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Abstract: Huntington’s disease (HD) is caused by an unstable cytosine adenine guanine (CAG)
trinucleotide repeat expansion encoding a polyglutamine tract in the huntingtin protein. Previously,
we identified several up- and down-regulated protein molecules in the striatum of the Hdh(CAG)150

knock-in mice at 16 months of age, a mouse model which is modeling the early human HD stage.
Among those molecules, aconitase 2 (Aco2) located in the mitochondrial matrix is involved in the
energy generation and susceptible to increased oxidative stress that would lead to inactivation of
Aco2 activity. In this study, we demonstrate decreased Aco2 protein level and activity in the brain
of both Hdh(CAG)150 and R6/2 mice. Aco2 activity was decreased in striatum of Hdh(CAG)150 mice
at 16 months of age as well as R6/2 mice at 7 to 13 weeks of age. Aco2 activity in the striatum
of R6/2 mice could be restored by the anti-oxidant, N-acetyl-l-cysteine, supporting that decreased
Aco2 activity in HD is probably caused by increased oxidative damage. Decreased Aco2 activity
was further found in the peripheral blood mononuclear cells (PBMC) of both HD patients and
pre-symptomatic HD mutation (PreHD) carriers, while the decreased Aco2 protein level of PBMC was
only present in HD patients. Aco2 activity correlated significantly with motor score, independence
scale, and functional capacity of the Unified Huntington’s Disease Rating Scale as well as disease
duration. Our study provides a potential biomarker to assess the disease status of HD patients and
PreHD carriers.

Keywords: Huntington’s disease; Hdh(CAG)150 and R6/2 mice; peripheral blood mononuclear cells;
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1. Introduction

Huntington’s disease (HD), an autosomal-dominant neurodegenerative disorder, is mainly
characterized by different psychiatric symptoms, progressive mental decline and chorea. The genetic
mutation of HD is an expanded cytosine adenine guanine (CAG) trinucleotide repeat that encodes
a polyglutamine (polyQ) tract in the huntingtin (Htt) protein [1]. The polyQ expansion causes
a conformational change in the Htt which tends to form intranuclear and cytoplasmic aggregates of
affected neurons, which would lead to progressive neuronal dysfunctions [2,3]. Impaired proteasome
activity [4], transcriptional dysregulation [5], oxidative stress [6], mitochondrial and metabolic
dysfunction [7], abnormal protein-protein interaction [8], neuroinflammation [9,10], and microglial
activation [11–14] have been shown to play important roles in the pathogenesis of HD. While many
pathogenic pathways have been uncovered, therapeutic strategies that prevent HD progression or
modify disease course are not available yet. Many potential treatments have been reported in cell
and/or animal models, but none of them proves to be effective in clinical trials. One of the major
drawbacks of the clinical trial for HD treatments is the lack of a useful biomarker that can be used to
test the therapeutic efficacy.
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Several mouse models of HD have been established not only to explore the pathogenic
mechanisms but also to test the potential therapeutic strategies [15–17]. These models include the
R6/2 transgenic mice expressing exon 1 of the human Htt gene carrying 150 CAG repeats [15] and
knock-in mouse models manifesting mild phenotypes with late disease onset and late occurrence of
intracellular aggregates without prominent neuronal loss, indicating that knock-in mice are modeling
early phase of human HD [16–18]. The knock-in mice are therefore useful tools for investigating early
pathological events in HD. Usually, a significant finding in one mouse model needs to be also shown
in another model to confirm the result.

Previously, by investigating the proteome profile in the striatum of the Hdh(CAG)150 knock-in
mice [16] at 16 months of age when most heterozygous Hdh(CAG)150 mice manifested phenotype,
we identified several up- and down-regulated protein molecules (Supplementary materials and
methods, Figure S1 and Table S1). Among those differentially-expressed molecules, the aconitase 2
(Aco2) activity was also found to be decreased in the striatum of R6/2 HD mice at late stage [19]
and postmortem brains of HD patients [20,21]. Chiang and colleagues also found decreased Aco2
protein in striatum of HD R6/2 mice at 12 weeks of age [22]. Aco2 located in the mitochondrial
matrix is an iron-sulfur protein that requires a 4Fe-4S cluster for its enzymatic activity and its function
is to catalyze conversion of citrate to isocitrate in the tricarboxylic acid (TCA) cycle, an important
step involved in the ATP generation. Aco2 is susceptible to increased oxidative stress that would
inactivate Aco2 activity [20]. While reduced Aco2 activity in the late stage of R6/2 mice has been
reported [19], there are no studies to examine if loss of Aco2 is an early and progressive change in
central nervous system and peripheral blood of HD patients. Since mitochondrial abnormalities and
increased oxidative stress have been suggested to play an important role in pathogenesis of HD,
we investigated if decreased Aco2 is present in early disease stage and if it progresses with time in
Hdh(CAG)150 and R6/2 HD mice. We then examined the effect of an anti-oxidant, N-acetyl-l-cysteine
(NAC), on motor performance and Aco2 activity in striatum of HD mice, and quantified the Aco2 level
and activity in peripheral blood mononuclear cells (PBMC) of HD patients and pre-symptomatic HD
mutation (PreHD) carriers. Finally, we examined if Aco2 activity in PBMC correlates with Unified
Huntington’s Disease Rating Scale (UHDRS) [23] in HD patients and PreHD carriers.

