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Abstract: Salmonella Typhimurium, a foodborne pathogen, is a major concern for food safety. Its
MDR serovars of animal origin pose a serious threat to the human population. Phage therapy can
be an alternative for the treatment of such MDR Salmonella serovars. In this study, we report on
detailed genome analyses of a novel Salmonella phage (Salmonella-Phage-SSBI34) and evaluate its
therapeutic potential. The phage was evaluated for latent time, burst size, host range, and bacterial
growth reduction in liquid cultures. The phage stability was examined at various pH levels and
temperatures. The genome analysis (141.095 Kb) indicated that its nucleotide sequence is novel, as it
exhibited only 1–7% DNA coverage. The phage genome features 44% GC content, and 234 putative
open reading frames were predicted. The genome was predicted to encode for 28 structural proteins
and 40 enzymes related to nucleotide metabolism, DNA modification, and protein synthesis. Further,
the genome features 11 tRNA genes for 10 different amino acids, indicating alternate codon usage,
and hosts a unique hydrolase for bacterial lysis. This study provides new insights into the subfamily
Vequintavirinae, of which SSBI34 may represent a new genus.

Keywords: lytic phages; Vequintavirinae; genome analysis; Salmonella Typhimurium; Salmonella-specific
bacteriophage

1. Introduction

The increasing population density has exerted significant pressure on the food produc-
tion industry. Large-scale poultry and livestock rearing in developing countries require the
prophylactic use of antimicrobials in subtherapeutic doses to increase production with min-
imum risk of disease [1,2]. This practice has contributed significantly to rapidly emerging
multiple-drug-resistant (MDR) serovars of foodborne pathogens such as Salmonella, with
zoonotic potential [3]. Such MDR Salmonella (Typhi, Typhimurium, and Enteritidis) pose a
continuous threat to human health [4,5] and are responsible for economic losses due to their
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dissemination in food products [6,7]. In 2010, the WHO reported an average of 153 million
cases of non-typhoidal Salmonella infections, with 56,969 fatalities. Around 50% of these in-
fections were caused by contaminated food products [8,9]. Salmonella Typhimurium stands
out amongst Salmonella serovars due to its zoonotic potential and broad host range [10].
The majority of Salmonella Typhimurium outbreaks have been caused by MDR serovars [11].
Invasive Salmonellosis requires chemotherapy, while the increasing rate of resistant serovar
infections has left physicians with limited choices of drugs [12]. In Pakistan, Salmonella
Typhimurium of poultry origin has exhibited resistance to third-generation antibiotics
(fluoroquinolones and cefotaxime), leaving few choices for treatment [13,14].

The pace of antibiotic resistance acquisition has overcome the development of new
and novel antibiotics due to the amount of time required to find and test new compounds.
Hence, alternative strategies are needed for controlling MDR Salmonella serovars in reser-
voirs. The use of bacteriophages such as natural killers of pathogenic bacteria was proposed
a century ago. Since then, phage therapy has been a subject of great interest. Bacteriophages
are grouped into two broad categories: lytic phages (that replicate independently of the
host DNA) and lysogenic or temperate phages (that integrate their genome into the host
chromosome and later switch to lytic mode). For phage therapy lytic phages are desirable.
Phages can be isolated from diverse environmental niches, including the viscera of host
species and wastewaters. They are most abundant in the marine environments and are
highly diverse. The 2018 International Committee of Taxonomy of Viruses (ICTV) classi-
fied bacteriophages into 5 families, 26 subfamilies, and 363 genera. Despite this diversity,
phages are uniquely related to each other through multiple genetic exchanges that account
for their evolution. Owing to this diversity, only a small fraction of the total bacteriophage
pool has been explored and exploited for therapeutic purposes [15]. A key factor in the
ongoing success of phage therapy is the discovery of new lytic phages with good lysis
potential [16]. Moreover, the time required to discover and characterize novel lytic phages
is much shorter in comparison to finding new antibacterials. Phage therapy has been em-
ployed in controlling pathogenic bacteria to subinfectious levels against various foodborne
pathogens such as Salmonella [17–19], Campylobacter [20,21], and Escherichia coli [22,23].

In this study, we report a novel lytic bacteriophage of Salmonella Typhimurium with
therapeutic potential. The phage genome nucleotide sequence is novel compared to existing
bacteriophages in the five genera of Vequintavirinae. However, protein homologies place it
within the members of the same subfamily.

2. Materials and Methods
2.1. Bacterial Strains and Phage Isolation

The Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium)
strain SE-BS17 was isolated and characterized during this study in molecular virology
labs at CUI Islamabad Pakistan using standard protocols. Briefly, poultry organ samples
(caecum, intestine, liver, and spleen) were collected from poultry farms in the federal
area supplying meat to retail poultry shops in Rawalpindi and Islamabad. The poultry
samples were collected in sterile bags. Twenty-five grams of each poultry tissue sample (all
tissue types pooled together) was homogenized to a fine paste using sterile surgical blades
and pre-enriched with 225 mL of 0.1% buffered peptone water (Oxoid) and incubated
overnight at 37 ◦C. After pre-enrichment, 100 µL of broth culture was transferred to selenite
cystine broth (Oxoid) followed by incubation at 37 ◦C for 24 h. One loopful of enriched
broth was streak-plated onto xylose lysine deoxycholate (XLD agar, Oxoid; CM0469) and
incubated at 37 ◦C for 24 h. The plates were examined for typical colonies of Salmonella [24].
All isolates exhibiting typical Salmonella colonies on the XLD plate were subcultured for
biochemical characterization with API 20 E strips (bio-Merieux; Ref No. 20100) as per the
manufacturer’s protocols. Isolates identified as Salmonella (38 out of 65) by biochemical or
numeric profiling of the API kit were further subjected to PCR amplification of the 284 bp
Inv A gene for the detection of the Salmonella genus [25] and Iro B gene (606 bp) for the
detection of subspecies (Table S1). Out of these isolates, one strain, SE-BS17, was used for
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bacteriophage isolation on the basis of resistance profile. The strain was later characterized
by 16 S rRNA gene sequencing (Macrogen, Seoul, Korea) for serovar identification (Gen
Bank Acc. No; MZ503545). Further, it was tested for antibiotic sensitivity against common
antibiotics used in poultry using the Kirby–Bauer disc diffusion method [26]. SE-BS17 was
tested for the presence of beta-lactamase (blaTEM-1, 643 bp) [27], extended-spectrum
beta-lactamase (blaCTX-M, 754 bp) [28], and the trimethoprim resistance gene dfrA1
(474 bp) [29] by PCR amplification. The PCR was carried out as per methods given in the
publications cited above; briefly, the reaction was carried out in 40 µL of solution by adding 8 µL
master mix (Solis Biodyne, Cat No. 04-11-00S15), 29 µL sterile water, 2 µL (10 pmol) of each
forward and reverse primer, and 1 µL of template DNA (250 ng). Amplification was carried out
in a thermocycler (Thermo Fisher, Waltham, MA, USA) under the following conditions: initial
denaturation at 95 ◦C for 5 min; 35 cycles of denaturation at 95 ◦C for 30 s; different annealing
temperatures as per the GC content of each primer given in respective publications. Elongation
was carried out at 72 ◦C for 45 sec, and the final extension was performed at 72 ◦C for 8 min.
PCR products were subjected to gel electrophoresis with a DNA ladder (Solis Biodyne, Cat
No.07-12-0000S) as the molecular marker (Supplementary Table S1).

