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Abstract

Vector borne diseases are a continuing global threat to both human and animal health. The

ability of vectors such as mosquitos to cover large distances and cross country borders

undetected provide an ever-present threat of pathogen spread. Many diseases can infect

multiple vector species, such that even if the climate is not hospitable for an invasive spe-

cies, indigenous species may be susceptible and capable of transmission such that one

incursion event could lead to disease establishment in these species. Here we present a

consensus modelling methodology to estimate the habitat suitability for presence of mos-

quito species in the UK deemed competent for Rift Valley fever virus (RVF) and demonstrate

its application in an assessment of the relative risk of establishment of RVF virus in the UK

livestock population. The consensus model utilises observed UK mosquito surveillance

data, along with climatic and geographic prediction variables, to inform six independent spe-

cies distribution models; the results of which are combined to produce a single prediction

map. As a livestock host is needed to transmit RVF, we then combine the consensus model

output with existing maps of sheep and cattle density to predict the areas of the UK where

disease is most likely to establish in local mosquito populations. The model results suggest

areas of high suitability for RVF competent mosquito species across the length and breadth

of the UK. Notable areas of high suitability were the South West of England and coastal

areas of Wales, the latter of which was subsequently predicted to be at higher risk for estab-

lishment of RVF due to higher livestock densities. This study demonstrates the applicability

of outputs of species distribution models to help predict hot-spots for risk of disease estab-

lishment. While there is still uncertainty associated with the outputs we believe that the pre-

dictions are an improvement on just using the raw presence points from a database alone.

The outputs can also be used as part of a multidisciplinary approach to inform risk based dis-

ease surveillance activities.
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Introduction

Vector borne diseases are a continuing global threat to both animal and human health. The

human health impact of mosquito borne diseases such as malaria and Zika virus have been

well documented [1,2], as has the effect on livestock from midge-borne diseases such as blue-

tongue and zoonotic tick borne diseases such as Crimean-Congo haemorrhagic fever [3,4].

The continuing rise in globalisation and the possibility of future environmental and climate

change increase the risk of global spread of these pathogens [5]: growth of global trade and

human travel increase the risk of introduction of pathogens [6,7], while a change in environ-

ment and/or temperature can increase the risk of competent vector species establishing in a

previously inhospitable environment [4,8]. Currently, Europe is experiencing the expansion of

a number of invasive mosquito species including the Asian tiger mosquito, Aedes albopictus
[9]. There is also strong evidence that the previously absent mosquito-borne virus, Usutu

virus, is now active across Western Europe [10] and the zoonotic virus, West Nile virus, is

repeatedly being introduced from Africa into southern Europe [11].

Rift Valley Fever (RVF) is a zoonotic mosquito borne viral disease that can affect both

humans and livestock, predominantly cattle and sheep [12]. The disease is caused by infection

with Rift Valley fever virus (RVFV). Outbreaks have historically been restricted to sub-Saharan

Africa, where the disease is endemic, although trade in livestock is believed to have introduced

the virus into the Arabian Peninsula [13]. In 2018 there have been outbreaks of RVF in Kenya,

Uganda, South Africa and Rwanda [14–16]. Although RVF has never been reported in Europe,

the emergence of a range of African mosquito-borne viruses outside of the continent suggests

that it could have the potential to emerge. While there is limited real world evidence for RVF

specific to European species, recent laboratory studies have confirmed that lambs bred in

Europe are susceptible to infection with RVFV [17,18] and that mosquito species indigenous

to Europe are susceptible to infection with the virus and have the capacity to transmit infection

[19,20]. Mathematical modelling has suggested that transmission is also possible based on the

distribution of mosquito vectors and livestock in The Netherlands [21]. This suggests that it

would be prudent to investigate how the virus might be transmitted in a temperate region such

as the United Kingdom (UK).