2. Results

2.1. Rotarod Performance of Hdh(CAG)150 and R6/2 Mice

In order to examine the correlation between the Aco2 level and the HD phenotype, the motor
performance of Hdh(CAG)150 and R6/2 mice was tested by using a rotarod device. The rotarod
performance of heterozygous and homozygous Hdh(CAG)150 mice at 16 and 19 months of age was
significantly worse than that of their wild type (WT) littermates, respectively (Figure 1A). The rotarod
performance of homozygous Hdh(CAG)150 mice was worse than that of heterozygous mice at 19 months
of age. The rotarod performance of R6/2 mice was significantly worse compared with their WT
littermates at 6 to 12 weeks of age (Figure 1B).
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Figure 1. Rotarod performance of Hdh(CAG)150 and R6/2 mice. (A) Rotarod performances of 
heterozygous (n = 15) and homozygous (n = 8) Hdh(CAG)150 mice were compared with those of the wild 
type (WT) littermates (n = 15) at 7~19 months of age and (B) Rotarod performances of R6/2 mice  
(n = 15) at 6~12 weeks of age were compared with those of the WT littermates (n = 15). Latency to 
falling was automatically recorded. Data are presented as means ± SE (standard error). * p < 0.05;  
** p < 0.01, two-way analysis of variance (ANOVA) with post-hoc Tukey test. 

2.2. Decreased Aco2 in the Striatum of Hdh(CAG)150 Mice at 16 Months of Age 

Protein lysates from brain tissues of heterozygous Hdh(CAG)150 and WT littermates at 16 months 
of age were subjected to western blot for semi-quantification of Aco2. Aco2 protein level was 
significantly decreased in the striatum of male Hdh(CAG)150 mice at 16 months of age (Figure 2A),  
but such decrease was not seen in the cerebellum and cortex of Hdh(CAG)150 mice at the same age 
(Figure S2). Quantitative real-time PCR (QRT-PCR) using Aco2-specific probe and primers showed 
no significant difference in Aco2 mRNA expression in striatum between Hdh(CAG)150 and WT 
littermates at 16 months of age (Figure 2B). Aco2 is susceptible to increased oxidative stress that leads 
to inactivation of Aco2 activity [20]. Therefore, Aco2 activity from mitochondria was measured for 
Hdh(CAG)150 mice at 16 months of age. Aco2 activity was significantly decreased in the striatum, but 
not in the cerebral cortex and cerebellum, of heterozygous and homozygous Hdh(CAG)150 mice at  
16 months of age compared with the WT littermates, respectively (Figure 2C). It is also noted that the 
Aco2 activity was lower in homozygous Hdh(CAG)150 mice compared with the heterozygous mice. 
However, decreased Aco2 activities in different brain regions were not observed in heterozygous and 
homozygous Hdh(CAG)150 mice at 13 months of age (Figure S3). 

 
Figure 2. Aconitase (Aco2) expression and activity in the brain regions of Hdh(CAG)150 (Hdh).  
(A) Western blot analysis of Aco2 in the striatum of heterozygous Hdh(CAG)150 (Hdh) mice and the wild 
type (WT) littermates at 16 months of age. M, marker for protein molecular weight; (B) Aco2 mRNA 
expression level in the striatum of Hdh(CAG)150 mice (heterozygous, n = 8) compared with that of WT 
littermates (n = 8) at 16 months of age. Expression ratios are relative to Hprt1 and (C) Aco2 activity in 
the brain regions of Hdh(CAG)150 mice. Aco2 activities in the striatum, cerebral cortex, and cerebellum 
of heterozygous (n = 6) and homozygous (n = 4) mice were compared with those of their wild type 
(WT) littermates (n = 6) at 16 months of age. Data are presented as means ± SE (standard error bars). 
* p < 0.05; ** p < 0.01, two-tailed Student’s t-test or one way ANOVA with post-hoc Tukey honestly 
significant difference (HSD) test, where appropriate. 

Figure 1. Rotarod performance of Hdh(CAG)150 and R6/2 mice. (A) Rotarod performances of
heterozygous (n = 15) and homozygous (n = 8) Hdh(CAG)150 mice were compared with those of the
wild type (WT) littermates (n = 15) at 7~19 months of age and (B) Rotarod performances of R6/2 mice
(n = 15) at 6~12 weeks of age were compared with those of the WT littermates (n = 15). Latency to
falling was automatically recorded. Data are presented as means ± SE (standard error). * p < 0.05;
** p < 0.01, two-way analysis of variance (ANOVA) with post-hoc Tukey test.

