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Abstract

Molecular surveillance of HRSV in Belgium for 15 consecutive seasons (1996–2011) revealed a shift from a regular 3-yearly
cyclic pattern, into a yearly alternating periodicity where HRSV-B is replaced by HRSV-A. Phylogenetic analysis for HRSV-A
demonstrated the stable circulation of GA2 and GA5, with GA2 being dominant over GA5 during 5 consecutive seasons
(2006–2011). We also identified 2 new genotype specific amino acid mutations of the GA2 genotype (A122 and Q156) and 7
new GA5 genotype specific amino acid mutations (F102, I108, T111, I125, D161, S191 and L217). Several amino acid
positions, all located in the second hypervariable region of HRSV-A were found to be under positive selection. Phylogenetic
analysis of HRSV-B showed the circulation of GB12 and GB13, where GB13 represented 100% of the isolated strains in 4 out
of 5 consecutive seasons (2007–2011). Amino acids under positive selection were all located in the aminoterminal
hypervariable region of HRSV-B, except one amino acid located in the conserved region. The genotype distribution within
the HRSV-B subgroup has evolved from a co-circulation of multiple genotypes to the circulation of a single predominant
genotype. The Belgian GB13 strains circulating since 2006, all clustered under the BAIV branch and contained several branch
specific amino acid substitutions. The demographic history of genotypes GA2, GA5 and GB13 demonstrated a decrease in
the total GA2 and GA5 population size, coinciding with the global expansion of the GB13 population. The emergence of the
GB13 genotype resulted in a newly established balance between the predominant genotypes.
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Introduction

Human respiratory syncytial virus (HRSV) is the most

important viral agent causing serious lower airway infections in

children less than 2 years old. HRSV can be divided into two

subgroups, HRSV-A and HRSV-B and these subgroups harbour

several genotypes, which represent clusters of co-circulating strains

[1–7]. Viruses of the two antigenic groups commonly produce

epidemics and annual epidemics that are characterized by the

circulation of several genotypic strains. Genotyping of HRSV

strains have historically been based on sequence data of the

variable G glycoprotein [3]. The G protein has been shown to be

the most divergent between HRSV-A and B subgroups with 67%

identity on the nucleotide level and 53% similarity on the deduced

amino acid level [8]. In addition, the G protein is one of the targets

of neutralizing antibodies and continues to incorporate mutations

due to existing immunological pressure [9–12]. For genotyping

purposes, the hypervariable ectodomain of this protein has been

selected as a reliable region for the entire G gene variability [3,5].

This carboxyterminal domain encloses a first variable region

starting at nucleotide position 284–459 for HRSV-A and 194–459

for HRSV-B. This domain is followed by a conserved cystein

cluster and a second variable region located at nucleotide 649–918

for HRSV-A and nucleotide 652–921 for HRSV-B [8,11,13]. In

1998, Peret and coworkers defined HRSV genotypes based on the

topology of phylogenetic trees of HRSV variants. For HRSV-A

the genotypes GA1, GA2, GA3, GA4 and GA5 were identified

with intergenotypic differences that ranged from 10–28% at the

amino acid level. For HRSV-B, GB1 to 4 were distinguished and

intergenotypic differences at the amino acid level ranged from 7–

19% [3]. Previous genotyping efforts in Belgium introduced a

genotype classification based on a gene segment of 629 bp for

HRSV-A and 724–762 bp for HRSV-B comprising both hyper-

variable regions and the conserved region [6,7]. Phylogenetic

analyses have led to the distinction of 6 clusters that were assigned

to genotypes BE/A1, GA1 to GA5, within the HRSV-A subgroup

and GB1 to GB13 genotypes were identified within subgroup B.

The genotype assignment of HRSV-A and –B strains was partially

based on the genotype ascription of previous strains [3–5,14] The

GB13 genotype is characterised by a 60-nucleotide duplication

and 6- nucleotide deletion and corresponds to the BA genotype

described by Trento and co-workers [15].
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Previous HRSV epidemics studied in Belgium showed that 2

subgroup A dominant seasons were followed by a subgroup B

dominant season. Although it is difficult to explain the periodicity

of the subgroup dominance, the dominant circulation of one

subgroup over the other most likely results from the interplay of

the pre-existing immunity in the community and the genetic and

antigenic properties of the HRSV virus to evade the immune

response. Over the past decades (1984–2006), the genotype

circulation in Belgium was dynamic with circulation of BE/A1,

GA1, GB1, GB2, GB3, GB4, GB5 and GB7 in the eighties and

nineties [16]. These genotypes disappeared out of the population

and were replaced by the predominant circulation of GA2, GA5,

GB12 and GB13 genotypes.

In this study, HRSV seasonal epidemic dynamics in Belgium

were monitored over a five-year period (2006–2011) investigating

subgroup patterns and stability of genotypes previously circulating

in Belgium. This epidemiological data (2006–2011) added to the

previous epidemiological data obtained during 10 epidemic

seasons (1996–2005), and allowed the interpretation of the HRSV

dynamics over 15 consecutive years in Belgium [16]. Further, the

genetic variability, phylogenetic relatedness and demographic

history of HRSV-A and -B strains were investigated by mapping

genetic diversity, performing selective pressure analysis and

coalescent analysis that demonstrated the evolution of the virus

population size over time.