An important first step in understanding the spread of any disease is knowledge about the

ecology of vectors and hosts, in particular their distribution and habitat preferences. Ecological

niche modelling and habitat suitability models have been used extensively to predict habitat

ranges for a number of species around the world [22,23], including vectors associated with

RVF [24]. Such models have also been employed to predict the likely range of infectious dis-

eases, such as Ebola in Africa [25]. Environmental modelling has been used in Europe to pre-

dict the impact of climate change [8,26], as well as areas at higher risk of RVFV transmission at

a country level including Italy and Spain [27,28]. This approach can be used to inform surveil-

lance and outbreak management. Previous methods have used species distribution to inform

risk based surveillance activities, e.g. by combining information on wild bird density and com-

mercial poultry flocks, one model has predicted likely hot-spots for the introduction of avian

influenza to the UK, the results of which have informed UK surveillance activities [29,30].

Here, we propose a consensus species distribution modelling framework for suitability of

RVF competent mosquitos, based on the ecology of vectors and density of livestock hosts of

RVF, and demonstrate the application of this output for risk assessment purposes by using the

resulting distributions to produce a spatially explicit risk assessment of the most likely areas

for establishment of RVFV in the UK livestock population, i.e. areas where introduction of an

RVF infected animal or mosquito would lead to transmission of the virus between local live-

stock and vector populations. This approach used species distribution models to predict the
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geographical areas of the UK where vector competent mosquito species for RVF may be pres-

ent. This is then combined with cattle and sheep density maps to predict the areas of the UK

where an introduction of RVF is most likely to lead to establishment in the local livestock and

vector populations. Other factors will likely affect the dynamics of RVFV transmission in live-

stock populations and more sophisticated transmission models should be developed for a

more accurate analysis.

Materials & methods

Overview

The model framework is outlined in Fig 1. Competent vectors for RVFV were identified and

georeferenced data of previous observations in the host country were obtained. A list of predic-

tor variables that were considered to be important for the presence of mosquitos was deter-

mined, e.g. variables associated with climate and land use. Species distribution models were

then used to produce spatially explicit output maps which estimated the relative likelihood of

presence of the competent species. The results of all the models were combined to produce

one consensus output map representing the suitability for a competent vector species at each

location. Finally, the consensus map was combined with cattle and sheep density maps to pre-

dict where in the UK an incursion of RVF was most likely to lead to establishment of the virus.

We note that this initial risk assessment does not explicitly consider the epidemiology of trans-

mission (e.g. contact rates, basic reproductive number, infectivity, etc.) and that without this

our results only highlight locations at risk of high intensity outbreak given an introduction of

RVF. The work outlined here, describing vector and host distributions, is a necessary first step

to underpin future, more detailed, epidemiological assessments to understand the risk path-

way. A more detailed model could assess a definition of establishment based on temporal or

spatial dimensions, such as spread to other farms or outbreaks persisting for multiple months,

but such complexity was beyond the scope of this assessment.

Competent vector species

Based on previous studies on mosquito species that have shown evidence of vector competence

for RVFV and appropriate species bionomics, potential vectors for RVFV were identified

(Table 1) [19,20,31,32]. Vector species were assessed against a number of criteria to define

Fig 1. Framework to assess the relative spatial risk of establishment of rift valley fever virus.

https://doi.org/10.1371/journal.pone.0225250.g001
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those mosquitoes capable of propagating a disease outbreak. In addition to vector competence

for RVFV factors including host-feeding preference, primarily those that feed on livestock, as

opposed to birds, were included. Univoltine species were considered less effective vectors due

to limited seasonal activity compared to multivoltine species that are active during the whole

season [33].

Presence/absence of competent vectors

Presence data for indigenous mosquito species listed in Table 1 were obtained from the UK

National Biodiversity Network (NBN) [39]. The NBN contains information supplied by a large

number of different contributing bodies with varying degrees of accuracy by data providers.

Table 1. Table of UK mosquito species bionomics. References are indicated with numerical superscripts: 1 = [34], 2 = [35], 3 = [36], 4 = [37], 5 = [38].