2.2. Decreased Aco2 in the Striatum of Hdh(CAG)150 Mice at 16 Months of Age

Protein lysates from brain tissues of heterozygous Hdh(CAG)150 and WT littermates at 16 months
of age were subjected to western blot for semi-quantification of Aco2. Aco2 protein level was
significantly decreased in the striatum of male Hdh(CAG)150 mice at 16 months of age (Figure 2A),
but such decrease was not seen in the cerebellum and cortex of Hdh(CAG)150 mice at the same age
(Figure S2). Quantitative real-time PCR (QRT-PCR) using Aco2-specific probe and primers showed no
significant difference in Aco2 mRNA expression in striatum between Hdh(CAG)150 and WT littermates at
16 months of age (Figure 2B). Aco2 is susceptible to increased oxidative stress that leads to inactivation
of Aco2 activity [20]. Therefore, Aco2 activity from mitochondria was measured for Hdh(CAG)150 mice at
16 months of age. Aco2 activity was significantly decreased in the striatum, but not in the cerebral cortex
and cerebellum, of heterozygous and homozygous Hdh(CAG)150 mice at 16 months of age compared
with the WT littermates, respectively (Figure 2C). It is also noted that the Aco2 activity was lower
in homozygous Hdh(CAG)150 mice compared with the heterozygous mice. However, decreased Aco2
activities in different brain regions were not observed in heterozygous and homozygous Hdh(CAG)150

mice at 13 months of age (Figure S3).
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Figure 2. Aconitase (Aco2) expression and activity in the brain regions of Hdh(CAG)150 (Hdh).
(A) Western blot analysis of Aco2 in the striatum of heterozygous Hdh(CAG)150 (Hdh) mice and the wild
type (WT) littermates at 16 months of age. M, marker for protein molecular weight; (B) Aco2 mRNA
expression level in the striatum of Hdh(CAG)150 mice (heterozygous, n = 8) compared with that of WT
littermates (n = 8) at 16 months of age. Expression ratios are relative to Hprt1 and (C) Aco2 activity in
the brain regions of Hdh(CAG)150 mice. Aco2 activities in the striatum, cerebral cortex, and cerebellum
of heterozygous (n = 6) and homozygous (n = 4) mice were compared with those of their wild type
(WT) littermates (n = 6) at 16 months of age. Data are presented as means ± SE (standard error bars).
* p < 0.05; ** p < 0.01, two-tailed Student’s t-test or one way ANOVA with post-hoc Tukey honestly
significant difference (HSD) test, where appropriate.



Int. J. Mol. Sci. 2017, 18, 2480 4 of 14

2.3. Decreased Aco2 in Brain Regions of R6/2 Mice from 7 to 13 Weeks of Age

In order to examine if the decreased Aco2 protein and activity are common pathological events
shared by other HD mouse models, Aco2 level and activity in brain regions of R6/2 mice was
examined. Aco2 protein level was significantly decreased in the striatum, cortex, and cerebellum of
R6/2 mice at 13 weeks (Figure 3A) but not at 10 weeks of age (Figure S4). Aco2 activity in the striatum,
cerebral cortex, and cerebellum of R6/2 mice at 10 and 13 weeks of age was significantly decreased
compared with the WT littermates (Figure 3B), while this change was found only in striatum and not
in cortex or cerebellum of R6/2 mice at 7 weeks of age (Figure 3B). It has been shown that Aco2 is one
of the substrates of transglutaminase 2. In order to delineate if decreased Aco2 activity is associated
with increased transglutaminase 2 in R6/2 mice, transglutaminase 2 was semi-quantified by using
western blot. The result showed that transglutaminase 2 expression levels in the striatum of R6/2 mice
from 9 to 13 weeks of age were not different from those in WT littermates (Figure S5).
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Figure 3. Aco2 protein expression and activity in the brain regions of R6/2 mice. (A) Aco2 expression
levels, analyzed by western blot, in the striatum, cerebral cortex, and cerebellum of R6/2 mice (n = 5)
were compared with their wild type (WT) littermates (n = 5) at 13 weeks of age. The expression
levels of Aco2 were normalized by β-actin and (B) Aco2 activities in the striatum, cerebral cortex,
and cerebellum of R6/2 mice (n = 6) were compared with those of WT littermates (n = 6) at 7, 10 and
13 weeks of age. Data are presented as means ± SE (standard error bars). * p < 0.05; ** p < 0.001,
two-tailed Student’s t-test.

2.4. Aco2 Activity in the Striatum of R6/2 Mice Was Restored by Treatment with NAC

Since decreased Aco2 activity was assumed to result from increased oxidative stress, anti-oxidant
NAC may restore the Aco2 activity in HD mice by preventing oxidation and inactivation of Aco2.
In order to know if Aco2 activity can be a useful biomarker to test the treatment efficacy, we measured
Aco2 activity in the striatum of R6/2 mice treated with and without NAC. R6/2 mouse model was
used because it shows early onset of symptoms and fast disease progression, and is widely used for
therapy screening [24]. We examined the effect of NAC on the rotarod performance, body weight,
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blood sugar, Htt aggregates, and striatal Aco2 activity of R6/2 mice. The rotarod performance of
R6/2 mice from 7 to 12 weeks of age was significantly worse compared with the WT littermates
(Figure 4A). While NAC did not have any beneficial effect on the body weight, blood sugar, and Htt
aggregates of R6/2 mice (Figure S6), rotarod performance of R6/2 mice treated with NAC was mildly
improved at 8 and 9 weeks of age, and significantly improved at 10, 11, and 12 weeks of age compared
with those of R6/2 mice treated with saline only (Figure 4A). Aco2 activity in the striatum of R6/2 mice
treated with NAC at 12 weeks of age (59.7 ± 2.9 mU/mg protein) was significantly increased when
compared with those treated with saline only (46.6 ± 3.2 mU/mg protein) (Figure 4B).
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between R6/2CON and WT mice is labeled as # (p < 0.05, one way ANOVA with post-hoc Tukey test).
Specific comparison between R6/2NAC and R6/2CON mice is labeled as * (p < 0.05, one way ANOVA
with post-hoc Tukey test).