Materials and Methods

Sample Collection
One-thousand-fifty-nine nasopharyngeal samples (NPS) from

patients experiencing respiratory infections were collected during 5

HRSV epidemic outbreaks (2006/2007 till 2010/2011). Samples

were acquired from patients invoking medical attention in the

hospital for respiratory tract infection. Nine-hundred-ninety-three

were obtained from the University Hospital of Leuven and 66

from the O.L.V. Hospital in Aalst. Both hospitals are located in

Flanders and are situated 60 km from each other. All samples were

HRSV positive because they had been previously tested positive

by RSV antigen test (BinaxNOW RSV test, Medical Innovations

Inc., Ireland), ‘in house’ PCR or qPCR before arriving at the

laboratory. Nine-hundred-seventy-four samples were successfully

subgrouped (Table 1) by means of qRT-PCR.

RNA Extraction
Viral RNA was extracted from 140 ml of NPS by using the

QIAmp viral RNA mini kit (Qiagen, Westburg, The Netherlands).

RNA was extracted according to the manufacturers instructions

and eluted in 60 ml elution buffer.

Subgrouping
A multiplex qRT-PCR with a subgroup specific primer and

probeset for HRSV-A and –B as described previously [16] was

used to identify the subgroup of the virus strain.

RT-PCR
The carboxyterminal region of the G protein was amplified by

using the One-Step RT-PCR (Qiagen, Westburg, The Nether-

lands). The HRSV-A forward and reverse primer, G267FW and

F164RV and the HRSV-B forward and reverse primer BGF and

BGR separately to polyacrylamide gel electrophoresis and

visualised under UV light by staining with ethidium bromide.

Nucleotide Sequencing
The amplified PCR products were purified using the innuPREP

PCRpure kit (Analytik Jena, Germany) and eluted in 20 ml elution

buffer. Cycle sequencing was performed in forward and reverse

direction using the ABI PRISM Big Dye Termination Cycle

Sequencing Ready Kit (Applied Biosystems). In addition to the

PCR amplification primers, the G516R (59-GCTGCAGGGTA-

CAAAGTTGAAC-39) and G284F (59-ACCTGACCCA-

GAATCCCCAG-39) for HRSV-A and BGF3 (59-AGAGACC-

CAAAAACACYAGCCAA-39) and BGR3 (59-

ACAGGGAACGAAGTTGAACACTTCA-39) primers for

HRSV-B were used to assure complete consensus sequence of

the amplicon. Sequence data was generated on the ABI3130xl

Genetic Analyzer (Applied Biosystems). Sequences were manually

edited and multiple sequence alignments were generated using the

Clustal X 2.0.12 version [17]. Identical nucleotide sequences were

identified by the DAMBE software version 4.2.13 [18]. Pairwise

distances were calculated between unique sequences in MEGA5

[19]. Sequences were deposited in GenBank under the accesion

numbers [JX645776-JX645982].

Phylogenetic Analysis
We generated sequences of 629 bp and 724–762 bp for HRSV-

A and HRSV-B respectively, to investigate the phylogenetic

relationships between viral strains. Phylogenetic trees were

constructed by the Neigbour Joining method using the MEGA5

software [19]. Bootstrap values were calculated based on 1000

replicates.

Selective Pressure Analysis
We used a random effects likelihood (REL) approach based on a

codon substitution model that allows for variation both in non-

synonymous (dN) and synonymous rates (dS) to detect the selective

pressure at an individual site in the G gene. This method fits a

Table 1. Subgroup dominance per epidemic season.

Epidemic season
No. RSV positive
samples

No. (%) of samples
typed* No. (%) of HRSV infections*

HRSV-A HRSV-B HRSV-A & -B

2006/2007 128 127 (99.2) 9 (7.0) 111 (86.7) 7 (5.5)

2007/2008 140 126 (90.0) 101 (72.1) 17 (12.1) 8 (5.7)

2008/2009 252 231 (91.6) 50 (19.8) 149 (59.1) 32 (12.7)

2009/2010 402 389 (96.8) 271 (67.4) 114 (28.4) 4 (1.0)

2010/2011 137 101 (73.7) 84 (61.3) 17 (12.4) 0 (0.0)

*Percentages are calculated to the total number of RSV positive samples that were typed.
doi:10.1371/journal.pone.0060416.t001
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general bivariate distribution of dN and dS substitution rates across

sites (each composed of three classes) and then infers the class to

which each individual site belongs. The REL approach was

applied using the HyPhy program and positive selected sites were

detected by using empirical Bayes methods. Bayes factors .20

expressed as Log [BF{NS|S .1|S}] were used as a cut-off to

identify positively selected sites.

Bayesian Skyride Analysis
To estimate the effective population size dynamics through time

we employed the Bayesian skyride approach as a flexible

coalescent model [20]. The Bayesian skyride achieves temporal

smoothing of the effective population size by exploiting Gaussian

Markov random fields in a Bayesian framework implemented in

the BEAST software version 1.7 [21]. We compiled a dataset for

HRSV-A based on the GA2 and GA5 genotyped strains available

in GenBank (Table S1) and the Belgian isolates sequenced in this

study. The nucleotide sequence covered a 264 bp fragment of the

second hypervariable region. For HRSV-B, sequences designated

as GB13 genotype were used. Here, we used the same dataset as

published by Trento and co-workers with in addition the Belgian

sequence data from the epidemic seasons 2006–2011 (Table S2)

[22]. For these analyses a nucleotide sequence alignment of

330 bp, comprising the second hypervariable region of the HRSV-

B subgroup was employed. Sequences with a known year of

isolation were included in the datasets and for the sequences with

an unknown circulation date; the year of isolation was estimated

[23].