Species1 Occurrence in UK1 Active (Adults) Annual Generations (UK) Feeding Preference

Species determined to be competent for RVFV
Anopheles claviger Widespread Mar–Oct3 Multivoltine3 Mammals3

Anopheles messeae Widespread May–Oct3 Multivoltine3 Mammals5

Anopheles atroparvus Widespread May–Oct3 Multivoltine3 Mammals5

Culiseta annulata Widespread All year round2 Multivoltine3 Mammals4 /Birds3

Aedes detritus Widespread Mar–Nov2 Multivoltine3 Mammals3

Species not determined to be competent for RVFV
Aedes cinereus Widespread, patchy June–Aug2 Univoltine1 Mammals3

Aedes vexans Sporadic reports No Data No Data Mammals3

Anopheles algeriensis Few reports No Data No Data No Data

Anopheles daciae Few reports No Data No Data No Data

Anopheles plumbeus Widespread Apr–Oct2 Bivoltine2 Mammals

Coquillettidia richiardii Widespread Apr–Aug2 Univoltine3 Mammals3

Culex modestus South East England Jul–Sept2 No Data Mammals3

Culex pipiens s.s. Widespread, abundant Apr–Nov2 Multivoltine3 Birds3

Culex pipiens, biotype molestus Few reports All year round2 Multivoltine3 Mammals3

Culex torrentium Widespread Apr–Nov2 Multivoltine3 Birds3

Culex europeaus Few reports No Data No Data No Data

Orthopodomyia pulcripalpis Few reports (SE England) July–Sept3 Univoltine3 Mammals3

Culiseta longiareolata Few reports No Data No Data No Data

Culiseta alaskaensis Few reports No Data No Data No Data

Culiseta fumipennis Widespread (SE England) No Data No Data No Data

Culiseta litorea Widespread (SE England) Apr–Aug2 No Data No Data

Culiseta morsitans Widespread May–Sept2 Univoltine3 Birds3

Culiseta subochrea Rare No Data No Data No Data

Finlaya geniculatus Widespread (England) No Data No Data No Data

Aedes anulipes Widespread Apr–Sept3 Univoltine3 Mammals3

Aedes cantans Widespread Apr–Sept2 Univoltine3 Mammals3

Aedes caspius Rare Apr–Oct2 Multivoltine3 Mammals3

Aedes communis Few reports Do Data No Data No Data

Aedes dorsalis Rare May–Sept3 Multivoltine3 Mammals3

Aedes flavescens Rare May–Aug3 Univoltine3 Mammals3

Aedes leucomelas One report No Data No Data No Data

Aedes punctor Widespread Mar–Oct2 Univoltine3 Mammals3

Aedes sticticus Few reports No Data No Data No Data

Aedes rusticus Widespread Apr–Sept2 Univoltine3 Mammals3

https://doi.org/10.1371/journal.pone.0225250.t001
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To compensate for this we restricted our use to a subset of the NBN data from the National

Mosquito Atlas project. Complementary data for absence of mosquito species is not available.

However, we used as a proxy, the dataset for Culex mosquitoes (NBN) under the assumption

that surveillance at these sites had identified Culex spp., it would also have identified other

mosquito species if they were present [40].

Predictor variables

Based on scientific literature and expert opinion, a number of relevant predictor variables

were identified. These data predominantly fell into two categories; land cover and climatic fac-

tors. The land cover data consisted of 23 ‘target class’ raster files at a 1Km resolution for differ-

ent UK land cover classes, such as broadleaved woodland, arable and salt marshes, which

detailed the proportion of each cell (i.e. 1km2) that was of that class [41]. This was considered

important as some mosquitos are known to favour specific environments. For example, the

mosquito species Aedes detritus lays its eggs in weakly saline conditions and is associated with

salt marshes, whereas other species breed exclusively in freshwater. The climatic data were

obtained from the UK Met Office and consisted of monthly raster files for 11 different climatic

variables related to temperature, rainfall, snowfall, sunshine and humidity [42]. We averaged

the monthly values to get one annual average raster for each variable. Climatic factors such as

temperature are often associated with mosquito activity and breeding [43]. Further description

of the predictor variables are provided in the supporting information (S1 File).