For bacteriophage isolation, 1 cm tissue fragments of the intestine, stomach, and
caecum from poultry samples used for Salmonella isolation were triturated and inoculated
in 9 mL of selenite cystine broth (Oxoid) in 15 mL Falcon tubes and incubated at 37 ◦C
for 24 h without shaking. After incubation, 1 mL culture from each tube was centrifuged
at 14,000 rpm (Centrifuge, Hermle, Siemensstr. 25, D-78564 Wehingen, Germany ZK 496)
for 20 min at room temperature. The supernatant was filtered through a 0.22 µm syringe
filter (CNW Technologies, Düsseldorf, Germany) and tested for the presence of phages by
spot assay using the agar overlay method as described by Bao et al. [30]. Briefly, 2.5 mL of
Luria–Bertani (LB) soft agar (0.5% w/v) was mixed with 250 µL of an overnight culture of
SE-BS17 and poured onto solidified LB agar plates. The plates were allowed to solidify for
15 min. Next, 10 µL filtered phage lysate was placed on the soft agar plates and allowed to
dry. Plates were then inverted and incubated at 37 ◦C for 24 h. Samples producing clear
circular zones on the bacterial lawn were indicative of phage activity and were selected for
further purification and characterization.

2.2. Single Plaque Purification

For plaque purification and amplification, the pour plate method was used as de-
scribed elsewhere [31]. Briefly, 25 µL of positive phage lysate and 250 µL of SE-BS17 strain
overnight culture were mixed in 2.5 mL of soft agar and poured onto solidified LB agar
plates (Oxoid) (Agar overlay method). Plates giving countable plaques were selected
further. One isolated plaque was pierced and resuspended in 1 mL phosphate-buffered
saline (PBS, (137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, and 2 mM KH2PO) at pH 7.2,
followed by gentle agitation for 1 h and subsequent centrifugation at 8000 rpm for 10 min.
The supernatant was filtered through a 0.22 µm syringe filter and kept at 4 ◦C. Lysates were
propagated in SE-BS17 and isolated twice more to obtain pure phage cultures. The phage
was named Salmonella-phage-SSBI34 (SSBI34).

2.3. Large-Scale Amplification of SSBI34

An overnight culture of SE-BS17 was diluted (1:100) in 1 L LB medium and incubated
at 37 ◦C with shaking until it reached log phase (OD600 0.55) to increase the phage titer
of the isolated bacteriophage SSBI34. The culture was then inoculated with phage lysate
at MOI 1 and allowed to grow for 24 h. The culture was then centrifuged at 8000 rpm
(Centrifuge, Hermle, Siemensstr. 25, D-78564 Wehingen, Germany ZK 496) for 10 min, then
the supernatant was filtered and stored at 4 ◦C. Phages were concentrated via polyethylene
glycol 8000 (PEG) (Sigma Aldrich Cat. No. 1546605) precipitation [32]. Briefly, PEG (10% w/v)
and NaCl (2.5 M) were dissolved in phage lysate and incubated at 4 ◦C overnight. The next
day the samples were precipitated by centrifugation at 10,000 rpm (Helmer, Germany Cat
No. ZK 496) for 45 min at 4 ◦C. The precipitate was dissolved in 2 mL PBS (pH 7.2), filtered



Viruses 2022, 14, 241 4 of 20

through a 0.22 µm syringe filter, and stored at 4 ◦C. The phage titer was determined by spotting
and enumerating serial two-fold dilutions on agar overlay plates as described above.

2.4. Phage Stability and One-Step Growth Curve

SSBI34 stability was tested by incubating phage particles suspended in PBS at various
temperatures and pH values [33]. Briefly, 7.23× 105 pfu/mL phage particles were incubated
for 1 h in 1 mL PBS at pH 7.2 and at 37 ◦C, 55 ◦C, 70 ◦C, and 80 ◦C and then titrated.
For pH stability, PBS at different pH values (pH 2, 5, 7, 9, and 12) adjusted with either
6 M HCl or 6 M NaOH was prepared and phages were diluted to a final concentration
of 1.4 × 105 pfu/mL. Following incubation at 37 ◦C for 1 h, the phages were plated as
described previously. The phage burst size and latent period were determined using the
one-step growth curve method as stated by Kropinski [34], with slight modifications. Briefly,
SE-BS17 overnight culture was diluted (1:100-fold) in 30 mL LB medium and allowed to
grow until log phase (OD600 0.5) at 37 ◦C. Cultures were then infected with SSBI34 at MOI
1 and phages were allowed to adsorb without shaking for 20 min. The culture was then
centrifuged at 10,000 rpm (Centrifuge, Helmer, Germany Cat No. ZK 496) for 10 min, the
supernatant was removed, and the bacterial culture was suspended in 30 mL of fresh LB
medium and allowed to grow at 37 ◦C. The supernatant was titrated for unabsorbed phage
particles by sampling 1 mL aliquots at 5 min intervals for 70 min. Samples were centrifuged,
filtered, and then titrated. The burst size of SSBI34 was calculated using the following formula:

Burst size = Phages after burst (C) − Free phages (B) = New phage released (D)

Total applied phages (A) − Free phages (B) = Number of infecting phages (E)

Details are given in Supplementary Table S2.