Results

Age Distribution
The major population groups afflicted by HRSV infections are

babies under the age of 12 months (81.5%), followed by patients

older than 24 months and infants between 13 and 24 months.

When looking at the age group older than 24 months in more

detail, a diversification between several subpopulations can be

made. This group consisted of 56.4% toddlers (,5 years), 23.1%

children (5.,13 years), 5.1% adolescents (13.,26 years), 6.4%

adults (28.,60 years) and 6.4% elderly (65 years and older). In

the group of adolescents, 4 patients were being followed at the

paediatric oncology division and one patient had a history of

paediatric immune deficiency. Regarding the general number of

patients during 15 epidemic seasons in Belgium, the number of

infected patients during the 2009/2010 season is remarkably high

(Figure 1). During this season, the pandemic swine influenza virus

(H1N1) was emerging worldwide, possibly alarming parents for the

manifestation of respiratory infections in their children (Figure 1).

This vigilance may have resulted in patients seeking medical

attention much faster.

Patients with Multiple and Prolonged HRSV Infections
Fourteen paediatric patients experienced two or three HRSV

infections within the timeframe of 5 epidemic seasons (2006/

2007–2010/2011) (Table 2). In 8 of the 14 cases the secondary

infection was caused by a strain of the homologous subgroup: 4 A-

A, 3 B-B and 1 A&B-A&B. Five patients were infected by a strain

of the heterologous subgroup: 1 A-B, 3 B-A and 1 B- A&B co-

infection. One patient encountered a HRSV infection during 3

consecutive epidemic seasons (07/08, 08/09 and 09/10) of which

the second infection was caused by the heterologous subgroup.

The third infection was induced by a strain of the homologous

subgroup, compared to the primary infection. For 3 patients, the

secondary infection was caused by a strain of the same genotype.

The homologous A-A reinfection in table 2 was also a homologous

GA2 genotype reinfection. Sequence comparison at the amino

acid level revealed A113T, A130I, Q142L, P234L, E240K and

N273Y alterations in the G protein when comparing the 2009 to

the 2011 strain. Two patients were re-infected by the homologous

GB13 genotype. Sequence comparison of the HRSV-B G protein

revealed the incorporation of several amino acid substitutions. For

the patient with a primary infection in 2006 and a secondary

infection in 2008, the amino acid substitutions S138T, R153K,

V171F, Q180R, N204R, K205E, A251V, T256I, S267L and

L277S were observed. For the second patient, initially infected in

2008 and re-infected in 2010, the amino acid changes R98K,

L124S, K136R, T138S, R153K, L219P, I256T, E261G, L267S

and L277S were present.

In 2 patients, infected during the 2009/2010 season, a

prolonged virus shedding was observed. A 2-month-old boy was

infected with HRSV-A and nasopharyngeal samples remained

positive for 2 months (December 2009 till February 2010). A 6-

month-old girl was infected by HRSV-B and respiratory samples

were positive from January 2010 till the end of March 2010. The

medical history of these patients indicated that they were under

attention of the oncology division of the hospital and most likely

were suffering from immunological failure.

Seasonality
HRSV seasons in Belgium traditionally set off in the fall

(October) and can last till early spring (March) (Figure 1). Usually,

an epidemiological peak is reached around week 50 in the winter.

Remarkably, the epidemiological season of 2008/2009 was

characterised by an early onset and an advanced epidemiological

peak in week 47. Epidemic outbreaks have a mean duration of

approximately 22 weeks.

Subgroup Dominance
Subgrouping by means of qRT-PCR demonstrated a yearly

alternating dominance between HRSV-B and HRSV-A during

the epidemic season of 2006/2007 till 2009/2010 (Table 1).

HRSV monitoring over 15 consecutive years has indicated a

recurrent subgroup pattern of AAB during 9 out of 15 outbreaks

(1996–2005) (Table 3). This temporal periodicity was replaced by

an AB sequential repetition, in the four epidemics following (2006–

2010). The latter season was followed by a second HRSV-A

dominant season 2010/2011.

Phylogenetic Analysis HRSV-A
A total of 227 (44.2%) out of 515 HRSV-A strains were

sequenced. One hundred and two sequences represented unique

strains and the remaining 125 strains were found identical to other

circulating strains. Clustering within the subgroup A with previous

genotyped strains [3,5] demonstrated the circulation of the GA2

and GA5 genotypes (Figure 2), with a clear dominance of GA2

over GA5 (Table 3). Belgian HRSV-A sequences isolated between

2006 and 2011 diverged in a range of 0.2–14.4% at the nucleotide

level and in a range of 0.5–25.5% at the amino acid level. The

deduced amino acid sequence of these strains showed a G protein

of 297 amino acids within the GA2 genotype and a G protein of

298 residues within the GA5 genotype (Figure 2).