Map of estimated presence

Species distribution models: To estimate potential areas of suitable habitat of RVFV competent

mosquito species, we developed a consensus model framework, based on an existing method-

ology that compares a range of different models [22]. It is well established that individual spe-

cies distribution models have different strengths and weaknesses and can produce different

results, due to differences methodologies employed [44–46]. As such, consensus, or ensemble,

methods have previously been suggested as ways to combine the individual model results in

order to effectively capture the variability between the model results, e.g. [22,47,48]. Here, we

first assessed six habitat suitability models using packages available in R [49] (Table 2). They

were; bioclim, multiple generalised linear model (glm), support vector machines (svm), Maxi-

mum Entropy (MaxEnt), boosted regression trees (brt) and Random Forest (rf).

Inputs: The presence data and predictor variables were loaded into the R statistical package.

The predictor variable raster files were reformatted to be in the same projection and

Table 2. List of models, description and reference.

Method Description Functions available from

Bioclim Classic ’climate-envelope-model’ https://www.rdocumentation.org/packages/dismo/versions/1.

1-4/topics/bioclim

MaxEnt Maximum entropy, machine learning

algorithm

https://cran.r-project.org/web/packages/maxent/maxent.pdf

BRT Boosted regression trees, machine

learning method

https://cran.r-project.org/web/packages/gbm/gbm.pdf

RF Random forest, machine learning method https://cran.r-project.org/web/packages/randomForest/

randomForest.pdf

SVM Support vector machines, supervised

learning method

https://www.rdocumentation.org/packages/e1071/versions/1.

6-8/topics/svm

GLM Multiple generalised linear regression

model.

https://cran.r-project.org/web/packages/glmulti/glmulti.pdf

https://doi.org/10.1371/journal.pone.0225250.t002
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resolution, normalised to the same scale, and then combined into one raster stack. To account

for sample selection bias [40], the background/absence points were selected based on 1km ras-

ter cells where other Culex spp. mosquitos had been found, but not the species we consider

competent for RVF; it is possible Culex spp. and RVF competent mosquitos could be observed

in the same cell, but this would not be considered an absence. A subset of these points were

selected at random, in order for the number of background points used in the model to equal

the number of presence points [50]. As we are considering the whole 1km raster cell, rather

than the specific point, each observation, either presence or absence, can be considered inde-

pendent with regards to different environmental conditions. To provide an independent data-

set to evaluate the predictive accuracy of the models, the presence and background points were

then randomly grouped into training and testing datasets. A subset of the data (20%) were

reserved for testing, using the kfold function from the dismo package in R [51]. To account for

the variability introduced by the random selection of background (absence) locations and the

partitioning of data for testing and training this process was performed 100 times fitting the

set of models each time.

Collinearity: To test for collinearity between predictor variables, the vifstep function in the

usdm package in R was used [52], with predictor variables failing the test removed from the

analysis for that iteration. Then the different algorithms were run using these data as input

variables.

Consensus model: Each species distribution method has an associated threshold function in

the dismo package of R. This function calculates a cut-off value to transform the model predic-

tions into a binary presence/absence score, i.e. one would realistically expect presence of the

vector in areas where the model output value is above this threshold value and absence of the

vector in areas below the threshold value. We chose to base the cut-off on the point at which

the sum of the sensitivity and specificity is highest. The consensus model method used the

threshold calculations from all the individual models to determine which areas were consis-

tently flagged as being above the threshold by multiple models. For each species distribution

model, i, and iteration, q, a threshold map was produced where each geographical cell, j, had a

binary value, h0(i,j,q), to denote either presence (1) or absence (0)

h0ði; j; qÞ ¼
0 gði; j; qÞ < tði; j; qÞ

1 gði; j; qÞ � tði; j; qÞ
;

(

where g(i,j,q) is the value of species distribution model i at cell j in iteration q and t(i,j,q) is the

corresponding threshold value. The sum of these values over all iterations, h(i,j), represent

how often the value in that cell is above the threshold value; the higher the score, the more

likely it is the vector is present in that cell.