2.5. Aco2 Activity of PBMC Was Decreased in HD Patients and PreHD Carriers

Since our results showed decreased Aco2 protein and activity in brains of different HD mouse
models and the alteration in R6/2 mice progressed with time, Aco2 is a good candidate for a biomarker
to indicate the disease stage or progression. To get a central nervous system (CNS) sample from HD
patients for identifying biomarkers is practically impossible, which makes finding a biomarker in
peripheral tissue, especially from blood, more feasible and important. Given that Htt is expressed
ubiquitously, and parallel CNS and peripheral pathogenic pathways have been shown [10,25–27],
we hypothesized that the decreased Aco2 and its activity may be detectable in peripheral blood cells of
HD patients and PreHD carriers, and may therefore serve as a potential biomarker. The results showed
that Aco2 protein level of PBMC was significantly decreased in HD patients, while not in PreHD
carriers (Figure 5A). Aco2 activity of PBMC was significantly reduced in both HD patients (p < 0.001,
6.3 ± 0.3 mU/mg protein) and PreHD carriers (p < 0.05, 7.2 ± 0.2 mU/mg protein) compared with
the controls (9.8 ± 0.4 mU/mg protein) (Figure 5B). Decrease of Aco2 activity was more significant
(p < 0.05) in HD1 (5.5± 0.4 mU/mg protein) than in HD2 group (6.7± 0.3 mU/mg protein) (Figure 5B).
Aco2 activity correlated positively with independence scale (r = 0.69, p < 0.001) and functional capacity
(r = 0.73, p < 0.001), and inversely with motor score (r =−0.67, p < 0.001) and disease duration (r =−0.57,
p < 0.01) (Figure 6). However, Aco2 activity did not correlate with repeat length (p = 0.1), age onset
(p = 0.5), and age (p = 0.4) in the HD group or age in the control group (p = 0.3).
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Decreased Aco2 and its activity were found in Hdh(CAG)150 and R6/2 mice in the present study, 
which provides another line of evidence that mitochondrial abnormalities contribute to neuronal 

Figure 5. Aco2 protein expression and activity in peripheral blood mononuclear cells (PBMC) of
HD patients and pre-symptomatic HD mutation (PreHD) carriers. (A) PBMC Aco2 expression levels,
analyzed by western blot, in HD patients and PreHD carriers were compared with the control group
(NC). The expression levels of Aco2 were normalized by Gapdh. M, marker for protein molecular
weight. (B) Aco2 activities of PBMC in PreHD carriers (n = 6) and HD patients (n = 19) were compared
with the controls (n = 25). HD1 group (n = 7): more severe disease group. HD2 group (n = 12):
milder disease group. Data are presented as means ± SE (standard error). * p < 0.05; *** p < 0.001,
Mann–Whitney–U or Kruskal–Wallis test, where appropriate.

Int. J. Mol. Sci. 2017, 18, 2480 6 of 14 

 

 
Figure 5. Aco2 protein expression and activity in peripheral blood mononuclear cells (PBMC) of HD 
patients and pre-symptomatic HD mutation (PreHD) carriers. (A) PBMC Aco2 expression levels, 
analyzed by western blot, in HD patients and PreHD carriers were compared with the control group 
(NC). The expression levels of Aco2 were normalized by Gapdh. M, marker for protein molecular 
weight. (B) Aco2 activities of PBMC in PreHD carriers (n = 6) and HD patients (n = 19) were compared 
with the controls (n = 25). HD1 group (n = 7): more severe disease group. HD2 group (n = 12): milder 
disease group. Data are presented as means ± SE (standard error). * p < 0.05; *** p < 0.001,  
Mann–Whitney–U or Kruskal–Wallis test, where appropriate. 

 
Figure 6. Correlation of Aco2 activity of PBMC with functional capacity, independence scale, and 
motor score of Unified Huntington’s Disease Rating Scale (UHDRS), and disease duration of HD 
patients. Spearman correlation showed that Aco2 activity correlated positively with functional 
capacity (A) and independence scale (B), and inversely with motor score (C) and disease duration (D) 
in 19 HD patients and 6 preHD carriers. 

3. Discussion 

Decreased Aco2 and its activity were found in Hdh(CAG)150 and R6/2 mice in the present study, 
which provides another line of evidence that mitochondrial abnormalities contribute to neuronal 

Figure 6. Correlation of Aco2 activity of PBMC with functional capacity, independence scale, and motor
score of Unified Huntington’s Disease Rating Scale (UHDRS), and disease duration of HD patients.
Spearman correlation showed that Aco2 activity correlated positively with functional capacity (A) and
independence scale (B), and inversely with motor score (C) and disease duration (D) in 19 HD patients
and 6 preHD carriers.