Genotype Specific Amino Acid Mutations within
Subgroup A

GA2 and GA5 are characterised by genotype specific amino

acid mutations [24,25]. All Belgian GA2 strains had the previous

reported T269 and S289 amino acid substitution (Figure S1). The

Circulation of HRSV in Belgium
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amino acid mutations A225, N250, S251, T274, I279, I295 and

D297 were recognized in the second hypervariable region of the

GA5 classified strains. Since we sequenced the nearly complete

carboxyterminal ectodomain, including the first hypervariable

region and the conserved region, we were able to recognize several

other genotype specific amino acid mutations. GA2 strains were

characterised by the A122 and Q156 amino acids. Botosso and

colleagues report the L215P, R244Lis, H266Y, D297K and

STOP298W mutation, fixed in the GA2 genotype. All Belgian

GA2 strains isolated between 2006 and 2011 retained or mutated

back to the original amino acid except for residue D297K [26].

We were able to differentiate GA5 from GA2 by the presence of

F102, I108, T111, I125, D161, S191 and L217 at the amino acid

level.

Selective Pressure Analysis HRSV-A
Amino acids located at positions 237 (log BF = 4.4), 238 (log

BF = 4.5), 244 (log BF = 5.06) and 262 (log BF = 5.03) were

identified to be under diversifying selection. These positive selected

sites are all located in the second hypervariable region of the G

protein. None of the positive selected sites were serines or

threonines, but several different amino acids were found at sites

under positive selection: D/N/Y/H at position 237, T/P/F/I at

position 238, R/G at position 244 and E or K at position 262.

Phylogenetic Analysis HRSV-B
The partial G gene sequence (nt 177 to 900 according to

reference strain WV/B1/85 accession number AF013254) of 213

(52.7%) out of 408 subgroup B isolates was determined and 105

sequenced strains were unique. One-hundred-and-eight sequences

were identical to other circulating strains shown in Figure 3.

Belgian isolates collected during the epidemic seasons of 2006 till

2011 had pairwise distances in the range of 0.1–7.3% at the

nucleotide level and differed in a range of 0.4–10.8% at the amino

acid level. Phylogenetic analysis demonstrated the circulation of

two genotypes: GB12 and GB13. Two isolates remained

unclassified (BE/6904/07 and BE/8773/09) (data not shown).

The GB13 genotype is the predominating genotype of the

circulating strains during the past 5 HRSV epidemic seasons

(Figure 3). All GB13 strains circulating from 2006/2007 till 2010/

2011 were circulating under the BAIV lineage (Figure 4).

Amino Acid Analysis of HRSV-B
Protein lengths of 215, 235, 295, 296, 310, 312 and 317 residues

were predicted based on the deduced amino acid sequence of the

HRSV-B isolates (Figure S2). Remarkably, in all 5 seasons, the G

protein length of 310 amino acids was dominant. The G protein

polymorphisms result from genetic variation created by the

presence of nucleotide mutations, a 6-nucleotide deletion, a 60-

Figure 1. Seasonality of HRSV in Belgium (2006–2011).
doi:10.1371/journal.pone.0060416.g001

Table 2. HRSV re-infections.

No. of HRSV re-infections

A–A A–B B–B B–A AB–AB B–A&B B–A–A

4 (09/10–10/11)** 1 (07/08–08/09) 1 (06/07–08/09)* 1 (07/08–07/08) 1 (06/07–08/09) 1 (06/07–07/08) 1 (07/08–08/09–09/
10)

1 (08/09–08/09) 2 (08/09–09/10)

1 (08/09–10/11)*

*Primary and secondary infections were caused by both strains of GB13 genotype **For 1 of the 4 re-infected patients, primary and secondary infections were caused by
strains of GA2 genotype. For the other reinfections, genotypes of the primary and/or secondary strain are undetermined since G gene nucleotide sequence was not
available. Epidemic season of primary, secondary or tertiary infection are indicated between brackets. All secondary infections occurred within 2 to 24 months. The
tertiary infection occurred after 11 months (B–A–A).
doi:10.1371/journal.pone.0060416.t002
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nucleotide duplication and the alternating use of three different

stop codons (Figure S2). In addition to this genetic variety, we

report a new 6-nucleotide insertion (GAAAAA) at nucleotide

position 678 that was identified in two isolates (BE/950858/08

and BE/944484/08) clustering in the GB13 genotype, during the

epidemic season of 2008/2009 (Figure S2). This in-frame-insertion

is located in-between the 6-nucleotide deletion and the 60-

nucleotide duplication and codes for the amino acids glutamine

acid and lysine. In these strains the first stop codon was

terminating and an amino acid length of 312 residues was

predicted for the G glycoprotein. For 2 isolates, a nucleotide

mutation led to the premature introduction of a stop codon

resulting in a truncated G protein at the carboxy-terminal end. For

isolate BE/404/10, the mutation AAGRTAG was responsible for

a predicted protein length of 235 amino acids. The mutation

AAARTAA introduced a stop codon at amino acid position 216,

resulting in a shortened G protein of BE/5351/08. For the BE/

7848/10 strain, the presence of the 6-nucleotide-deletion, 60-

nucleotide-duplication and CAARTAA terminating mutation

resulted in the amino acid length of 296 residues. Within the

GB13 genotype, predicted protein lengths of 310 and 317 amino

acids can be explained by the use of the first and third stop codon,

respectively. Two strains, BE/6907/07 and BE/8773/09, had

distinct predicted protein lengths of 295 and 299 residues resulting

from second and third stop codon usage. The amino acid length of

295 amino acids was associated with the GB12 genotype.