2.5. Host Range

The SSBI34 host range was determined using the agar overlay spot method [35]. Ini-
tially, a spot was placed on double-layer agar plates, then later for all strains showing lysis
or clear zones or plaques, a serial two-fold dilution of phage-rich lysate was made and tested
using the double-layer agar method. Bacterial strains used for host range determination in-
cluded Klebsiella pneumoniea (OK086689), Staphylococcus aureus (OK086690), Uro-pathogenic
Escherichia coli, Salmonella Typhi, Enterococcus facialis (MZ496438), Streptococcus pyogenes,
Pseudomonas aeruginosa, Acinetobacter baumannii (MZ496431), Enterobacter hormaechei (OK086761),
Citrobacter sp., and 14 strains of Salmonella enterica. Accession numbers are provided where
available. Briefly, an overnight (ON) culture of each strain was grown in a 5 mL LB medium.
Here, 250 µL of ON culture was mixed with 2.5 mL of soft agar (0.5% agar dissolved in LB
medium), poured onto already solidified LB agar plates, and solidified for 20 min. Next,
10 µL drops of phage lysate were plated on each plate and allowed to dry for 10 min. Plates
were then inverted and incubated overnight at 37 ◦C. The presence of clear zones was
indicative of phage growth and indicator strain sensitivity.

2.6. Bacterial Growth Reduction Assay

The ability of SSBI34 to lyse S. Typhimurium (SE-BS17) was determined by bac-
terial growth reduction assay as described by O’Flynn [36]. An overnight culture of
S. Typhimurium strain SE-BS17 was diluted in 40 mL of LB broth in three 100 mL flasks for
each test unit to a final concentration of 1.0 × 105 CFU/mL. Three flasks were infected with
SSBI34 at MOI 1. Here, 40 ml LB medium inoculated with 1.0 × 105 CFU/mL bacterial
culture was used as a control. All flasks were kept at 37 ◦C and allowed to grow for 24 h.
Every 2 h, a 1 mL aliquot was removed from all flasks and the optical density was measured
at 600 nm using a spectrophotometer (Cat No. 721-100G, Hinotek, Ningbo, China). Values
were plotted in the graph as the averages of triplicates and statistical significance is given
where required. A standard curve was plotted to determine bacterial colony-forming units
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at various optical density values using a dilution plating technique. This curve was used to
determine the CFU/mL at the corresponding OD600 nm level for the growth reduction assay.

2.7. Transmission Electron Microscopy

In total, 5 µL of PEG purified phage lysate (~7 × 108 pfu/mL) suspended in distilled
water was placed on glow-discharged, carbon-coated grids and incubated at room tempera-
ture for 5 min. Later, the grids were washed with 5 µL of ddH2O and incubated with uranyl
acetate solution (2%) for 2 min. Electron microscopy was carried out at MMIC (Manawatu
Microscopy and Imaging Centre), Massey University, Palmerston North, New Zealand.

2.8. Genome Sequencing and Bioinformatic Analysis

SSBI34 genome was sequenced using the Illumina MiSeq platform at Massey Genome
Service (Massey University, Palmerston North, New Zealand). Briefly, the phage DNA
library was prepared using NexteraTM XT library kit_V2 (Illumina, San Diego, CA, USA).
The phage genome was digested by enzymes into random fragments. Sequencing created
301,237 pair-end (PE) reads with an average read length of 2 × 151 bps. The software was
run using default parameters unless otherwise specified. Quality control was performed
using FastQC (version 0.11.3) before and after trimming with Trimmomatic (Version 0.39).
The genome was assembled with plasmidSPAdes (version 3.13.2). The assembly graph
was inspected using Bandage (v0.8.1). The assembly quality was assessed using QUAST
(version 5.0) and SQUAT (Dec 2019). The genome was automatically annotated using the
GAMOLA2 software package.

2.9. Phylogenetic Analysis of SSBI34

Whole-genomic sequences of 12 viral genomes having BLASTn homology in NCBI
were used for the phylogenetic analyses using the online resource VICTOR (https://
ggdc.dsmz.de/victor.php, accessed on 4 January 2022). All pairwise comparisons of the
nucleotide sequences were conducted using the genome BLAST distance phylogeny (GBDP)
method [37] under settings recommended for prokaryotic viruses [38].

The resulting intergenomic distances were used to infer a balanced minimum evolution
tree with branch support via FASTME, including SPR postprocessing [39] for the D0 formula.
Branch support was inferred from 100 pseudo-bootstrap replicates each. Trees were rooted
at the midpoint [40] and visualized with FigTree [41]. Taxon boundaries at the species,
genus, and family levels were estimated with the OPTSIL program, the recommended
clustering thresholds, and an F value (fraction of links required for cluster fusion) of 0.5.

Capsid protein gene sequences from these genomes were extracted and aligned to-
gether in Geneious (v.8.1.9) [42]. Alignments were trimmed from both ends and the
gapped sequences or insertions and deletions were removed from the alignment. The
alignments in Phylip format were imported in IQtree [43] online version [44] available at
http://iqtree.cibiv.univie.ac.at/ (accessed on 10 November 2021) to reconstruct a maximum
likelihood tree based on the best fit model as implemented in the IQTree, using a bootstrap
value of 1000. IQTree implements ModelFinder [45] to calculate the best fit model for the
data. The trees in Newick format were refined in the online TreeDyn tool [46] available at
http://www.phylogeny.fr/one_task.cgi?task_type=treedyn (accessed on 10 November 2021)
and downloaded in pdf format.