3. Discussion

Decreased Aco2 and its activity were found in Hdh(CAG)150 and R6/2 mice in the present study,
which provides another line of evidence that mitochondrial abnormalities contribute to neuronal
dysfunction in HD. Decreased Aco2 and its activity are present in striatum of Hdh(CAG)150 at 16 months
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of age when the mice began to manifest impaired motor performance. While Aco2 protein level
was decreased in striatum, cortex, and cerebellum of R6/2 mice at 13 weeks of age, this change
was not found in the brain of R6/2 mice at 10 weeks of age. In contrast, Aco2 activity was reduced
in striatum, cortex, and cerebellum of R6/2 mice at 10 as well as 13 weeks of age. The decreased
Aco2 activity was further found in the striatum of R6/2 mice at 7 weeks of age when the mice
began to show impaired motor performance (7 weeks of age in Figures 1 and 4). Different from
our results, a previous study showed increased Aco2 level in R6/2 HD brains at 2 weeks of age,
indicating up-regulated energy metabolism, but it is not clear if the Aco2 level was altered in the late
disease stages [28]. Although decreased Aco2 activity and protein levels have been respectively shown
in the striatum of R6/2 mice in the late disease stage [19,29], the present study demonstrates that
decreased Aco2 activity in R6/2 occurred before overt phenotype manifested. The cause of decreased
Aco2 activity is not clear, but a couple of hypotheses are proposed. Aco2 is vulnerable to oxidative
stress. After oxidative modification by peroxynitrate, Aco2 can lose the enzymatic activity. Aco2 has
been found to be the only protein in the mitochondrial matrix that exhibited reduced activity associated
with increase in carbonylation under increased oxidative stress condition [30]. Therefore, Aco2 enzyme
function is well positioned as an important marker related to biological decline of mitochondria and
increased oxidative stress. One explanation of decreased Aco2 in Hdh(CAG)150 and R6/2 may be due
to increased oxidative damage that has been shown in brain tissues of both HD mouse models and
patients [19–21,25,31–33]. We also have previously shown increased oxidative stress in peripheral
blood of HD patients [34]. Increased carbonylated Aco2 in R6/2 mice shown by Perluigi and colleagues
further supports this postulation [35]. Another possibility is that decreased Aco2 mRNA expression
results in reduced Aco2 activity, which is probably not the case in the present study as no difference
in Aco2 mRNA between Hdh(CAG)150 and their WT littermates was found (Figure 2C). Furthermore,
decreased Aco2 activity occurs before reduced Aco2 protein level in R6/2 mice, suggesting that
impaired Aco2 activity was caused by oxidative inactivation followed by degradation rather than
by decreased Aco2 transcriptional expression. Increased transglutaminase activity has been found
in affected brains of HD patients as well as R6/2 HD mice [36–38] and transglutaminase inhibitor
(cystamine) improved survival and phenotype of R6/2 HD mice [38]. Interesting work done by
Kim et al., has shown that transglutaminase 2 has inhibitory effect on Aco2 activity, contributing to
aggregates of Aco2 and that increased transglutaminase activity in the striatum of human HD may
be the underlying cause of the reported reduced Aco2 activity in the striatum of HD [39]. Previously,
NAC was shown to decrease transglutaminase activity [40], whereas our study did not show increased
transglutaminase 2 expression in the striatum of R6/2 mice from 9 to 13 weeks of age, which suggests
that the decreased Aco2 activity in R6/2 mice may not result from increased transglutaminase 2 and
the NAC effects on R6/2 mice may be not mediated through inhibiting transglutaminase 2.

The reduction of Aco2 in both Hdh(CAG)150 and R6/2 mice suggests that decreased Aco2 is
a common feature shared by both knock-in and transgenic HD mouse models. As the knock-in
Hdh(CAG)150 mice model the early stage of HD and decreased Aco2 activity is present before the onset
of phenotype of R6/2 mice, we postulated that reduced Aco2 activity may be an early pathogenic event
in HD patients. Indeed, this assumption is supported by decreased Aco2 activity of PBMC in PreHD
carriers as well as HD patients in our study. Our results are in accordance with the previous repot that
in the presence of oxidative stressors, Aco2 activity in lymphoblasts of HD decreased significantly
compared with the controls [41]. The decreased Aco2 activity without changes in Aco2 protein level in
PBMC of PreHD carriers also implicates that inactivation of Aco2 precedes protein degradation in HD.
The reduction is correlated significantly with disease severity indicated by UHDRS as well as disease
duration. Therefore, Aco2 activity may serve a potential biomarker for indicating disease status and
testing efficacy of future therapeutic strategies. Our study also suggests Aco2 as a potential target of
the HD treatment and means to enforce Aco2 activity or decrease oxidative stress will be beneficial
to HD patients. This hypothesis is supported by the improved rotarod performance and increased
Aco2 activity in the striatum of R6/2 mice treated with the antioxidant NAC in our study. Another line
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of evidence is that NAC delayed the onset of motor deficits in the R6/1 model of HD by lowering
protein carbonylation in mitochondria and enhancing mitochondrial capacity [42]. Our results are
also in agreement with the previous findings that several antioxidant agents [6] such as coenzyme
Q10 [43,44], BN82451 [45], and triterpenoids [46] are neuroprotective to HD mouse models. Given that
antioxidants are emerging as promising treatments for HD, Aco2 activity indicating the degree of
oxidative damage may well serve as a surrogate biomarker for clinical trials of potential antioxidants.