Genotype Specific Amino Acid Mutations within
Subgroup B

All Belgian GB13 strains were characterised by the T229I and

S247P substitution (Figure 4) and were classified as BA-IV based

on clustering with isolates from Buenos Aires [22,27] and South

Africa [28]. All Belgian isolates contained the characteristic BA-IV

H287Y substitution except for BE/6886/06, BE/8933/09 BE/

9364/09 BE/3374058/10 BE/5394/08 BE/5489/08 BE/

956911/08 BE/950755/08 and BE/94/07, BE/8845/09, BE/

1649/10 and BE/333/11 (indicated in Figure 4 by *). However,

several strains of the BA-IV branch (BE/6548/10, BE/3354412/

10, BE/404/10, BE/884/09, BE/7852/10, BE/6734/09, BE/

5533/08, BE/6504/08, BE/5149/08, BE/94/07, BE/6797/07,

BE/6007/07, BE/7176/07 and BE/5354/07) also contained the

BA-II associated L219P substitution. The BE/936751/08 strain

contained the P231Q amino acid substitution associated with BA-

V. The T270I substitution linked with branches BA-III to -V was

also detected in several isolates (BE/5150/08, BE/9004/09, BE/

1346/10, BE/9295/09, BE/9109/09 and BE/3301859/09).

Within the BA-IV branch, 6 additional substitutions (L223P,

STOP316Q, Q268L/P, E292G, Q313STOP and V271A) were

associated with the designation of subbranches: BAIVa, BAIVb,

MAD-II, MAD-III, INDIA and BRAZIL [22]. The L223P

Figure 2. Phylogenetic tree of HRSV-A strains. The phylogenetic
tree was constructed based on a 624-nucleotide fragment of the G
protein, consisting of the two hypervariable regions. The nucleotide
sequences of the Belgian strains isolated during 5 consecutive epidemic
seasons (2006–2011) were compared with reference strains from Italy
(ITA), Madrid (MAD), Montevideo (MON), West Virginia (WV) and
Birmingham (BIR). The outgroup is represented by the Long strain.
Bootstrap values are indicated at the internal nodes and are calculated
for 1000 replicates by using the neighbour joining method. Only
bootstrap values .70 are shown. The numbers between brackets are
the number of strains identical to one shown in the tree. The amino
acid lengths predicted for the G protein are indicated next to the
Belgian isolates. For both the GA2 and GA5 genotypes, a strong
temporal clustering of the strains per epidemic season is observed.
doi:10.1371/journal.pone.0060416.g002

Circulation of HRSV in Belgium

PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e60416



substitution was found in all Belgian BAIV strains except for BE/

333/11 and BE/5437/08. The Q268L/P substitution was not

found in the Belgian GB13 isolates. The E292G substitution was

found in a cluster of 12 strains. All Belgian strains had the

Q313STOP mutation with the exception of BE/7852/10, BE/

5691/08, BE/5213/08, BE/954893/10, BE/8845/09, BE/8923/

06, BE/5449/07, BE/6156/07, BE/7163/06 and BE/6726/07.

The V271A substitution, located in the duplicated region was also

frequently detected, but not in the cluster of 12 strains that also

had the E292G substitution and BE/1649/10, BE/6649/06 BE/

6504/08, BE/939189/08, BE/6259/08, BE/7163/06 and BE/

6726/07.

Recently, Dapat and colleagues suggested a reclassification of

the BAIV branch, different from the subclassification proposed by

Trento and co-workers, into BAIV, BA7, BA8 and BA9 [29].

They also reported the identification of a new BA10 branch. The

BA7 branch was correlated to E226G and L223P substitution.

Three isolates BE5351/08, BE/6504/08 and 939189/08 con-

tained the E226G mutation.

The S267L substitution is shared by a cluster of 28 strains

(indicated in red in Figure 4). Eighteen of these 28 strains also had

the S297F substitution. In addition, 7 strains (BE/5423/08, BE/

6953/07, BE/5312/08, BE/46/08, BE/7269/06, BE/6346/06

and BE/6649/06) not clustering in the S267L group, also

contained the S297F substitution. The I281T is shared by a

separate branch of 5 strains indicated in turquoise in Figure 4.

These aforementioned substitutions (S267L, S297F and I281T)

are characteristic for the BA9 branch. However, in our tree, the

S267L substitution and the I281T substitution are shared by 2

separate clusters. BA10 is distinct by the substitutions E292G,

E226D, T289I and S269P. Seven strains of the aforementioned

E292G cluster also had the E226D amino acid substitution in

common (indicated in blue Figure 4). Three strains of this cluster,

also shared the T289I substitution. These 3 substitutions E292G,

E226D and T289I have been linked to the branch BA10 [29].

Selective Pressure Analysis HRSV-B
Positive selected sites were identified at amino acid positions

T73, V76, T83, T92, T/I139, R/H151 and V171 (corresponding

to strain WV/B1/85) with Log BF = 3.2. Remarkably, all these

sites are located in the first hypervariable region of the G protein,

with the exception of amino acid position 171, which is located in

the conserved region. The threonines located at positions 76 and

171 were checked for O-glycosylation using the NetOglyc 3.1

program but the predicted potential of glycosylation was below the

threshold, providing no evidence of O-linked sugar chains.