2.10. Statistical Analysis

Statistical analyses were performed using Origin 2019 (Origin Lab, Northampton,
MA, USA). The statistical significance was determined using ANOVA followed by Tukey’s
honest significant difference (HSD) test for specific comparisons. Statistical significance
was reached at p < 0.05.

https://ggdc.dsmz.de/victor.php
https://ggdc.dsmz.de/victor.php
http://iqtree.cibiv.univie.ac.at/
http://www.phylogeny.fr/one_task.cgi?task_type=treedyn
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3. Results
3.1. Phage Isolation and Characterization

Salmonella-phage-SSBI34 was isolated from retail poultry samples using S. Typhimurium
(SE-BS17) (Gene Bank Acc No. MZ503545) as the host strain. SE-BS17 is a multi-drug-resistant
strain of S. Typhimurium having resistance against tetracycline (TE), kanamycin (K),
sulphamethoxazole-trimethoprim (SXT), erythromycin (E), ampicillin (AMP), neomycin
(N), novobiocin (NV), streptomycin (S), and nalidixic acid (NA). Here, it was also positive
for beta-lactamase (blaTEM-1) and extended-spectrum beta-lactamase (blaCTX-M) genes.
The host adsorption efficacy of SSBI34 was 98% within 10 min of adding SSBI34 to log-phase
bacterial culture. The phages’ latent period as determined by one-step growth curve was
35 min, with a burst size of ~150 pfu/cell (Figure 1a). The phage produced a maximum
titer at 37 ◦C; however, it was stable at high temperatures as well. Temperature analysis
indicated that SSBI34 was still infective after incubation at 55 ◦C, 70 ◦C, and 80 ◦C, albeit
with a significant drop in titer. Beyond 80 ◦C, it lost its infectivity, for example 100 ◦C it
produced no plaques (Figure 1b). SSBI34 tolerated pH extremes very well. The phage was
stable and infective at pH 2, 5, 7, and 9, despite a significant drop in titer (Figure 1c).

Phage had a good lysis potential, as observed by the high titer (1 × 108 pfu/mL) and
clear zones of lysis on agar plates (Figure 1d). SSBI34 is a lytic phage, and it restricted
the growth of S. Typhimurium for 12 h at background levels, after which phage-resistant
mutants started appearing. The growth of S. Typhimurium increased after 12 h; how-
ever, it was significantly lower than the bacteria-only control for another 4 h (Figure 1e)
(p < 0.05). The SSBI34 host range was tested on 14 Salmonella strains. These strains were
characterized up to the subspecies level (materials and methods) and all belonged to
Salmonella enterica subspecies enterica; however, their serovars were not known. SSBI34
produced clear zones of lysis on two strains of S. Typhimurium only. Few other species of
the family Enterobacteriaceae tested by spot method were not lysed. It is difficult to conclude
the definitive host range of SSBI34, as fewer strains were available for testing.
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temperatures (37 °C–80 °C) and (c) when exposed to various pH values (pH 2–pH 9). (d) Phage 
plaques on double-layer agar plates. (e) Bacterial growth reduction assay. SSBI34 was able to 
maintain the bacterial population to background levels for 12–16 h. All values are shown as means 
± standard error. 

Transmission electron micrography showed that the phage is a member of the family 
Myoviridae, as indicated by the presence of a clearly identifiable hexagonal head and tail 
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Figure 1. Salmonella-phage-SSBI34 characterization. (a) One-step growth curve of SSBI34 when grown
on SE-BS17 (MZ503545) at 37 ◦C in LB medium, with the burst size calculated as per the formula
given in the Materials and Methods. Stability of SSBI34 (b) when exposed to various temperatures
(37 ◦C–80 ◦C) and (c) when exposed to various pH values (pH 2–pH 9). (d) Phage plaques on double-
layer agar plates. (e) Bacterial growth reduction assay. SSBI34 was able to maintain the bacterial
population to background levels for 12–16 h. All values are shown as means ± standard error.

Transmission electron micrography showed that the phage is a member of the family
Myoviridae, as indicated by the presence of a clearly identifiable hexagonal head and tail
(Figure 2). However, the resolution of the image was not good. For further evaluation,
better quality images are required.
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Figure 2. Transmission electron micrograph of Salmonella-phage-SSBI34. The phage was stained with
1% uranyl acetate solution. Images were taken at an acceleration voltage of 80 kV. The scale bar
represents 100 nm.

3.2. Genome Characterization of Salmonella-Phage-SSBI34

Genome sequencing of SSBI34 indicated a double-stranded DNA genome of 141.095 base
pairs (coverage~500×) with a GC content of 44%. SSBI34 did not show any significant nu-
cleotide homology when compared with general nucleotide sequences in BLASTn. The max-
imum nucleotide homology was observed with the Klebsiella phage vB_KaeM_KaOmega
(7%), Cronobacter phage CR9 (5%), and Cronobacter phage CR3 (4%). This nucleotide homol-
ogy was observed only for three regions in genome-encoding putative major capsid protein
(79.41%, Cronobacter phage CR9), putative DNA primase/helicase (77.25%, Pectobacterium
phage DU_PP_I), and a conserved hypothetical protein with members of the genus certre-
virus (87.91%; Pectobacterium phage phiTE and Cronobacter phage CR3; 94.49%). In the
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absence of any significant nucleotide homology, amino acid sequencing of putative ORFs
was individually compared in BLASTp against the non-redundant protein database.

The genome map of SSBI34 is given in Figure 3. All open reading frames (ORFs)
are color-coded according to their homology and putative function. The genome has
234 ORFs; however, only 44 (19%) ORFs have ≥75% amino acid sequence homology with
any protein in the NCBI database (Table 1 and Table S2). Out of a total of 234, only 61 ORFs
have similarities (30–90%) with the characterized protein sequence in the NCBI database
(BLASTp). The remaining 173 ORFs were all hypothetical proteins with no defined function.
Hypothetical proteins were divided into three categories based on amino acid homology
in BLASTp: (1) hypothetical proteins unique to SSBI34, having no significant homology
with any protein in the database (Figure 3, purple ORFs, 15.6%); (2) hypothetical proteins
having 30–70% amino acid homology with different proteins, mostly with members of
Vequintavirinae (orange, 44%); (3) hypothetical proteins having ≥70% homology with
different proteins in BLASTp (green ORFs, 12.7%). The majority of SSBI34 proteins showed
homology to various members of the subfamily Vequintavirinae. However, the homology
was not significant enough to any member to classify SSBI34 into any of the five genera
of Vequintavirinae (see Discussion section). A linear comparison figure of multiple loci of
SSBI34 with close phage homologs was generated using Easyfig software (Figure 4).
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Figure 3. Genome map of SSBI34 (141.095 Kb). The directions of arrows represent the replication
strands (+ or −). Different ORFs are color-coded to reflect their characteristics. ORFs having BLASTp
homology with characterized phage proteins in NCBI are colored red. Black ORFs are involved in
the capsid head formation, blue ORFs are involved in tail formation, orange ORFs are hypothetical
proteins having BLASTp homology of between 30 and 70%, whereas Green ORFs are hypothetical
proteins with BLASTp homology of between 70 and 90%. Purple ORFs have no significant homology
with any protein in NCBI or BLASTp and are unique to SSBI34. The upper line represents the scale
bar. Numbers at the bases of ORFs represent ORF numbers corresponding to structural proteins
given in Table 2, whereas all other protein homologs are given in Supplementary Table S2.
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Table 1. SSBI34 putative structural protein ORFs having BLASTp homology with various members of the subfamily Vequintavirinae.