Several kinds of abnormalities including increased cytokines, mitochondrial dysfunction,
increased oxidative stress, aberrant adenosine A2A receptor function, reduced phosphorylated
serine-threonine protein kinase 1 (Akt), increased pro-catabolic serum metabolites, elevated serum
8OH2’dG, deficient fatty acid amide hydrolase activity, energy deficit, and alteration of phosphatidylcholine
in peripheral blood of HD patients have been reported [9,10,27,34,47–56], whereas only a few showed
a positive correlation with disease severity or stage [9,10,27,34,51,53,56,57]. Notably, our study
has shown that Aco2 activity in the striatum of R6/2 mice could be restored by the anti-oxidant
NAC that also improved motor performance of R6/2 mice. Our study provides another potential
peripheral biomarker to assess the disease status and progression of HD patients and PreHD carriers.
However, there are limitations of our study. Firstly, the main aim of this study is to address if
Aco2 is decreased in brains of different HD mouse models and peripheral blood of HD patients,
and if Aco2 activity correlates with disease severity to serve as a potential biomarker, but the
underlying mechanism is not investigated, which warrants more studies to explore further in the future.
Secondly, peripheral Aco2 may not faithfully reflect the pathological changes in brain, although it
correlates with disease severity. Molecules in cerebrospinal fluid (CSF) may serve as better biomarkers
than those in peripheral blood, in terms of recapitulating the changes in brain. Although it is difficult
to get enough CSF samples from our HD patients, in the future we plan to examine the potential targets
in CSF of HD patients by getting access to the HD CSF repository (http://hdclarity.net). Future studies
to demonstrate simultaneous rescue of Aco2 activity in brain and peripheral blood of R6/2 mouse
and other HD animal models by treatment with anti-oxidants are necessary to further consolidate the
biomarker role of Aco2 activity in HD. Since our findings are exploratory, confirmation of our results
in a larger series, multi-center, and longitudinal evaluation of Aco2 activity in HD patients and preHD
carriers is important before applying Aco2 as a biomarker for HD.

4. Materials and Methods

4.1. Animals and NAC Treatment

The male mice used for the knock-in HD mouse model (Hdh(CAG)150, B6.129P2-Hdhtm2Detl/J)
were purchased from Jackson Laboratories (Bar Harbor, ME, USA) harboring a mutant mouse
huntingtin (Htt) gene with 150 copies of CAG [16] and mated to female littermates. Offspring
were identified by genotyping of tail DNA. PCR genotyping was performed using the following
primers: 5′-CCCATTCATTGCCTTGCTGCTAAG-3′ and 5′-GACTCACGGTCGGTGCAGCGGTTCC-3′.
Male R6/2 mice [15] were originally obtained from Jackson Laboratories (Bar Harbor, ME, USA) and
mated to female control mice (B6CBAFI/J). PCR genotyping was performed using the following
primers: 5′-CCG CTC AGG TTC TGC TTT TA-3′ and 5′-GGC TGA GGA AGC TGA GGA G-3′. The tail
DNA of F1 progeny of R6/2 mice was sequenced for CAG repeat length. All animals used in this
study are male. All animals were housed at the Animal Care Facility, Chang Gung Memorial Hospital
and had unlimited access to water and breeding chow (PicoLab® Rodent Diet 20, PMI® Nutrition
International, St. Louis, MO, USA) under a 12-h light~12-h dark cycle. Body weights of mice were
recorded once daily. R6/2 mice treated with NAC (n = 18) or saline (n = 18) from 5 to 12 weeks of
age were injected intraperitoneally daily with 120 mg/kg NAC dissolved in physiologic saline or
with saline only. Animals were anesthetized with sodium pentobarbital and decapitated at the age
of 12 weeks. Animal experiments were performed under protocols approved by the Animal Care
and Utilization Committee and Institutional Review Board, Chang Gung Memorial Hospital, Taiwan
(The project identification code: 2008121803, date of approval: 19 December 2008).

http://hdclarity.net
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4.2. Rotarod Performance

Motor coordination of mice was assessed using a rotarod apparatus (UGO BASILE, Comerio,
VA, Italy) at an accelerated speed (4~44 rpm) over a period of 6 min. The animals were pre-trained
for one trial at an accelerated speed (4~44 rpm) for 5 min 2 days before the real test to allow them
to become acquainted with the rotarod apparatus. Heterozygous (n = 15) and homozygous (n = 8)
Hdh(CAG)150 mice and their littermates (n = 15) were then tested every 3 months from 7 to 19 months
of age. The rotarod test of R6/2 mice (n = 15) and the WT littermates (n = 15) were performed every
week from 6~12 weeks of age. R6/2 mice treated with (n = 18) and without NAC (n = 18) and the WT
littermates (n = 18) treated with saline were tested every week from 7 to 12 weeks of age. Each mouse
was tested for a maximum of 6 min per trial for 3 trials with an interval of 30 min in a day and mean of
the 3 trials was used for comparison between groups. Latency to falling was automatically recorded.

