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Abstract: In this paper, surface projection micron stereo-lithography technology (PµSL) by 3D print-
ing was used to prepare two resin honeycomb materials with different levels, and the mechanical
behavior of these materials was studied. The quasi-static compression experiment and the dynamic
compression experiment were carried out on the samples using the in situ micro-compression testing
machine and the Split Hopkinson bar (SHPB) experimental equipment. The stress–strain curves
of these materials at different strain rates were obtained, and the energy absorption characteristic
of materials with two different levels were analyzed. This article reveals that the collapse strength
and energy absorption properties of the materials are related to the hierarchical level of honeycomb.
Multi-level hierarchical honeycomb (MHH) has higher collapse strength and better energy absorp-
tion properties than single-level hierarchical honeycomb (SHH). It turned out that increasing the
hierarchical level of honeycomb could improve the mechanical properties of the materials. In the
future development of products, the mechanical properties of hierarchical material by 3D printing
can be further optimized through changing the level of the fractal structure.

Keywords: hierarchical honeycomb; 3D printing; collapse strength; energy absorption

1. Introduction

Lightweight and low-density cellular structures are widely used in automobile man-
ufacturing, aerospace and other economic and defense fields. As typical low-density,
lightweight cellular structures, honeycombs have excellent mechanical properties and
good energy absorption properties [1–3]. The cell section of honeycomb materials is usually
hexagonal, but it is also triangular, rectangular, or rhombic. The same as foam materials,
the mechanical properties of honeycomb materials directly depend on the shape, size,
and topology of the cells [4–6]. For example, the connection factor of the edge and the
surface, the number of adjacent holes, etc., will change with the change from one struc-
ture to another and affect the mechanical behavior of the material in an important way.
Especially under the impact load, the high frequency component of the load will control
the dynamic response of the structure, and the influence of the spatial topology of the
cell on the evolution of the local dynamic stress of the material becomes more and more
significant. Therefore, in addition to the geometric parameters of the structure, how to
establish the relationship between the topological parameters of the cell in the local space
and the dynamic response of the material is also an important topic in the description of
the mechanical characteristics of honeycomb materials.

Currently, many scholars studied the mechanical properties of honeycomb under differ-
ent topologies using experimental and numerical simulation methods [7–10]. Hohe et al. [5,6]
studied the elastic response of hexagonal, triangular, and quadrilateral honeycomb structures.
Zhen et al. [11] numerically studied the dynamic mechanical properties of irregular random
honeycomb structures under in-plane impact. Yamashita [12] analyzed the impact behav-
ior of different cell honeycomb specifications with numerical and experimental methods.
Zinno et al. [13] analyzed the multi-scale approach for the design of composite sandwich
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structures for train application. Wu and Jiang [14] studied the experimental results of six
honeycomb structures under quasi-static load and axial load. Reza et al. [15] studied the
in-plane compression mechanical properties of hexagonal honeycomb based on additive
manufacturing technology by comparing experimental and calculated results. Different cell
configurations [16–21] have been developed and explored over the years. To determine
the relationship between compressive strength and cell size, some studies [22–25] found
that changing some cellular size parameters could increase the compressive strength of the
structure, thereby improving the mechanical properties of the honeycomb structures. Anna
et al. [26] studied the energy absorption of honeycomb with regular cellular structures by 3D
printing through static and dynamic loading. Many studies have shown that the mechanical
and energy absorption properties of honeycomb largely rely on its cellular configuration
and base material’s properties. At present, based on the printing of existing material models
and the construction of composite materials, 3D printing has seen some new applications.
Kozior et al. [27] studied to improve the mechanical stability of an electrospinning nanofiber
mat, which was combined with 3D printing technology to prepare a mechanically stable
filter with a nanofiber surface. This study showed that the nanofiber mat had a strong
adhesion to 3D printed scaffolds from thermoplastic polyurethane (TPU). At the same time,
the adhesion of three-dimensional printing on textile fabrics [28] described the improvement
of textile/polymer adhesion based on experimental research on adhesion in 3D printed
textile/polymer composites and theoretical research on adhesion inside the 3D printed part.