S. No. Position ORF Map Region Total AA Putative Function Query Coverage Similarity GB Ac. No. Organism

1 45,076–46,560 80 II 494 AA Phage terminase, large subunit,
PBSX family TC 99% 85.63% YP_006383016.1 Cronobacter phage CR3

2 46,576–48,087 81 II 503 AA Putative portal protein 99%
99%

77.51%
76.53%

YP_009014964.1
QQG33308.1

Cronobacter phage CR9
Pectobacterium phage
PcCB7 V

3 48,156–48,733 82 II 191 AA Putative prohead protease 98%
98%

77.37%
78.42%

QUL77265.1
YP_009014965.1

Escherichia phage
UPEC06 Cronobacter
phage CR9

4 49,814–50,248 84 II 144 AA putative head stabilization/
decoration protein 99%

65.36%
68.06%
66.67%

QEG12074.1
QUL77267.1
YP_009014967.1

Klebsiella phage
vB_KaeM_KaOmega
Escherichia phage
UPEC06 Cronobacter
phage CR9

5 50,272–51,264 85 II 330 AA putative major capsid protein 99% 81.21% YP_009014968.1
ATS9340

Cronobacter phage CR9
Pectobacterium phage
DU_PP_I

6 51,998–55,276 89 II 1092 AA Virion structural protein/
Putative tail fiber protein 99% 61.63%

60.54
ARB11484.1
YP_009014970.1

Pectobacterium phage
vB_PatM_CB7
Cronobacter phage CR9

7 55,317–55,967 90 II 216 AA
Hypothetical protein (Putative
structural protein tail fiber protein
collagen triple helix)

99% 60.19%
53.46%

ATS9340
ARB11485.1

Pectobacterium phage
DU_PP_I
Pectobacterium phage
vB_PatM_CB7

8 55,969–56,316 92 II 115 AA Hypothetical protein putative tail
fiber protein 92% 57.01% YP_009014972.1 Cronobacter phage CR9

9 56,372–57,160 93 II 262 AA hypothetical protein tail fiber like
protein

91% 51.89% YP_006383026.1 Cronobacter phage CR3

10 57,747–58,277 94 II 176 AA hypothetical protein CR8 head
completion adaptor

98% 72.57% YP_009042249.1 Cronobacter phage CR8

11 58,340–58,801 95 II 153 AA Putative RNA polymerase/virion
morphogenesis protein 99% 75.82%

75.16%
ATS93412.1
YP_009014974.1

Pectobacterium phage
DU_PP_I
Cronobacter phage CR9

12 58,816–59,256 96 II 146 AA hypothetical protein Putative minor
capsid protein

99%
99%

75.34%
74.66%

YP_007392682.1
DAM41403.1

Pectobacterium phage
phiTE
Myoviridae sp.

13 59,256–59,834 97 II 192 AA hypothetical protein putative tail to
head joining protein

95%
90%

64.13%
66.68%

YP_006383030.1
QUL77277.1

Cronobacter phage CR3
Escherichia phage
UPEC06
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Table 1. Cont.

S. No. Position ORF Map Region Total AA Putative Function Query Coverage Similarity GB Ac. No. Organism

14 59,938–61,353 98 II 471 AA Putative structural protein 1
(probable tail sheath protein) 99% 78.09%

77.87%
YP_006383031.1
YP_009042253.1

Cronobacter phage CR3
Cronobacter phage CR8

15 61,357–61,839 99 II 160 AA Hypothetical protein putative tail
tube protein

96% 76.28% YP_009014978.1 Cronobacter phage CR9

16 61,916–62,389 100 II 157 AA Tail assembly chaperon protein 96% 74.51% YP_009042255.1 Cronobacter phage CR8

17 62,707–65,178 101 II 823 AA Tail tape measure domain (controls
tail length)

99%
84%

55.58%
60.96%

QEG12088.1
ATS93421.1

Klebsiella phage
vB_KaeM_KaOmega
Pectobacterium phage
DU_PP_I

18 65,246–60,127 102 II 293 AA Putative tail tape measure protein 98% 61.17% QUL77284.1 Escherichia phage
UPEC06

19 66,483–67,451 104 II 322 AA Putative tail protein CR9 99% 73.62% YP_009014984.1 Cronobacter phage CR9

20 67,461–68,108 105 II 215 AA Putative base plate assembly protein 97% 66.23% QEG12092.1 Klebsiella phage
vB_KaeM_KaOmega

21 68,118–68,642 106 II 174 AA Putative tail lysozyme/part of base
plate wedge protein 99% 72.32%

71.19%
QEG12093.1
ARB11502.1

Klebsiella phage
vB_KaeM_KaOmega
Pectobacterium phage
vB_PatM_CB7

22 68,737–70,224 107 II 495 AA Putative base plate assembly protein 99% 76.97% YP_009188994.1 Cronobacter phage
PBES 02

23 70,236–70,883 108 II 215 AA Putative base plate wedge protein 97%
97%

81.99%
78.20%

YP_009014988.1
QQG33332.1

Cronobacter phage CR9
Pectobacterium phage
PcCB7V

24 70,897–72,417 109 II 506 AA XXXCH domain containing protein
(Putative tail fiber domain) 99% 50.90%

50.09%
QEG12096.1
YP_009042265.1

Klebsiella phage
vB_KaeM_KaOmega
Cronobacter phage CR8

25 72,420–72,935 110 II 171 AA Putative tail fiber assembly protein 98%
98%

59.76%
57.65%

QUL77293.1
QEG12097.1

Escherichia phage
UPEC06
Klebsiella phage
vB_KaeM_KaOmega

26 73,313–73,774 112 II 153 AA Putative membrane protein 99% 57.52%
55.56%

QEG12099.1
YP_009042268.1

Klebsiella phage
vB_KaeM_KaOmega
Cronobacter phage CR8

27 73,794–74,066 113 II 90 AA Putative membrane protein 91% 73.49% YP_009851591.1 Erwinia phage
pEp_SNUABM_01

28 74,059–77,580 114 II 1173 AA Putative tail fiber protein 2 99%
99%

32.98%
33.92%

QQG33338.1
YP_009189001.1

Pectobacterium phage
PcCB7V
Cronobacter phage
PBES
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Table 2. Comparison of genome characteristics of SSBI34 with other members of the subfamily Vequintavirinae.