4.3. HD Patients and PBMC Preparation

PreHD carriers are defined as individuals carrying CAG repeats longer than 36 with UHDRS
motor score ≤ 5, functional capacity at 13, and independence scale at 100. HD patients are defined as
individuals carrying CAG repeats longer than 36 with UHDRS motor score > 5. Nineteen HD patients
and six PreHD carriers (All were genetically confirmed), and 25 age- and gender-matched healthy
individuals without other neurological or major systemic diseases were recruited. Those patients
and controls with confounding factors known to influence oxidative stress markers such as taking
anti-oxidative or anti-inflammatory compounds were excluded (Table 1). All of them were subjected to
Aco2 activity examination. Among them, samples collected from 7 HD patients, 5 PreHD carriers along
with the respective groups of age-matched controls were performed for Aco2 western blot. All patients
were assessed for UHDRS [23]. The UHDRS is composed of total motor score (0 to 124), independence
scale (100 to 10), and total functional capacity (13 to 0). The HD patients were divided into two disease
severity groups according to their total functional capacity of the UHDRS (Table 1). Patients with the
total functional capacity ≤10 represent the more severe group (HD1). Patients with total functional
capacity at 11~13 represent the group of milder disease severity (HD2).

Table 1. Clinical characteristics of the Huntington’s disease (HD) patients and the controls.

Parameter Controls
(n = 25)

PreHD Carriers
(n = 6)

HD Patients
(n = 19)

HD1 Patients
(n = 7)

HD2 Patients
(n = 12)

Gender (male/female) 15/10 4/2 13/6 5/2 8/4

Age (years) 48.1 ± 2.4
(30–76)

46.5 ± 7.8
(21–69)

48.7 ± 2.6
(24–67)

51.4 ± 5.5
(24–67)

47.3 ± 2.6
(25–59)

Age at symptom onset (years) 44.4 ± 2.6
(15–62)

43.7 ± 5.9
(15–62)

44.8 ± 2.5
(24–56)

Disease duration (years) 4.5 ± 0.9
(1–15)

7.9 ± 1.7
(3–15)

2.5 ± 0.3
(1–4)

Expanded CAG repeat No 40.2 ± 0.7
(38–43)

44.9 ± 1.3
(40–62)

46.7 ± 2.7
(41–62)

43.8 ± 1.2
(40–56)

UHDRS

Motor score 0 30.8 ± 4.7
(9–69)

50.3 ± 7.3
(24–69)

19.4 ± 2.9
(9–37)

Independence scale 100 81.1 ± 4.6
(40–100)

60.0 ± 6.5
(40–80)

93.3 ± 1.9
(80–100)

Functional capacity 13 9.9 ± 0.7
(3–13)

6.4 ± 1.0
(3–10)

12.0 ± 0.25
(11–13)

PreHD: pre-symptomatic HD mutation. HD1: more severe disease group. HD2: milder disease group; Values are
expressed as means ± SE (range; minimum–maximum); UHDRS: The Unified Huntington’s Disease Rating Scale.
Scale ranges (normal to most severe) include motor score (0 to 124), independence score (100 to 10), and functional
capacity (13 to 0).



Int. J. Mol. Sci. 2017, 18, 2480 10 of 14

Blood samples were drawn from HD patients, PreHD carriers, and controls using
ethylenediaminetetraacetic acid (EDTA)-containing tubes after the participants signing informed
consent. Samples were processed for isolation of PBMC immediately after blood collection using
Ficoll-Paque™ Plus (GE Healthcare Bio-Sciences, Pittsburgh, PA, USA). The isolated PBMC was further
subjected to immunocytochemical staining to detect CD1b, a marker for PBMC (anti-CD1b, 1:200
dilution, Abcam, Cambridge, UK) with nuclei being stained by Hoechst (Figure S7). The human
study was performed under a protocol approved by the institutional review boards of Chang Gung
Memorial Hospital.

4.4. Western Blot Analysis

Heterozygous Hdh(CAG)150 mice (n = 4) and their littermates (n = 4) at 16 months of age,
and R6/2 mice (n = 5) and the littermates (n = 5) at 10 and 13 weeks of age were subjected to western
blot analysis of Aco2. R6/2 mice (n = 6) and the littermates (n = 6) at 9, 11 and 13 weeks of age were
subjected to western blot analysis of transglutaminase 2. Equal amounts of protein lysate (25 ìg) from
striatum, cortex, or cerebellum of mice or PBMC of HD patients and preHD carriers were separated by
SDS–PAGE using NuPAGE® Novex Bis-Tris 4–12% gel (Invitrogen, Carlsbad, CA, USA). The resolved
proteins were electroblotted onto Immobilon polyvinylidene difluoride membranes (Millipore, Billerica,
MA, USA). Membranes were blocked with SuperBloc® blocking buffer (Pierce, Rockford, IL, USA)
and incubated with anti-aconitase 2 antibody (1:2000 dilution, Proteintech Group Inc, Chicago,
IL, USA), anti-transglutaminase 2 (1:7500 dilution, Abcam, Cambridge, UK), anti-β-actin antibody
(1:5000 dilution, BioLegend, San Diego, CA, USA) or anti-Gapdh antibody (1:400 dilution, Santa Cruz,
CA, USA) at 4 ◦C overnight followed by the corresponding secondary antibody for 1 h at room
temperature. Immunoreactive bands were detected by enhanced chemiluminescence (ECL, Pierce,
Rockford, IL, USA) and recorded using Kodak BioMax light film. The resulting bands were scanned
and measured for density using Image Pro software (Image Pro Plus 5.0, Media Cybernetics, MD, USA).
Levels of the indicated protein were normalized with an internal control (β-actin or Gapdh).