A large amount of research currently focused on the change of the geometric param-
eters of the cell structure, while relatively little research has been done on multi-level
hierarchical honeycomb structure designed by biologically inspired principles [29], which
has seriously hindered its application in aerospace, rail, and automobile industry. Recently,
the rapid development of 3D printing technology has met the design requirements of
complex three-dimensional spatial structures, and it has provided a more convenient way
for the preparation of porous composite materials and the optimization of fine–macro
cross-scale [30]. In this paper, multi-level hierarchical honeycombs and single-level hierar-
chical honeycombs were fabricated by additive manufacturing to research their impact on
mechanical behavior. The impact yield strength and energy absorption properties of these
materials were investigated.

2. Experimental Process
2.1. In Situ Micro-Compression Experimental Process

In this study, two different samples (single-level hierarchical honeycomb (SHH) with a
size of 4 mm × 2.6 mm and multi-level hierarchical honeycomb (MHH) with a size of
4 mm × 6 mm) were fabricated as shown in Figure 1a,b. The resin honeycombs were
manufactured by surface projection micron stereo-lithography technology (PµSL) tech-
nology (BMF Inc., Shenzhen, China) that meets the stereo lithography apparatus (SLA)
technical standards in ISO/ASTM 52921 and had density in the range of 0.347–0.372 g/cm3

(the parameters of resin listed in Tables 1 and 2), meaning a half-cell diameter of 0.14 mm
and resin honeycomb 0.07 mm thick (see Figure 2). In view of the millimeter size of the
samples, the in situ micro-compression loading test was performed by a MICROTEST2000
system (GATAN Inc., Pleasanton, CA, USA) with SEM (Figure 3). The system comprised
a replaceable load sensor, a sample heater, a clamping device, and a compression head,
and it is an important platform to observe and analyze the micro-deformation morphology
and fracture mechanism of materials. The honeycomb samples were clamped between
two compression heads with a dimension vision of 1 mm × 1 mm, such that an aperture
of 0.28 mm diameter [31] was exposed in the vision (Figures 8 and 9). We respectively
observed the deformation of the honeycombs and the deformation of the apertures by
axial compression and radial compression. Before testing, the upper compression head
was given a fixed speed and the samples were fixed on the base. While observing the
deformation of the samples by SEM, the information of the loading was recorded.
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Table 1. The parameters of resin material provided by manufacturers.

Resin Type
Tensile

Strength
(MPa)

Impact
Strength

(J/m)

Elongation
at Break (%) Viscosity (CPs @ 25 ◦C) Hardness

Tough 50–60 35–50 8–12 180–280 75–80
(ShoreD)

Table 2. The parameters of resin honeycombs.

Material
Sample
Length
(mm)

Sample
Height
(mm)

Honeycomb
Thick
(mm)

Half–Cell
Diamete

r(mm)

Sample
Weight (g)

Relative
Density
(g/cm3)

SHH 2.6 4 0.07 0.14 0.010 0.369

MHH 6 4 0.07 0.14 0.049 0.347
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Figure 3. The in situ compression test equipment.

2.2. Dynamic Experimental Process

The Hopkinson pressure bar can realize loading experiments under a high strain rate
(102–104 s−1), and it is widely used by scholars engaged in dynamic mechanical research
and related fields [32–34]. The core parts of the Hopkinson pressure bar device are two
separate elastic waveguide bars (the incident and the transmitted bar). The sample is
clamped between the two bars. The loading pulse is generated by the striker bar hitting the
incident bar. The device is shown in Figure 4. An incident stress wave with a wavelength
twice the length of the striker bar will be generated in the incident bar. When the incident
stress wave reaches the sample, part of it is reflected back to the incident bar, and other part
passes through the sample and reaches the transmitter bar. The transmitted stress wave is
captured by the absorption bar and finally absorbed by the energy harvester. As shown in
Figure 5, the signals of the incident wave, the reflected wave, and the transmitted wave
have three amplitudes εI, εR, and εT, respectively. From these three signal values, we can
deduce the stress–strain relationship of the sample [35].
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According to the assumption of a one-dimensional stress wave in the bar, the stress σ,
strain ε, and strain rate

.
ε of the sample can be calculated by the following equations:

σ(t) = E0
A0

A
εT(t) (1)

ε(t) = −2C0

L
εR (2)

ε(t) = −2C0

L

∫ t

0
εRdt (3)

Here, E0 is the elastic modulus of the bar, A0 is the cross-sectional area of the bar, A is
the cross-sectional area of the sample, C0 is the elastic wave velocity of the bar, L is the
length of the sample, εT(t) is the transmission strain, and εR is the reflected strain.