Demographic History of GA2, GA5 and GB13 Genotypes
Worldwide

The population size dynamics of GA2, GA5 and GB13 were

estimated using Bayesian skyride analysis including strains isolated

Figure 3. Phylogenetic tree of HRSV-B strains. The phylogenetic
tree was constructed based on a 708–762-nucleotide fragment of the G
protein, consisting of the two hypervariable regions. The nucleotide
sequences of the Belgian strains isolated during 5 consecutive epidemic
seasons (2006–2011) were compared with reference strains from
Buenos Aires (BA), Belgium (BE) and South Africa (SA). The outgroup
is represented by the WV/B1/85 strain. Bootstrap values are indicated at
the internal nodes and are calculated for 1000 replicates by the
neighbour joining method. Only bootstrap values .70 are shown. The
numbers between brackets are the number of sequences identical to
the sequence shown in the tree. The amino acid lengths predicted for
the G protein are indicated next to the Belgian isolates. The isolates
with no predicted G protein length indicated consisted of 310 residues.
doi:10.1371/journal.pone.0060416.g003
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in different parts of the world. The combination of the GA2 and

GA5 nucleotide dataset, encompassing the second hypervariable

region of the G protein, resulted in the skyride plot for HRSV-A

(Figure 5). This estimate of population size through time for

HRSV-A was compared to the demographic history of GB13. The

Bayesian skyline plots clearly demonstrated an expansion for the

GB13 genotype after 1998. This expansion levelled of and was

followed by a period of roughly constant population size.

Interestingly, at the time point that the GB13 population size

attained a relatively high level, the population size of the HRSV-A

genotypes underwent a decrease. After this decrease, the total

population size of GA2 and GA5 genotypes approximated the

total population size of GB13 strains, balancing the population

sizes of HRSV-A and –B stable genotypes.

Discussion

Seasonal outbreaks of HRSV in Belgium have been document-

ed since the epidemic season of 1982–1983 [6,7,16]. Annually,

HRSV infections appear in October and reach a peak in

December. Remarkably, during the season of 2008–2009, the

peak incidence was observed in November. This earlier peak could

not be explained by meteorological parameters such as temper-

ature, humidity and the particulate matter concentrations in

ambient air [30]. Next to these factors, human behavior e.g.

indoor crowding and immunologic susceptibility e.g. level of

maternal antibodies, contribute to the seasonal character of these

outbreaks [31,32]. Children below the age of 12 months

represented 81.5% of the infected patients during the study. Here,

we also observed that HRSV is an important pathogen in

immunocompromised patients, resulting in prolonged virus

shedding. A total of 14 re-infections were observed during the

study period, where homologous subgroup (8/14) and heterolo-

gous subgroup (6/14) infections were detected (Table 2). For 3

homologous infections, secondary infection was caused by a strain

of the homologous genotype. Several amino acid substitutions

were detected between primary and secondary strains of the same

genotype suggesting that genetic variability may have resulted in

the escape to the immune response. Previous studies have reported

that strain-specific and group-specific immunity waned after 7 to 9

and 2 to 4 months respectively, allowing repeated infections to be

encountered [33,34].

During 10 consecutive seasons (1996–2006), a regular 3-yearly

cyclic pattern has been observed, where two HRSV-A dominant

seasons alternated with one HRSV-B season. Since the HRSV

Figure 4. Phylogenetic analysis of HRSV-B GB13 strains
designated to the BAIV lineage. The phylogenetic tree was
constructed based on a 762-nucleotide fragment of the G protein,

consisting of the two hypervariable regions. The nucleotide sequence of
the GB13 designated strains were compared to strains from Buenos
Aires (BA) and South Africa (SA) and assigned to branches of GB13. The
numbers at the internal nodes represent bootstrap values, determined
for 1000 iterations by the neighbour joining method. Only bootstrap
values .70 are indicated. The amino acid substitutions that originate
the main branches are indicated at the left of the nodes. Based on the
presence of a certain amino acid position, several clusters were
diversified. The red cluster groups the strains carrying the S267L
substitution. The strains of the dark blue cluster share the I281T and
T270I substitution. The cluster indicated in green groups the sequences
with the L219P substitution. The turquois coloured branch indicates the
sequences with the 2292G substitution. Within this cluster, sublineages
characterised by the E226D mutation and T289I mutation can be
distinguished. Brackets group strains with amino acid substitutions
associated with the origin of new sublineages of the GB13 genotype.
Strains with termination codon different from Q310STOP are indicated
by #. Strains that do not have the H287Y substitution are indicated by
single *. Strains indicated with **have the T270I substitution.
doi:10.1371/journal.pone.0060416.g004
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season of 2005/2006, this has changed into a yearly alternating

model where HRSV-A was replaced by HRSV-B in the

subsequent season. However, the HRSV-A dominance during

the 2010/2011 season introduced a second break of the subgroup

pattern possibly initiating a new alteration in the subgroup

periodicity. Overall, subgroup A strains (10/15) were dominating

more seasons than subgroup B strains (5/15).