Phage Total ORF Genome Size (bp) G + C Content (%) Accession No.
Querry Coverage

Shared Proteins (%) **
Identity (%) *

SE-Phage-SSBI34 234 141,095 44% MZ520832
100

100%100

Klebsiella phage vB_KaeM_KaOmega, 317 149,489 50.5 MN013077.1
7%

8.11%77.94%

Cronobacter phage CR9 281 151,924 50.6 JQ691611.1
5%

17.52%
74.78%

Pectobacterium phage DU_PP_I 267 144,959 50.1 MF979560.1
5%

2.99%77.25%

Pectobacterium phage PcCB7V 269 146,054 50.4% MW367417.1
4%

6%77.78%

Cronobacter phage PBES 02 270 149,732 50.7 KT353109.1
4%

5.55%76.56%

Cronobacter phage CR8, 269 149,162 nt 50.8 KC954774.1
4%

7.69%76.44%

Cronobacter phage CR3 265 149,273 50.9 JQ691612.1
4%

15%76.46%

Pectobacterium phage DU_PP_IV 268 145,233 50.3 MF979563.1
3%

076.49%

Pectobacterium phage phiTE 242 142,349 50.1 JQ015307.1
2%

6.83%76.23%

Acinetobacter phage ABPH49 252 149,960 50.8 MH533020.1
1%

0.85%72.87%

Escherichia phage UPEC06 318 143,140 41.2 MW250786.1
1%

8.54%76.50%

* Nucleotide sequence of SSBI34 compared by BLASTn. ** Protein similarity of each phage with SSBI34 (BLASTp).
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3.2.1. Structural ORF Analysis of SSBI34

Overall, Cronobacter phages CR9 and CR3 contained the highest structural protein
similarity with SSBI34 at 17.52% and 15%, respectively. For ease of illustration, structural
proteins having BLASTp homology were divided into two categories and are color-coded
(Figure 3, Table 1): (1) those involved in capsid formation and DNA packaging into the
already made prohead (black color); (2) those involved in tail formation (blue color). In
total, five proteins of SSBI34 showed homology with capsid structural proteins of CR9 and
CR3 (Vequintavirinae, genus certrevirus), including PBSX family large terminase (packaging
of DNA, CR3), putative portal protein (CR9), putative prohead protease (CR9), putative
head stabilization/decoration protein (CR9), and putative major capsid protein (CR9). In
the second category, 19 proteins were involved in tail formation with varying degrees of
homology in BLASTp (Table 1, Figure 3). Contrary to capsid proteins, tail proteins exhibited
similarity to proteins of different members of various genera in Vequintavirinae. Out of
19 proteins associated with tail formation, those involved in tail fiber production and
assembly, namely tail-to-head connector protein, putative tail tube, base plate wedge
protein, and tail assembly chaperon protein, all had high homology with Cronobacter
phages CR9, CR3, and CR8. Majority putative tail fiber proteins possess the collagen
domain considered a hallmark for phage proteins involved in tail fiber formation. Proteins
involved in tail tape measure, base plate assembly, and the base plate wedge lysozyme
had homology with Pectobacterium phage DU_PP_I, Escherichia phage UPEC06, Cronobacter
phage PBES02, and Klebsiella phage vB_KaeM_KaOmega, respectively.

3.2.2. ORFs Involved in RNA Synthesis and Modification

The SSBI34 genome possesses 11 tRNA genes for 9 amino acids—two for methionine
and one each for threonine, asparagine, aspartate, isoleucine, proline, glycine, and serine. It
also has two tRNA genes for selenocysteine, the 21st proteinogenic amino acid. In addition
to selenocysteine tRNA, the phage also contains serine tRNA ligase. Serine tRNA ligase is
an enzyme required to load selenocysteine to its tRNA in a specific two-step mechanism. It
allows the phage to use an internal stop codon. SSBI34 possesses four enzymes for various
modifications of RNA. ORF 63 (Supplementary Table S2) encodes queuosine biosynthesis
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protein QueD, whose product queuosine is a hyper-modified base involved in wobble
pairing of tRNA, and it increases the efficiency and rate of mRNA production in lytic life
cycles. It also has an RNA polymerase (Table S2, ORF 95), indicating partial independence
from host RNA protein synthesis machinery. An RNA triphosphatase catalyzes the first
step in adding 5′ cap to newly synthesized mRNA (ORF 134), an RNA ligase of Rnl2 family
involved in splicing editing and repair of RNA (ORF166), as well as a serine tRNA ligase
involved in appropriate attachment of amino acids to tRNA molecules (ORF 17). It also
has an ORF coding for ribosomal protein uS19, rpsS, with a possible role in translation
initiation (ORF 191).