In this paper, a 14 mm aluminum SHPB loading system was used to carry out an im-
pact test, and the dynamic compression performance of the hierarchical material prepared
by 3D printing in the strain rate range of 500–1500 s−1 was studied. In these experiments,
the diameter of the striker bar and all the bars were 14 mm, the length of the striker bar
was 400 mm, and the length of the incident bar and transmitted bar were both 2000 mm.
A set of strain gauges was attached between the incident bar and the transmitted bar,
and each group has two strain gauges placed on the opposite surface of the bar to account
for the transverse inertia effect of the stress wave. Taking into account the low impedance
characteristics of the hierarchical materials and the attenuation effect of the bar on the stress
wave, a semiconductor strain gauge was used on the transmitted bar, and a resistance
strain gauge was attached to the incident bar. Each set of strain gauges was connected to a
dynamic strain gauge to process and amplify the signal. Then, the incident pulse, reflected
pulse, and transmitted pulse were collected by an oscilloscope.

3. Results and Discussions

The honeycomb samples were loading at low speed (MHH with the speed of 0.24 and
0.18 mm/min (the corresponding strain rate is 10−3 s−1) respectively in axial and radial
compression loading, SHH with the speed of 0.24 and 0.3 mm/min (the corresponding
strain rate is 10−3 s−1) respectively in axial and radial loading). The sample was clamped
between two rigid indenters (see Figure 3). When loading, the right indenter moves to the
left to compress the test piece, while the left indenter remains stationary. Before loading,
we applied petroleum jelly to the surface of the left and right indenters to reduce the friction
between the test piece and the indenter interface. All samples were loaded to compactness,
the corresponding loading force and displacement could be obtained from the force at
the right indenter and the displacement sensor, and the nominal stress–strain curve of the
material could be obtained by calculation. For each group of working conditions, the test
results with better repeatability were taken as the final test results.