For HRSV-A, GA2 and GA5 are genotypes that have been

circulating in the Belgian population since 1983–1984 [6]. For

HRSV-B, a replacement of a circulation pattern of multiple

genotypes (GB1-GB12) by the circulation of a single genotype

GB13 has occurred in 2003 [7,16]. For the GB13 gentoype, a

strong temporal clustering of the strains per epidemic season is

observed. The GB12 genotype was only circulating in the Belgian

population during the epidemic season of 2006/2007. All the

isolated GB13 strains belonged to the BAIV lineage. Other

genotypes such as the GA1, GA4 and BE/A1 genotype circulated

in the epidemic seasons of 1989/1990, 1992/1993 and 1986/

1987, respectively but have disappeared out of the Belgian

population. Also GB2, GB3, GB6, GB8, GB10 and GB11 have

not been isolated after the epidemic season of 2002/2003. The

GB13 genotype, first detected in Belgium in 2001/2002 has

replaced all other genotypes and co-circulated with GB12 in the

season 2002/2003 and 2006/2007. This gradual replacement of

circulating genotypes by GB13 has been observed in different

countries and GB13 represents 100% of the isolated HRSV-B

strains after 2006 [25,28]. Since 2006/2007, GA2 has been

predominating over GA5, whereas the genotype distribution

pattern of the previous seasons (1996/1997–2005/2006) demon-

strated annual or biennial replacement of GA5 by GA2 or vice

versa. GA2 and GA5 circulate worldwide and are recognized as

stable genotypes [24,25,28,35–40]. The select dominance of GA2

has also been observed in South Western China during epidemic

seasons 2006–2009 [40] and Central and South America [36],

Ireland in 2008/2009 [25] and South Africa in 2007–2008 [28].

The efficient circulation of these genotypes could not be explained

by high genetic variability of the carboxy-terminal hypervariable

region, since this region was remarkably conserved comparing

strains isolated over several years [41]. Amino acid analysis of

subgroup A strains suggested a predicted protein length of 297

residues for GA2 strains and a protein length of 298 amino acids

for GA5 strains. In addition, we identified 2 new amino acid

specific mutation of the GA2 genotype (A122 and Q156) and 7

new amino acid mutations (F102, I108, T111, I125, D161, S191

and L217) that differentiated the GA5 genotype from the GA2.

Recently, it has been speculated that the variation in the amino-

terminal variable region may be responsible for sustained virulence

and may have allowed its prolonged circulation. Until now, the

immunological importance of the amino-terminal variable region

remains to be elucidated [41]. However, the identification of 4

amino acid positions (237, 238, 244 and 262) under positive

selection, located in the second hypervariable region, is indicative

of diversifying selective pressure acting in this gene region.

Selective pressure by the immunological response has been

described as one of the mechanisms that drive genetic variability

of HRSV [42]. Strains that possess an asparagine at site 237 are

potentially N-glycosylated. Glycosylation is an important hallmark

of antigenicity of the virus, since it can mask or facilitate

recognition by antibodies of the immune response [26]. The

presence of an arginine at amino acid position 244 in isolates is

associated with the loss of reaction with monoclonal antibodies

[43]. For HRSV-B, 6 amino sites (73, 76, 83, 92, 139 and 151)

were under positive selection and these amino acids were all

located in the first hypervariable region of the G protein, except

Figure 5. Bayesian skyride plot. Demographic history of HRSV-A genotypes GA2 and GA5 is represented in blue and the HRSV-B GB13 genotype
is shown in purple. The population size (Net) is indicated on the y-axis and the x-axis demonstrates the time period in years. The inner line represents
the median estimate and the coloured areas in blue or purple indicate the 95% highest posterior density.
doi:10.1371/journal.pone.0060416.g005
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for amino acid 171, located in the conserved region. Immunologic

pressure seems to act mainly in the first hypervariable region and

the conserved region, which is remarkable. Not much is known

about the location of strain specific epitopes, however, immuno-

logical pressure acting in the conserved region is notable. The

amino acid found at a certain positive selected site varied between

strains, indicating the occurrence of ‘‘flip-flop’’ reversions over

time [26]. Further, the amino acid analysis of the HRSV-A G

protein supports this because almost all the GA2 specific mutations

reported by Botosso and co-workers reverted to their original

amino acid in the Belgian strains. Also amino acid position 237

that is under positive selection was described to be subject of

several flip-flop reversions. These flip-flop reversions are likely

responsible for the loss of protective immunity that may have been

evoked against key epitopes [26]. For HRSV-B, the reversion of

amino acid at position 171 in the HRSV-B GB13 strain

contributed to the re-infection with homologous genotype

(Table 2).

The G protein of HRSV-B isolates is polymorphic which can be

explained by the introduction of early stop codons, the alternating

use of 3 stop codons, the presence of a 60-nucleotide duplication,

6-nucleotide deletion and a novel 6-nucleotide insertion. These 6

nucleotides are probably inserted due to polymerase stuttering

during transcription or replication since these bases are flanked by

a guanosine combined with an adenosine cluster (Figure S2).

Remarkably, the first triplet of this insertion corresponds to the

position of the 3-nucleotide-insertion that has been reported for 5

Belgian isolates during the epidemic season of 1995/1996 that

clustered in the GB9 genotype. After this epidemic season, the 3-

nucleotide-insertion has disappeared out of the Belgian population

and now reappears, 14 epidemic years later, combined with a

second triplet, in GB13 strains. Most likely, these insertions

resulted from 2 separate mutational events. The polymorphism of

HRSV-B isolates has led to the prediction of protein lengths of

215, 235, 295, 296, 310, 312 and 317 residues, with G proteins of

310 amino acids being predominant.