hði; jÞ ¼
XQðiÞ

q¼1

h0ði; j; qÞ;

where Q(i) is the number of iterations for model i used in the consensus model. This resulted

in six maps, one for each method. The six maps were then combined to produce the consensus

model map of estimated probability of presence, with the value in cell j, m(j), given by

m jð Þ ¼
PNsdm

i¼1
hði; jÞ=QðiÞ
Nsdm

;

where Nsdm was the number of individual species distribution models.
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Establishment of RVF

The species distribution maps predict where in the UK we can expect to find mosquito species

capable of transmitting RVF, but they reveal little about RVFV transmission dynamics, such as

where it is most likely to occur, spread and cause a large and/or prolonged outbreak. To dem-

onstrate how these maps can be incorporated into a wider model to address such issues, a sim-

ple assessment to predict where establishment of RVF in the UK is most likely was conducted.

The consensus model raster map for the suitability of competent mosquito species was com-

bined with factors thought to be necessary for establishment of RVF, in this case maps of cattle

and sheep density [23,53]. A compentent animal host resevoir is essential for transmission and

thus establishment of RVF. Livestock density is critical as the infectious period is short for

RVFV infected animals after which the animal is unlikely to be infected [21]. A small host pop-

ulation would become infected and seroconvert rapidly, reducing the likelihood of establish-

ment and a prolonged outbreak. Whilst it is possible other animal species, for example camels,

may also be competent hosts, cattle and sheep are the main livestock species present in the UK

that are commonly linked with RVF outbreaks. For the final risk map, we capped the livestock

densities at a value of 100, under the assumption that the risk would be the same for any num-

bers above this level. Thus the risk of establishment in cell j, R(j), was given by

RðjÞ ¼ ðcðjÞ þ sðjÞÞ �mðjÞ;

where c(j) and s(j) are the cattle and sheep densities in cell j (capped at 100), and m(j) is the

consensus map output value in cell j.

Model validation

Goodness of fit, environmental data: An important consideration with regards to the validity of

the model to the whole of the UK is whether the environmental conditions of a particular area

are well represented in each iteration of the model. For example, if regions 1000m above sea

level are rarely selected in the training data, then the model predictions for these regions will

not be as reliable as the predictions outside the domain of the model. To assess this we use the

Multivariate Environmental Similarity Surfaces (MESS) algorithm in the R dismo package

[44], to compare the regions selected in the training data to the regions in the full dataset, i.e.

the whole of the UK. Negative values for the MESS statistic indicate regions of the UK that are

not well represented in the training dataset. Each iteration the MESS algorithm gives a value

for each 1km cell in the UK. Each cell was then assigned the value 0 if the MESS statistic is neg-

ative and 1 if positive. These were then aggregated over all iterations to produce a single map.

Goodness of fit, consensus model: The goodness of fit of the final consensus model was esti-

mated by considering four statistics; a) the Area Under the receiver operator Curve (AUC), b)

the correlation coefficient, c) the average model predicted probability of presence at the

observed presence points, d) the average model predicted probability of absence at the

observed absence points. Statistics c) and d) were calculated simply by extracting the values of

the consensus model at the observed presence and absence points. The correlation statistic was

calculated using the cor.test function in R, comparing the model predicted values at presence

and absence points against a statistic that took the value of 1 for presence points and 0 for

absence points [54]. The AUC was estimated by assuming equivalence to the Wilcoxon rank

sum test statistic first calculating the Mann-Whitney-Wilcoxon U statistic [55]. This was calcu-

lated by running the wilcox.test R function on the model values at the observed presence and

absence points, then dividing the resulting statistic by the total number of observed presence

and absence points [54].
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Consensus model individual method selection: To assess the validity of including all the indi-

vidual models in the consensus model, we fit alternative models, each removing one of the

individual models, i.e. we fit six alternative models using only five of the species distribution

models. These alternative models were compared to the full consensus model using the same

goodness of fit statistics.

Predictor variables: As well as the collinearity analysis conducted in the main model frame-

work, we also conducted an ANOVA analysis to assess the relationship between the predictor

variables and the model values. This analysis uses a methodology described previously [56].