Figures 6 and 7 show nominal stress–strain curves in quasi-static loading by an in
situ micro-compression experiment. As it can be seen, very good reproducibility between
curves was achieved. The stress–strain curves of the two levels of hierarchical materials
show the same pattern in the same loading direction, and they can be divided into three
stages: initial linear elastic section, stress plateau section, and stress compaction section.
In the initial elastic region, the cell walls of the hierarchical materials enter the elastic
deformation stage, and the stress–strain of the material shows a linear relationship; as the
loading progresses, the cell wall begins to yield and gradually collapses, and the stress
enters the platform section; finally, when all the cell walls are compacted, the stress curve
rises rapidly during the compaction section. It is worth noting that there will be a sharp
drop when the stress reaches the first peak, which is due to the internal cell wall of the
material beginning to fail and fracture and collapse. When the remaining intact cell wall
structure begins to load, the stress will rise again into the platform section. Different from
the axially compressed long and smooth platform section, the stress platform section of the
SHH material exhibits obvious oscillations, mainly due to the poor toughness of the base
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honeycomb material. The curve that appears in the elastic stage of individual materials
is not smooth, and the difference is mainly related to the micro-defects of 3D printing
materials.
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The stress–strain curves of two honeycombs radial compressions are described in
Figure 6. As shown in Figure 6a, stress rises slowly with the increase of strain. After the
stress reaches the peak value of 1.49 MPa, the curve shows a stable plateau stage. A similar
situation also occurs in Figure 6b. As shown in Figure 6b, the stress–strain curve peak value
reached 1.75 MPa, which is significantly higher than that in Figure 6a. This shows that
the radial compression loading peak value of MHH is 17.4% higher than SHH. For axial
compression loading, the peaks of the curves of the two honeycombs are higher than those
of the radial compression loading, which can be seen in Figure 7a,b. As shown in Figure
7a, the peaks of curves reached 15.79 MPa, and in Figure 7b, the peaks of curves reached
20.03 MPa. The axial compression loading peak value of MHH is 21.2% higher than SHH.
The results show that the compressive capacity of MHH is better than SHH. Compared
with the research results of Xu et al. [36], it is found that the quasi-static collapse strength
of the hierarchical honeycomb structure is significantly higher than that of the ordinary
honeycomb.
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In order to visually observe the compression deformation process of the multi-level
honeycomb, we selected the deformation process perpendicular to the displacement direc-
tion of the vision. Figures 8 and 9 show the SHH material overall deformation process and
MHH material local hinge deformation process, respectively. As shown in Figure 8, the first
that started was the distortion of SHH external hinge. As the compression increased further,
the honeycomb holes of the external hinge were twisted into clusters. When the crushing
was over, the honeycomb holes on the upper and lower contacting with surfaces of the
indenter would be distorted. As shown in Figure 9, the honeycomb hinge parallel to the
surface of the indenter does not undergo significant deformation. Conversely, the angled in-
ternal hinges of honeycomb on both sides appear to be deformed as the crushing progresses
and finally twisted into clusters.
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Comparing the compression process in two directions, the load-carrying capacity and
compression resistance exhibited by the axial compression process are better than the radial
compression process. Therefore, in the future development of products, we should focus
on the study of axial compression capability. Comparing the collapse strength of the two
compression modes, it is not difficult to see that the collapse strength of the MHH material
is obviously higher than that of the SHH material. Therefore, the mechanical properties of
the MHH material can be further optimized by increasing the level of topological stages.
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In the SHPB impact test, the bullet speed range is 2–6 m/s, and the corresponding load
strain rate range is 500–1500 s−1. Figure 10a,b show the dynamic stress–strain curves of the
two resin honeycomb materials with good repeatability under different strain rates. It can
be seen from the figure that the dynamic stress–strain curve of the material is different
from the quasi-static stress–strain curve. It has experienced an elastic stage before the
stress reaches the initial peak, and then the stress begins to drop sharply due to the failure
of the cell wall. All samples are compacted. Although the impact loading speed is low,
due to the small size of the sample, the matrix resin material exhibits low toughness
under dynamic loading, resulting that the dynamic stress–strain curve of the honeycomb
specimens does not increase as the stress does under quasi-static loading. The platform
stage is different from common metal porous materials. It can be seen from the figure that
the two hierarchical materials of the unit cell size exhibit different strain rate sensitivity.
Under the three strain rates studied, the stress–strain curve of the SHH material is basically
similar, while the MHH material shows a certain strain rate sensitivity, and the collapse
strength of the material increases at a high strain rate. Sahu [37] and Onck [38] pointed out
that the larger the pore size of the foam material, the lower its strength. It can be seen from
Figure 10 that although the MHH material has the same pore size as the SHH material,
it has a lower relative density, and its collapse strength at different strain rates is higher
than that of the SHH material. The above research shows that the reason for this difference
may be related to the level number of honeycomb materials. The more levels honeycomb
has, the higher the collapse strength.
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In the past, many scholars discussed the strain rate sensitivity of porous structures.
Zheng et al. [39] pointed out that due to the change of material deformation, the strength
of porous medium under high-speed impact loading is higher than that under quasi-
static loading. However, under low-speed impact loading conditions, the strengthening
mechanism of material strength is still unclear. Figure 11 and Table 3 show the collapse
strength of two hierarchical honeycomb materials with different levels under different
strain rates. It can be seen that the two honeycomb samples exhibit different strain rate
sensitivity. As shown in MHH materials, when the strain rate increases from 0.001 s−1 to
1000 s−1 and 1500 s−1, the collapse strength increases by 17.78% and 27.21%, respectively.
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However, as shown in SHH materials, the strain rate strengthening effect is not obvious.
The material collapse strength only increases by 16.53% when the strain rate increases from
0.001 to 1500 s−1.
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Table 3. The yield strength of resin honeycombs under different strain rates.