4.5. RNA Isolation and Quantitative Real-Time PCR (QRT-PCR)

Total RNA from striatum of Hdh(CAG)150 mice (heterozygous, n = 8) and WT littermates (n = 8)
at 16 months of age was extracted using the Trizol (Invitrogen, Carlsbad, CA, USA), and reverse
transcribed into cDNA using SuperScriptTM III reverse transcriptase (Invitrogen, Carlsbad, CA, USA).
QRT-PCR was performed on a cDNA amount equivalent to 100 ng total RNA using the TaqMan
PCR Core Reagent Kit and the Sequence Detection system (ABI Prism 7900, Applied Biosystems,
Foster City, CA, USA). Primers (forward primer 5′-CCTAAGGACAGCAGTGGGC-3′, reverse primer
5′-CCCGATCGGACTTTGA-3′) and TaqMan probe (CTCCAGATGCAGACGAGCTT) designed by
using Primer Express software, Version 2.0, Applied Biosystems were used for amplification of Aco2
cDNA. Primers Mm00446968_m1 and TaqMan probe (GGTTAAGGTTGCAAGCTTGCTGGTG) were
used in QRT-PCR for Hprt1. Relative gene expressions were calculated using the 2∆Ct method, ∆Ct = Ct

(Hprt1) − Ct (Aco2), in which Ct indicates cycle threshold (the fractional cycle number where the
fluorescent signal reaches detection threshold). Hprt1 was used as an internal control. Aco2 mRNA
was measured in duplicate for each sample.

4.6. Mitochondria Isolation from PBMC of HD Patients and Brain Tissues of Mice for Aco2 Activities

PBMC isolated from HD patients and the controls were homogenized (GLAS-COL K54
Homogenizer) in HDGC buffer (20 mM HEPES pH 7.4, 0.2 mM PMSF, 1 mM DTT, 10% glycerol,
2 mM sodium citrate, 1X proteinase inhibitor). Tissue of different brain regions from heterozygous
(n = 6) and homozygous (n = 4) Hdh(CAG)150 mice at 16 months of age, and from R6/2 mice (n = 6)
and their littermates (n = 6) at 7, 10 and 13 weeks of age were subjected to mitochondrial isolation for
Aco2 activity assay. Each tissue sample was homogenized in ice-cold buffer (0.2 mM sodium citrate,
50 mM Tris-HCl, pH 7.4) for 40 s at 210 rpm. The homogenate was centrifuged at 800× g for 10 min at
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4 ◦C. The supernatant was transferred into a new tube and centrifuged at 20,000× g for 10 min at 4 ◦C.
The resulting pellet was re-suspended in ice-cold 0.2 mM sodium citrate and then sonicated for 20 s.
Before the Aco2 assay, the extract was further diluted to 50–500 µg/mL with Assay Buffer.

4.7. Assay for Aco2 Activity

The kit BIOXYTECH Aconitase-340™ (OXIS Health Products, Inc., Portland, OR, USA) was used
to measure Aco2 activity. Aco2 isomerizes citrate into isocitrate. Isocitrate is catalyzed by isocitrate
dehydrogenase to form α-ketoglutarate. The BIOXYTECH Aconitase-340™ Assay was used to measure
the simultaneous formation of nicotinamide adenine dinucleotide phosphate (NADPH) from NADP+.
The formation of NADPH is assessed by the increased absorbance at 340 nm. Under adequate
conditions, the rate of NADPH production is reflecting the Aco2 activity. The expression level of Aco2
is expressed in units of activity (mU/mg protein). Aco2 activity was measured in duplicate for each
sample and for all samples at the same time. The mean value of two measurements for each sample
was used for the analysis.

4.8. Statistical Analysis

The Statistical Program for Social Sciences (SPSS) statistical software (version 16.0) was used for the
statistical analysis and the data are displayed as means ± standard errors (SE). Differences in rotarod
performance were analyzed by two-way ANOVA with post-hoc Tukey test. Differences in western blot
analysis, mRNA expression levels, and enzyme activities between animal groups were analyzed by
two-tailed Student’s t-test or one way ANOVA with post-hoc Tukey test where appropriate. Differences
in western blot analysis and enzyme activities between the controls, HD patients and preHD carriers
were analyzed by Mann–Whitney–U or Kruskal–Wallis test where appropriate. Spearman correlation
analysis was applied to evaluate the correlations between the Aco2 activity and UHDRS (motor score,
independence scale, and functional capacity), CAG repeat length, disease duration, age or age onset.
The values of p < 0.05 were considered significant.

5. Conclusions

We demonstrate that Aco2 protein and enzyme activity are decreased in the brain of both
Hdh(CAG)150 and R6/2 mice. NAC has beneficial effect on both rotarod performance and Aco2 activity
in striatum of R6/2 HD mice. Finally, we show decreased Aco2 protein level in PBMC of HD patients
and decreased Aco2 activity in PBMC of both HD patients and PreHD carriers.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/11/2480/s1.
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