3.2.3. DNA Replication, Modification, and Metabolism

The genome analysis of SSBI34 indicated the presence of several enzymes associated
with DNA bases metabolism, modification, and replication. Supplementary Table S2 sum-
marizes the details of these ORFs. For DNA synthesis, SSBI34 has two DNA polymerases,
DNA pol III and DNA pol I (ORF 45 and 142), indicating SSBI34′s independence from host
polymerases for DNA replication. It also encodes a DNA ligase (ORF 61) and a replicative
phage helicase involved in unwinding DNA for replication (ORF 154). These two enzymes
provide double-strand nick repair via non-homologous recombination. SSBI34 also contains
a Ti-type conjugative transfer relaxase TraA, a single-strand exonuclease involved in un-
winding DNA before replication (ORF 162). A homolog of endonuclease VII of T4 phages
was also present for ease of packaging and mismatch repair (ORF 47). Genome housed
several enzymes for nucleotide metabolism, such as ATP-dependent Clp endopeptidase
(ORF 29), tRNA nucleotidyltransferase (ORF 19 and 24), ribonucleoside-diphosphate reduc-
tases (conversion of nucleotides to deoxynucleotides) (ORF 37,38), exodeoxyribonuclease
(nuclease, ORF 51), and glutaredoxin 3 involved in DNA synthesis (ORF 34). In addition,
two HNH endonucleases (ORFs 52 and 75) involved in DNA packaging into already made
prohead were detected in the SSBI34 genome. Phage SSBI34 possesses an ORF (41) coding
thymidylate synthase that is flavin-dependent (thyX). This enzyme is involved in the de
novo synthesis of thymidine from flavin rather than the usual pathway and enables phage
replication in folate-deficient environments.

SSBI34 also has four ORFs involved in host and phage DNA modifications leading
to phage DNA protection and ease of replication. An anti-restriction endonuclease (ORF
55) capable of modifying phage bases to escape the bacterial restriction modification (R-M)
system can also be found (Supplementary Table S2). This enzyme changes the recognition
site of bacterial R-M (restriction modification) enzymes in the phage genome, thereby
protecting the phage genome from hydrolysis. Another putative protein involved in phage
DNA protection is the restriction alleviation protein Ral. It modulates the host R-M system
and restricts the cleavage of phage DNA (ORF 146) [47]. Together these two proteins
may function to trick the host restriction modification system to protect phage DNA,
allowing better replication and phage survival. After DNA synthesis, two other enzymes
are involved in phage DNA methylation. Putative DNA-[N6-adenine] methyltransferase of
T4 phages catalyzes the methylation of adenine residues at the N6 position. The second
protein with similarity to the methanogen marker protein is also present, which may be
involved in phage production under anaerobic conditions (ORFs 1 and 28).

3.2.4. Cell Wall Hydrolases

Two putative cell wall hydrolases were detected in the SSBI34 genome. ORF106
(Table 1) encoded an acidic lysozyme as part of the base plate wedge protein in SSBI34. This
protein is thought to be involved in the attachment and lysis of peptidoglycan at the time of
phage entry. The second cell wall hydrolase identified in SSBI34 was a homologue of SelB,
a spore cortex lytic enzyme of Bacillus subtilis. ORF 165 in the SSBI34 genome encoded a
173 AA hydrolase having 50.2% homology with spore cortex lytic enzymes of B. subtilis, an
effective peptidoglycan hydrolase involved during spore germination. It is presumed that
this enzyme may be responsible for peptidoglycan hydrolysis and phage release (Figure 5).
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Figure 5. Amino acid sequence comparison of hydrolases in Vequintavirinae using SnapGene software
version 5.3. SSBI34 has no nucleotide homology in BLASTn, whereas only 50% amino acid sequence
homology was observed with other hydrolases. The hydrolases from other members of Vequintavirinae
show high homology with each other. All amino acid residues in other phages that are different from
SSBI34 amino acid residues are highlighted in grey.

3.2.5. Phylogenetic Analysis of SSBI34

Phylogenomic GBDP trees were inferred using the whole-genome sequence of the 12 closest
homologs of SSBI34 using the D0 formulas and yielding average support of 30%. The numbers
above branches are GBDP pseudo-bootstrap support values from 100 replications. The branch
lengths of the resulting VICTOR trees are scaled in terms of the respective distance formula
used. The OPTSIL clustering for the D0 yielded eleven species clusters, one genus cluster,
and one family cluster. In this tree, the Acinetobacter phage ABPH49 is the outermost outlier.
The Salmonella phage SSB134 formed a second outlier group with the Escherichia phage
UPEC06. The rest of the taxa formed one cluster with low iteral bootstrap support values.

For comparison purposes, the capsid gene sequence of the abovementioned 12 phages
was used to build the phylogenetic tree. The modified alignment after removing the gaps
was 842 nucleotides long. The best fit model for the data was found to be K3P + R2. CR8
and PBES02 capsid genes were identical, while DUPPI and DUPPIV had identical capsid
gene sequences. The basal group was ABPH49. The maximum likelihood tree produced
by the TreeDyn program is given in Figure 6b. The tree is unrooted indicating the absence
of most recent common ancestor (MRCA). The tree shows the P-distances. In this tree,
ABPH49 is an outlier, while the rest of the taxa arrange themselves in the form of a single
cluster. At the secondary node level, our phage SSB134 showed significant divergence from
the rest of the cluster’s sister taxa, with an 85% boot strap support value, while the rest of
taxa showed variable bootstrap values at tertiary and quaternary node levels.
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Figure 6. (a) The BLAST distance tree using whole-genome sequence of 12 homologs in BLSTn
provides a rough estimate of the relationships between related sequences in NCBI and Salmonella-
phage-SSBI34. (b) Phylogenetic tree using the capsid protein gene of these closest homologs.