Briefly, the values of each predictor variable are ranked from low to high and assigned a semi-

quantitative score based on quartiles (the lowest quarter of values are assigned the value 1 and

the highest the value 4). A linear model is then fit which regresses the consensus model values

against the transformed predictor variables. The resulting F values, one for each predictor vari-

able, provide a measure of the extent to which the model values and the predictor variable are

related. Individual linear models are also fit, with each predictor variable regressed against the

model outputs. The sign of the gradient coefficient is used to determine the direction of the

relationship. Note that this analysis does not indicate whether the predictor variables should

be included or not, this is done in the collinearity assessment within the model framework, a

variable with a high F value may not be necessary if other predictors can act as proxy for it.

Outputs

The outputs of the individual species distribution models were raster files at a 1Km spatial res-

olution that represent the relative habitat suitability of the competent mosquito species for the

six different models. Each model method produces 100 potential distribution maps, for the dif-

ferent partitions of test and training data. Maps are produced for the mean values over all itera-

tions for each method, along with the 5th, 50th and 95th percentiles of the goodness of fit

statistics. The output of the establishment model is a raster file at 1Km spatial resolution that

represents the relative probability of establishment of RVF across the UK.

Results

Consensus model: Fig 2 shows a map of the consensus mosquito suitability model, detailing

areas of the UK which were consistently identified as being above the threshold value by multi-

ple models (as shown by the darker red colour). The presence points used in the model fits

were also plotted over the map (black dots). It can be seen that the South East of England,

including areas around London, are consistently identified, along with areas around Suffolk

and Norfolk, and many coastal regions, including as far north as Inverness on the east coast of

Scotland. Areas where competent vector species have been recorded tended to be above the

threshold value in most iterations of the individual models, and hence have a high value in the

consensus model. However, areas where there are only a few observations nearby were not

consistently above the threshold, particularly in the more rural areas of Scotland. A plot

including the absence points (see supporting information, S1 File) shows that Culex spp. have

been observed throughout the UK (except for Northern Ireland where we had no presence or

absence points), including areas the model predicts to be of low probability. This suggests that

the results are not biased by a lack of sampling in a particular region, based on the assumption

that observing at least one Culex species in a region and not observing any of the species we

consider competent for RVF is a good indication of absence of these species. The individual

maps from each method are provided in the Supporting information (S1 File).

Risk of establishment: The simple estimation of the relative risk of establishment of RVFV

suggests that while there is a high probability of presence of competent mosquito species in the
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Fig 2. Consensus model map indicating probability of presence of RVF competent mosquito species. Higher values closer to 1 (darker shade) indicate higher relative

probability of presence of competent mosquito species compared to lower values. Observed mosquito presence data are shown by the black squares.

https://doi.org/10.1371/journal.pone.0225250.g002
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South East of England, the lower livestock densities mean that there is a lower risk of establish-

ment than other areas such as in the South West and the coasts of Wales (Fig 3).

Goodness of fit, environmental data: The UK map of the MESS statistic suggests that in gen-

eral the UK environmental conditions are well represented by the training data, but there are a

Fig 3. Risk of establishment of RVF. Higher values (darker shade) indicate higher relative probability of establishment in UK, given entry of RVF has occurred.

https://doi.org/10.1371/journal.pone.0225250.g003
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number of small regions around the UK where the training data is not always fully representa-

tive, for example in some parts of the highlands of Scotland (Fig 4).

Fig 4. UK map detailing the results of the MESS analysis. The map shows the averaged result over all iterations of the model; a value close to 1 (lighter) indicates the

region is described well by the training data, while a value close to zero (darker) indicates it is not.

https://doi.org/10.1371/journal.pone.0225250.g004
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Goodness of fit, consensus model. There was a clear difference in the model predicted suit-

ability at locations where RVF competent mosquitos had been observed, as opposed to where

they are expected to be absent (Table 3). There was high variability in these values, the 5th per-

centile model value at the presence points was 0.388, but the AUC value was estimated to be

0.883 (a value above 0.7 is generally considered a good fit). Analysis suggested that there was

not a huge impact on these goodness of fit values if individual species distribution models

were removed from the consensus model (Table 3). The biggest noticeable difference was that

the average value at the absence points decreased when the bioclim method was removed.