The GB13 genotype can be subdivided in several branches BAI

to BAVI based on clustering with previous strains assigned to these

branches [27,28]. Belgian GB13 isolates circulating from 1999–

2005 were classified under 5 branches BAI-IV and BAVI [22]. All

the GB13 strains detected since 2006 belonged to the BAIV

branch. The spread of the BAIV lineage is observed worldwide

and suggests the successful transmission of the GB13 genotype.

Several amino acid substitutions located in the second hyper-

variable region of GB13 strains have been correlated with clusters

within the GB13 genotype. However, some BAII, -III and –V

specific amino acid substitutions were also detected in the Belgian

BAIV strains. A subdivision of the BAIV branch into 6 categories,

BAIVa, BAIVb, MAD-II, MAD-III, INDIA and BRAZIL, was

proposed based on detection of additional substitutions and

phylogenetic clustering [22]. In parallel, a different diversification

of the BAIV branch was reported, where BAIV was re-classified as

BAIV, BA7 to BA9 and a new genotype BA10 [29]. Although many

amino acid substitutions were detected among the Belgian strains, it

was not possible to correlate the amino acid substitutions to the (sub-

) branches. Because no sequence data is available that covers the

complete ectodomain of the G protein for strains of these

subclassifications, their implementation by means of phylogenetic

analysis was not possible.

GA2 and GA5 are genotypes that co-circulate worldwide, and

the predominance of the GB13 genotype has been reported for

several countries [28,40]. The demographic history of the

dominant HRSV-A genotypes and the predominant HRSV-B

genotype, reconstructed through a Bayesian skyride analysis

demonstrated a decrease in HRSV-A population size at the time

the GB13 expansion was levelled off (Figure 5). As a consequence

the HRSV-A population size was in balance with the HRSV-B

population around the epidemic season of 2004–2005. The

population size of GB13 is subsequently characterized by a

roughly constant population size that overlaps with the epidemi-

ological period where a yearly alternating subgroup dominance

was observed in Belgium. This study is the first to demonstrate that

the dissemination of the GB13 genotype may have led to a

decreased total population size of the GA2 and GA5 genotypes

worldwide resulting in a new equilibrium between of the total

HRSV-A and –B virus population. The proportional circulation of

these stable genotypes may be at the origin of the altered subgroup

pattern. However, more studies need to be conducted to support

this hypothesis.

Genetic mapping of the G protein gene remains important to

identify new genetically diverse HRSV variants that may spread

globally. This is illustrated by the identification of HRSV-B GB13

and the recently described HRSV-A ON1, two novel genotypes

containing a 60-nucleotide and 72-nucleotide duplication in the

second hypervariable region of the ectodomain [44]. The global

spread of GB13 is documented while for HRSV-A, it needs to be

awaited if the 72-nucleotide duplication will provide similar

transmission success. In addition, investigation of the genetic

diversity ensures the efficacy of the current vaccines and antiviral

compounds in development. The global spread of novel genotypes

may imply that the vaccines currently in development need to be

adjusted [28].

Supporting Information

Figure S1 The amino acid substitutions in the hypervariable

regions of HRSV-A GA2 and GA5 genotypes. The amino acid

substitutions in the hypervariable regions of HRSV-A GA2 and

GA5 genotypes. Deduced amino acid alignment of the G protein

gene from a selection of HRSV-A sequences isolated during 5

consecutive epidemic seasons (2006/2007–2010/2011). The

alignment is shown relative to the reference strain AUS/A2/61

(M11486). The amino acid residues depicted start at position 85 to

299. The conserved region is located at amino acid position 164–

176 with four cysteines at positions 173, 176, 182 and 186.

Identical residues or identical stopcodon positions to the reference

sequences are depicted as dots, and alternative used stop codons

are indicated by asterisk. GA2 genotype specific amino acid

mutations are indicated in yellow. GA5 specific amino acid

mutations are indicated in grey.

(EPS)

Figure S2 G protein polymorphisms of HRSV-B strains.

Schematic representation of the predicted G protein lengths for

the Belgian HRSV-B isolates in accordance with the WV/B1/85

reference strain. The G protein ectodomain consists of two

hypervariable regions separated by a central conserved region

(amino acid positions 153 to 221). The conserved region consists of

4 cysteine residues located between amino acids 164 and 187 and

are indicated by a dashed line. The underlined sequence

represents the used termination codon and the total protein length

is indicated at the end of each G protein. The 6-nucleotide

deletion is shown as a V, where the deleted amino acids are

indicated in top. The 60-nucleotide duplication region is visualised

as a paired black box, with the duplicated sequence indicated

above the box. The 6-nucleotide insertion is indicated as a little

black box. The insertion of premature stopcodons are visualised by

a dot (N) resulting in truncated G proteins.

(EPS)

Circulation of HRSV in Belgium

PLOS ONE | www.plosone.org 10 April 2013 | Volume 8 | Issue 4 | e60416



Table S1 HRSV-A sequence data used in the coalescent

analysis.

(DOCX)

Table S2 HRSV-B sequence data used in the coalescent

analysis.

(DOCX)
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