4. Discussion

According to the recent classification of ICTV released in March 2020, the family
Myoviridae is divided into eight subfamilies, 217 genera, and 625 species. One subfam-
ily, Vequintavirinae, is further subdivided into six genera named Avunavirus, Certrevirus,
Henunavirus, Mydovirus, Seunavirus, and Vequintavirus. In addition, a division with no rank
assigned is called the “unclassified Vequintavirinae”, which includes eight viruses awaiting
classification [48]. According to ICTV, any new virus that is isolated and sequenced can be
classified into a particular genus based on one of two parameters: (1) viruses with >50% nu-
cleotide homology with members of a particular genus; [49] (2) viruses with 40% of their virus
having≥75% homology with the members of that particular genus [50]. When we analyzed
Salmonella-phage-SSBI34 (SSBI34) according to this classification criterion, we found that it does
not fulfill either criterion. Only 7% of the genomes of SSBI34 had homology (77.94%) with
any virus in the database. The nucleotide sequence was unique and was not similar to any
virus stored in the NCBI database. A heat map was generated using VIRIDIC software for
comparative genome analysis of SSBI34 with its close homologs. This indicated its unique
nature (Figure 7). Moreover, SSBI34 has 234 putative ORFs, out of which only 52 ORFs
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(22.2%) had ≥75% homology with various members of the different Vequintavirinae genera,
as indicated by BLASTp in NCBI. So far, the subfamily Vequintavirinae (family Myoviridae)
has only two Salmonella phages in the order Seunavirus (NCBI Acc. NO. NC_016071.1,
NC_027351), while Salmonella-phage-SSBI34 is entirely different from both (Figure 7).
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If we compare the protein homology of SSBI34 with individual Vequintavirinae genera,
this indicates that overall 70% of proteins of SSBI34 have 30–90% BLASTp homology
with different members (CR3, CR9, CR8 and, PBES02; Figure 4) of the Certrevirus genus;
however, out of these proteins, only 17% of ORFs have more than≥75% BLASTp homology.
Moreover, SSBI34 also had low protein homology (9.2% overall, ≥75% = 1.3%) with two
viruses Acinetobacter phage ABPH49 and Escherichia phage UPEC06, indicating that the
two criteria required to place SSBI34 in the existing genera were not fulfilled. We suggest
the creation of a new genus in the subfamily Vequintavirinae for phage SSBI34. Since ICTV
recommends at least two characterized genomes to create a new genus, until then SSBI34
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can be placed with unclassified Vequintavirinae phages. The same was evident from the
phylogenetic analysis of SSBI34, which places it as a separate lineage from other genera of
Vequintavirinae (Figure 6a,b).

Three major phages, CR3, CR8, and CR9, whose proteins are closely related to SSBI34,
have not been physically characterized to date, and only their genomes have been re-
ported [51–53]. In the absence of any close relatives, very few can be compared with other
members of Vequintavirinae. SSBI34 has a genome size of 141.095 Kb, which is well within
alignment with other viruses of Vequintavirinae, whose genomes fall between 141 and
151 Kb (Table 2) [53]. The GC content of SSBI34 was 44%, lower than most phages having
homology with SSBI34 (50% or higher) and the host S. Typhimurium. The burst size of
SSBI34 was less than that reported for other phages of the Certrevirus genus (250 pfu/mL).
However, the burst time was comparable to CR3 and PBES02 (30 min) [54]. SSBI34 was
more tolerant to pH and temperature extremes than other phages of Vequintavirinae, as
reported for Pectobacterium Phage vB_PatM_CB7, which was stable at 55 ◦C and survived
at 60 ◦C, albeit with a significant drop in titer.

Since SSBI34 shares only 7% nucleotide homology with any of the associated phages
in Vequintavirinae, there is not much to relate it to other phages in this subfamily. However,
protein homology places it in the same subfamily but not among any existing genera.
The protein homology (BLASTp) indicated that SSBI34 possesses 11tRNA molecules for
10 different amino acids, including two for selenocystine placement. This is in agreement
with other members of the Vequintavirinae that possess a handsome pool of tRNA genes
(between 1 and 18 tRNA genes), which may be involved in alternate codon usage [55].
Usually, the tRNAs retained in phages are those whose codons are highly used by phage
genomes rather than the corresponding host [56]; however, a comparative study by De-
lesalle proposed that it may contribute more to amino acid usage than codon usage [55].
The fact that virulent phages contain more tRNA genes than temperate phages leads to
higher codon usage bias. The presence of 11 tRNA may have contributed to the virulence
of SSBI34. The presence of RNA polymerase (a smaller peptide of 153 AA) and tRNA
may indicate that SSBI34 and similar phages (CR9, CR3, PBES02) possess higher fitness in
comparison to the host [56].

A distinct system for DNA methylation to protect DNA from host enzymes and host
restriction modification and restriction alleviation is found in SSBI34 and appears to be
conserved across genera of Vequintavirinae; however, the restriction alleviation protein has
less homology with other members (39% query cover). The proteome seems to have a
mosaic arrangement, as different genes belong to different genera of Vequintavirinae. In
the SSBI34 genome, enzymes involved in DNA replication and nucleotide metabolism
were conserved across Vequintavirinae, as they were found in several members of the
different genera with high homology. The majority of structural proteins involved in
head formulation had high homology with Certrevirus phages; however, tail and baseplate
assembly proteins (homology levels of less than 75%) showed a combination of unclassified
Certrevirus division and unclassified Vequintavirinae. Tail fiber proteins had less homology
with any member of the subfamily.

To warrant the use of a lytic phage as a biocontrol agent, a broad host range is desir-
able [57]; however, SSBI34 had a narrow host range, as it lysed two S. Typhimurium isolates
out of 14 Salmonella enterica isolates tested and lysed no other member of Enterobacteriaceae
tested. This is in agreement with the reports on CB7 and other members of Certrevirus,
as they are known to have a narrow host range [53,54]. This narrow host range may re-
sult from tail fiber proteins interacting with a particular receptor on the host surface [58].
However, more experimental evidence is required. SSBI34 restricted the growth of the host
strain to background levels for 16 h when observed by growth reduction assay in liquid
cultures. Similar results were reported by Hyung for PBES02, where the phage restricted
host growth until 10 h post-incubation. This indicates that SSBI34 may have potential as a
therapeutic agent to curtail S. Typhimurium growth. However, the definitive therapeutic
potential of SSBI34 can only be evaluated by in vivo analysis.
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SSBI34 possesses a putative SleB-type hydrolase for cell wall lysis. Other members of
the Certrevirus genus had similar hydrolases in their genomes. However, the amino acid
sequence of SleB from SSBI34 shares only 50% similarity with any member of Certrevirus,
indicating its unique nature, whereas cell wall hydrolases of CR3 and CR8 have maximum
homology to each other (Figure 5).

5. Conclusions

Salmonella-phage-SSBI34 has a unique nucleotide sequence unlike any other in the
NCBI database. The phage proteome is related to CR3, CR8, and CR9 phages of the
Certrevirus genus in the subfamily Vequintavirinae; however, this was not enough to place
SSBI34 in any existing genera. SSBI34 may have good therapeutic potential, as indicated by
its ability to limit S. Typhimurium growth to background levels in liquid cultures, which
can be further evaluated by in vivo experiments.

Supplementary Materials: The following supporting information can be downloaded at: https:
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in the NCBI database (BLASTp).
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