However, the average value at the presence points also decreased, suggesting that while the

probability of a false positive might be reduced, the probability of a false negative increased.

Predictor variables: The ANOVA analysis suggests that altitude, urban, arable and horticul-

tural land have the largest impact on the model outputs, i.e. the spatial variability in these pre-

dictors influenced the spatial variability in the model outputs. Additionally, RVF competent

mosquitos are less likely to be present at high altitude and on arable and horticultural land as

these predictors have negative coefficients in fitted linear models, but were more likely to be

present on urban or broadleaf woodland as these predictors had positive coefficients (Fig 5).

Altitude had a relatively high vif value indicating relative high collinearity with other predictor

variables; in some iterations the value exceeded 10 and so was removed from the model. How-

ever, in general the selection of the test and training data has limited impact, with most predic-

tors either always included (vif<10) or always excluded (vif>10).

A scenario was run including additional predictor variables related to seasonality of tem-

perature and precipitation, such as the minimum temperature of the coldest month and pre-

cipitation of the wettest quarter. These variables were calculated from the same Met Office

data used for the baseline climate variables. While the model did select some of these variables,

their inclusion was found to have little impact on the consensus model output; there was no

noticeable visual difference and only an increase of 0.005 in the AUC value. Further details of

this analysis can be found in the supplementary information.

Discussion

The study presented here demonstrates the application of habitat suitability modelling and

host distribution to predict hot spots for establishment of RVF. The results suggested that less

than half of the predictor variables influenced the model outputs. The negative relationship

between altitude and establishment risk and the positive relationship between temperature

and establishment risk are a result of many mosquito species being inactive below certain tem-

peratures. However, it is not clear if the positive relationship associated with urban and

Table 3. Goodness of fit statistics for the full consensus model and consensus models without individual models. Statistics that are better compared to the full consen-

sus model are shaded in grey.

Method Correlation Area under the curve

(AUC)

Mean model value at presence points (5th,95th

percentiles)

Mean model value at absence points (5th,95th

percentiles)

Full Model 0.280 0.882 0.845 (0.388,1) 0.287 (0,0.939)

No bioclim 0.296 0.892 0.841 (0.319,1) 0.219 (0,0.941)

No glm 0.290 0.893 0.867 (0.462,1) 0.295 (0,0.932)

No svm 0.281 0.886 0.858 (0.460,1) 0.302 (0,0.932)

No

MaxEnt

0.283 0.886 0.849 (0.433,1) 0.296 (0,0.934)

No Brt 0.264 0.870 0.830 (0.363,1) 0.302 (0,0.949)

No Rf 0.253 0.859 0.826 (0.314,1) 0.310 (0,0.965)

https://doi.org/10.1371/journal.pone.0225250.t003
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suburban areas is due to a specific factor or if it is a proxy for another undefined factor, such as

reduced density of other animal species that the mosquitos might preferentially feed on. The

vif test used to analyse the input data removed the maximum and average temperature predic-

tors, presumably due to their correlation with the minimum temperature predictor.

The approach was also used to analyse habitat suitability of individual mosquito species,

but due to a lack of observed data for some species the results were considered highly uncer-

tain. A useful extension of this work would be to estimate mosquito abundance as well as

determine their presence. However, whilst there are a number of small-scale studies evaluating

mosquito abundance [57], there are currently little available data across large regions of the

UK. Additionally, mosquito abundance is dependent on many factors including temperature,

species seasonality and availability of larval habitat. It would be useful if abundance data could

be standardised, collated and stored in one place, perhaps alongside the presence data on a site

such as the National Biodiversity Network or the Global Biodiversity Information Facility

(GBIF) [41].