Style of Honeycomb Strain Rate/s−1 Yield Strength/MPa

SHH

0.001 15.79
500 17.1
1000 17.57
1500 18.4

MHH

0.001 20.03
500 22.57
1000 23.59
1500 25.48

The different strain rate sensitivity of the two hierarchical honeycomb materials may
be related to the difference in the micro-structure of the materials. Since the optimal
preparation process parameters have not yet been determined, the quality of the single
cell wall inside the honeycomb material is poor, and the cross-sectional dimension is not
constant (see Figure 2). The micro-defects of the hole wall structure may reduce the strain
rate strengthening effect of the material strength. Another reason that affects the strain
rate sensitivity of materials may be related to the difference in the levels of honeycomb.
The more levels the honeycomb has, the more obvious the strain rate strengthening effect.
Due to the limited number of transverse unit cells of SHH material, the sample lacks
transverse hinge constraints during impact loading, which aggravates the deformation and
failure of the material, thereby reducing its strain rate sensitivity.

The honeycomb porous material is a typical buffering energy-absorbing protective
material, so the energy absorption properties of resin hierarchical honeycomb materials
under different strain rates are considered in this article. The work done by the external
force is continuously folded through the honeycomb wall and converted into the shaping
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energy required for honeycomb deformation. The energy absorbed per unit volume of the
honeycomb (W) can be characterized by the area surrounded by the stress–strain curve,
and the equation is as follows:

W =
∫ εp

0
σ(ε)dε (4)

Here, εp is the strain of compressed before the densification phase, σ is compressive
stress, and ε is compressive strain.

As an ideal energy absorbing structure, the ratio of the energy absorbed by the
unit volume in the densification unit to the platform stress is an important parameter
for describing the energy absorption characteristics. The expression equation for energy
absorption efficiency (η) is:

η =

∫ εp
0 σ(ε)dε

σmax · ε
(5)

Here, εp is the strain of compressed before the densification phase, σmax is maximum
stress on a given strain path, σ is compressive stress, and ε is compressive strain.

Figures 12 and 13 respectively show the energy absorption and energy absorption
efficiency of resin honeycomb porous materials with different levels under quasi-static
and dynamic loading. It can be seen from Figure 12a that under quasi-static loading,
the energy absorption of the MHH material is slightly higher than that of the SHH material.
However, it is worth noting that although the MHH material absorbs more energy, it cannot
guarantee higher energy absorption efficiency. The main reason for this phenomenon is
that the MHH material has higher stress and dense strain. It can be seen from Figure 13a
that as the strain rate increases, the strain rate strengthening effect of the MHH material
is more obvious, and the energy absorption of MHH is significantly higher than that of
the SHH material. The comparison of energy absorption efficiency in Figure 13b shows
that the energy absorption efficiency curve of resin honeycomb material is similar to that
of foamed titanium [40], with obvious peaks, and the energy absorption efficiency of
the material increases as the strain rate increases. Under dynamic loading, although the
collapse strength of the material increases with the increasing of the strain rate, the low
toughness of the material under dynamic loading causes the stress of the honeycomb
material to decrease significantly after reaching the initial peak value, thereby reducing
its energy absorption capacity. In short, whether it is quasi-static or dynamic loading, the
energy absorption capacity of the MHH materials is significantly better.
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4. Conclusions

The paper presented the mechanical properties of hierarchical resin honeycombs.
With the goal of light energy absorption of materials, the collapse strength and energy
absorption efficiency of honeycombs with different levels under quasi-static and dynamic
loading conditions are analyzed and compared. Based on the results obtained, the following
can be stated:

(1) Under quasi-static loading, by comparing the experimental curves of the two com-
pression directions, we find that the axial compression bearing capacity of the sample
is higher than the radial compression. In future research, we should focus on the axial
compression capability of honeycomb.

(2) Both under quasi-static and dynamic loading conditions, the collapse strength of the
MHH materials is higher than that of the SHH materials. The mechanical properties
of honeycomb materials can be improved by increasing the level of honeycomb cells.
Under dynamic loading, the initial collapse strength of the honeycomb material shows
a certain strain rate sensitivity, and the strain rate effect of the MHH material is more
obvious. The two honeycomb materials with different levels show different strain
rate sensitivity, which may be related to the difference of the material microstructure.

(3) As the strain rate increases, the energy absorption and energy absorption efficiency
will also increase. In general, the MHH material has more energy absorption than the
SHH material.
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