, 2013), as well as safety-related 
regions such as the ventromedial prefrontal cortex and PCC (Delgado 
et al., 2006; Schiller and Delgado, 2010), which might help people to 
face and process threat information during the pandemic. Moreover, 

Fig. 1. Resting-state functional network connectivity of NA at T2. (a) Visual depiction of intra- and inter-network connectivity associated with the NA (T2) scores 
(FDR seed-level corrected p < 0.05, two-sided). (b) Connectivity patterns related to NA (T2) scores, as evidenced in this “connectome ring.” (c) Scatter plots depicting 
the correlations between the NA (T2) scores and mean network connectivity strength after adjusting for age, sex, framewise displacement and NA level of scanning. 
Abbreviations: NA = negative affect; SN = salience network; DMN = default mode network; FPN = frontoparietal network; Amyg = amygdala; rPFC = rostral 
prefrontal cortex; dACC = dorsal anterior cingulate cortex; AI = anterior insula cortex; SMG = supramarginal gyrus; dlPFC = dorsolateral prefrontal cortex; PPC =
posterior parietal cortex; mPFC = medial prefrontal cortex; PCC = posterior cingulate cortex; lPC = lateral parietal cortex. 

Table 3 
Functional connectivity within the SN and between SN and FPN: Negative cor-
relations with NA (T3) scoresa.  

Functional network 
connectivity 

t- 
values 

p- 
valuesb 

Connectivity value (Z- 
scores)c 

Within SN 
SN.Amyg (R)− SN.ACC − 2.96 0.0140 0.08 (±0.22) 
SN.Amyg (R)− SN.rPFC (L) − 3.02 0.0140 − 0.01 (±0.21) 
SN.Amyg (R)− SN.rPFC (R) − 2.6 0.0245 − 0.03 (±0.21) 
Between SN and FPN 
SN.Amyg (R)− FPN.dlPFC (R) − 2.56 0.0245 0.03 (±0.20) 
SN.Amyg (R)− FPN.PPC (L) − 3.01 0.0140 0.01 (±0.20) 
SN.Amyg (R)− FPN.PPC (R) − 2.93 0.0140 − 0.01 (±0.19) 
SN.Amyg (R)− FPN.dlPFC (L) − 2.76 0.0192 0.05 (±0.21) 

Abbreviations: NA = negative affect; SN = salience network; FPN = frontopar-
ietal network; Amyg = amygdala; rPFC = rostral prefrontal cortex; dACC =
dorsal anterior cingulate cortex; PPC = posterior parietal cortex; dlPFC =
dorsolateral prefrontal cortex. 

a Table 3 only shows the significant results (N = 496). 
b False discovery rate (FDR) seed-level corrected p < 0.05, two-sided. 
c Values are mean ± standard deviation (SD). 
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studies assessing perceptions of social support have found evidence for 
the “buffering” effect of social support (Cohen and Wills, 1985), sug-
gesting that social support could predict more positive outcomes only 
during times of stress. Hence, the “buffering” effect might explain why 
the moderate effect of social support is significant but marginal on T3 (p 
= 0.05). The possible reason is that the peak of the COVID-19 epidemic 
in China has almost passed and the afraid emotion has abated, but the 

pressure still exists (see Table S1). 
There are several limitations in our study that should be highlighted. 

First, because this study only included healthy participants, it remains 
unclear whether the results could be applied to clinical populations. 
Future studies with more diverse populations are necessary to confirm 
our present findings. Second, our fMRI data was collected before the 
outbreak. Further longitudinal MRI studies are needed to verify whether 

Fig. 2. Resting-state functional network connectivity of NA at T3. (a) Visual depiction of inter-network connectivity associated with the NA (T3) scores (FDR seed- 
level corrected p < 0.05, two-sided). (b) Connectivity patterns related to NA (T3) scores, as evidenced in this “connectome ring.” (c) Scatter plots depicting the 
correlations between the NA (T3) scores and mean network connectivity strength after adjusting for age, sex, framewise displacement and NA level of scanning. 
Abbreviations: NA = negative affect; SN = salience network; FPN = frontoparietal network; Amyg = amygdala; rPFC = rostral prefrontal cortex; dACC = dorsal 
anterior cingulate cortex; PPC = posterior parietal cortex; dlPFC = dorsolateral prefrontal cortex. 

Fig. 3. The correlation between the actual value and predicted value of NA (T2) (a) and NA (T3) (b).  

Fig. 4. Johnson-Neyman plots of social 
support where the slope between (a) 
SN− DMN connectivity and NA (T2) and 
(b) intra-SN connectivity and NA (T3) 
are significant. The green dashed line is 
the social support value at which the 
associations between network connec-
tivity and NA were goes from nonsig-
nificant (shaded gray area) to 
significant (shaded green area). The 
shaded area around the regression line 
is the 95% confidence interval. SS, so-
cial support. (For interpretation of the 
references to colour in this figure 
legend, the reader is referred to the Web 
version of this article.)   
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there are any brain changes after the outbreak. Third, the study adopted 
self-reported NA scores. Other methods such as Ecological Momentary 
Assessment (Tennen et al., 2000) can be used to assess the NA level to 
minimize recall bias and maximize ecological validity. 

5. Conclusions 

In conclusion, the present results provided a crucial understanding of 
how neural network maps onto behavior under the environmental 
context, and they indicated that the SN and its interactions with the 
DMN and FPN plays the important role for people to adjust perceptual 
and emotional responses in the early stages of the pandemic, as well as to 
recover after the pandemic peak. Moreover, as a resource for coping 
with adversity, social support has promoted the expression and effect of 
the neural systems involved in salience and emotion processing, and 
buffered the negative emotional response under the uncertainty and 
stressful situation. Considering that the stress precipitated by the 
COVID-19 pandemic would be long-lasting, the powerful, inclusive, and 
enduring support from family and friends are crucial for individuals’ 
better mental health. 
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