Fig 5. ANOVA analysis F value indicating relative importance of model predictors on consensus model values. (Fig 5A) Colour indicates direction of relationship

between predictor and output. (Fig 5B) VIF values for model predictors, higher values indicate predictor less likely to be needed in the model, a value of 0 indicates that

the variable was never chosen in the model.

https://doi.org/10.1371/journal.pone.0225250.g005
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The consensus model combines results from six different species distribution models. Each

method was assessed multiple times (iterations) to account for differences in outputs due to

selection of background data. Visual inspection of output maps indicated that differences

between iterations were small, but particularly apparent when test data points are selected

from areas with no other points geographically close to use for training.

By using the threshold values from each method to produce the final consensus output we

avoided issues of different scales of the underlying values which could be an issue if just taking

the average of the original values. However, the threshold value is to some extent subjective

and we do lose information about the relative likelihood for very low and very high probability

areas. While there may be differences in goodness of fit between the individual species distri-

bution models, goodness of fit statistics on the consensus model suggest that there is little

improvement from dropping any of the individual models from the consensus model

(Table 3).

A potential refinement to this methodology could be to omit specific iterations if they do

not meet certain goodness of fit criteria. For example, inclusion of an AUC that is significantly

lower than the average for that method. However, there are many different ways to assess the

goodness of fit of these models and there is no universally accepted ‘gold standard’ method to

achieve this. The analysis presented here (Table 3), demonstrates that a model can perform

less well by one metric, e.g. probability of presence at observed presence points, but better by

another metric, e.g. probability of absence at observed absence points. Additionally, it is

important to distinguish between what is an unrealistic poor model fit and what could still be a

potentially biologically plausible, if relatively unlikely, result given the input data. For example,

we have estimated our absence data based on where our RVF competent mosquito species

have been not been observed, but other Culex species have. This is not confirmation of the

absence of RVF competent mosquito species in these areas, so there is uncertainty associated

with assessing the species distribution models based on predicting low probability of presence

in these areas. As such, we believe the consensus approach used here, combining results from

multiple iterations of multiple models, is a good approach. It does not lose any of the informa-

tion by omitting specific models or iterations and reduces some of the concern regarding poor

fitting; if one method or iteration is significantly different to the others, the impact on the con-

sensus model will be down weighted. If, on a case by case basis, there are some clear criteria

for omitting certain iterations then this could be incorporated into the methodology.

A scenario including predictor variables that better account for seasonality was run. While

this could be thought to be particularly important given the inherent seasonality in RVF trans-

mission, there was very limited impact on the consensus model results. However, we do con-

sider that it would be good practice to consider whether they should be included in other

models on a case by case basis, e.g. if considering a similar approach for another pathogen.

The challenges and assumptions inherent in niche modelling, mean that the output maps

should not be considered to be a completely accurate prediction of presence. However, we

believe that this approach is an improvement over reliance on using only the raw presence

points as input for mathematical models and risk assessments; by only using the raw data pres-

ence points for competent mosquitos to inform a risk assessment with no further analysis,

absence would be assumed in all areas with no reported observations. We demonstrate this

with a simple spatial model that can give an indication of UK geographical areas that are more

at risk of establishment of RVF than others. Other factors will likely affect the dynamics of

RVFV transmission in livestock populations and more sophisticated transmission models

should be developed for a more accurate analysis. Within-herd factors such as biting rates and

livestock movement could be important in promoting disease spread. Furthermore, factors

that could affect the gonotrophic cycle of mosquitos, such as temperature or rainfall, will also
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influence virus transmission, as a shorter mosquito life-cycle could mean mosquitos biting

livestock more frequently, giving more opportunity for transmission.

The methodology proposed here, both the consensus model and risk of establishment, can

theoretically be adapted for other disease with different competent vector species, such as

those mosquito species competent for malaria, Zika or dengue fever, and for other geographi-

cal regions, such as the whole of Europe, if data are available. However, this would need to be

assessed on a case by case basis as factors such as sample size and the complexity of the interac-

tions of the predictor variables can reduce the predictive accuracy. The outputs of this work,

can be used as part of a multidisciplinary approach to inform risk based disease surveillance

activities.

Supporting information

S1 File. Supporting information, predictor variables and additional maps for the individ-

ual species distribution models.
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