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Abstract
In contrast to conventional T lymphocytes, which carry an αβ T-cell receptor
and recognize antigens as peptides presented by major histocompatibility
complex class I or class II molecules, human γδ T cells recognize different
metabolites such as non-peptidic pyrophosphate molecules that are secreted
by microbes or overproduced by tumor cells. Hence, γδ T cells play a role in
immunosurveillance of infection and cellular transformation. Until recently, it
has been unknown how the γδ T-cell receptor senses such pyrophosphates in
the absence of known antigen-presenting molecules. Recent studies from
several groups have identified a unique role of butyrophilin (BTN) protein family
members in this process, notably of BTN3A1. BTNs are a large family of
transmembrane proteins with diverse functions in lipid secretion and innate and
adaptive immunity. Here we discuss current models of how BTN molecules
regulate γδ T-cell activation. We also address the implications of these recent
findings on the design of novel immunotherapeutic strategies based on the
activation of γδ T cells.
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Introduction
T lymphocytes are the specific effector cells of the adaptive  
immune system. T-cell differentiation takes place in the thymus, 
giving rise to large numbers of mature CD4 and CD8 T cells  
expressing a clonally variable αβ T-cell receptor (TCR). Interac-
tion with thymic stromal cells, transcription factors, and cytokines 
together drive the differentiation of early thymic progenitor cells 
into mature CD4 and CD8 αβ T cells which recognize pep-
tides presented in the context of major histocompatibility com-
plex (MHC) class I (CD8 T cells) or class II (CD4 T cells)1. The 
functional diversification of mature T cells into T helper type 1 
(Th1), Th2, and Th17 cells and memory cell subsets is induced 
by the context-dependent interaction with neighboring cells (e.g.  
dendritic and epithelial cells) and transcriptional networks which 
are further modulated by metabolic and epigenetic processes2–5. 
In addition to these “conventional” T cells, T cells with a highly 
restricted canonical αβ TCR repertoire exist which recognize 
non-peptide antigens in the absence of restriction by classical  
MHC molecules. Such “unconventional” human αβ T cells  
include the invariant natural killer T (iNKT) cells expressing a 
Vα24-Jα18-encoded TCR and the mucosa-associated invariant  
T (MAIT) cells expressing a Vα7.2-Jα33-encoded TCR. iNKT 
cells recognize endogenous and exogenous (microbial) lipids pre-
sented by CD1 (specifically CD1d) molecules, whereas MAIT 
cells recognize small intermediates generated in the riboflavin  
(vitamin B2) metabolic pathway which are presented by the  
MHC-related 1 (MR1) molecules6. Since unconventional αβ T cells 
are not dependent on the antigen processing machinery like con-
ventional CD4 and CD8 T cells, they can rapidly perform effector 
functions upon ligand recognition. Both iNKT and MAIT cells are 
found in the blood and at increased numbers not only in mucosal 
tissue but also in the liver and are important players in local  
immunosurveillance and anti-bacterial immunity7,8. More recently, 
innate lymphoid cells (ILCs) have been identified as innate 
homologs of differentiated effector T cells which do not express 
clonally rearranged TCR but share similar transcription factor  
and cytokine specifications9. Subsets of ILCs interact with innate 
and adaptive immune cells, epithelial cells, and microbiota and 
thereby contribute to tissue repair, metabolic homeostasis, and  
local inflammation10.

While it might appear that the above outlined arsenal of avail-
able immune cells should suffice to combat all dangerous (infec-
tious and non-infectious) antigens, evolution has conserved yet 
another class of unconventional T cells, i.e. T lymphocytes carry-
ing a CD3-associated γδ TCR heterodimer rather than the αβ TCR.  
It has been known for a long time that the major population of  
γδ T cells found in the peripheral blood of adults specifically  
recognizes non-peptidic small microbial pyrophosphate molecules, 
again without requirement for a dedicated MHC class I, MHC  
class II, or CD1 presenting molecule11–13. It thus remained a  
mystery for many years how such “phosphoantigens” (pAg) con-
tained in crude bacterial lysates14, purified by preparative anion 
exchange chromatography15, or chemically synthesized16 can  
trigger such potent γδ T-cell responses.

A landmark paper addressing the activation requirements of human 
γδ T cells in response to pAg was published in 2012 by Harly and 

co-workers17. These authors reported the unexpected finding that 
a member of the transmembrane butyrophilin (BTN) proteins 
was absolutely required for the activation of human γδ T cells by 
microbial or endogenous pAg. On the grounds of these findings, 
several groups set out to study the precise role of BTN proteins at 
the molecular level. Surprisingly, these investigations resulted in 
quite controversial models, assigning an essential role to either the 
extracellular18 or the intracellular domain19 of a particular BTN3A 
isoform. In this review, we discuss the current knowledge on the 
interplay of human γδ TCR with specific BTN proteins, both in 
terms of basic mechanisms of γδ T-cell activation and with respect 
to improving future strategies of γδ T-cell-based immunotherapies.

γδ T cells: unconventional T lymphocytes linking 
innate and adaptive immunity
γδ T cells account for approximately 2–5% of peripheral blood  
T cells in healthy adult donors but are present at much higher 
numbers in mucosal tissues, where they comprise 20–30% of  
intraepithelial lymphocytes in the small intestine20. In contrast to 
αβ T cells, there are only few variable (V) gene segments avail-
able in the germline genome which can be used during intrathymic 
TCR gene rearrangement to express functional TCR proteins.  
In humans, there are six expressed Vγ genes (Vγ2, 3, 4, 5, 8,  
and 9) and a similarly limited number of Vδ genes21. Nonethe-
less, γδ TCR can display an enormous CDR3 loop diversity22. γδ  
T cells expressing particular VγVδ pairing are not randomly  
distributed but are preferentially located in certain compart-
ments. Thus, the majority of γδ T cells in peripheral blood  
express Vδ2 (paired almost exclusively with Vγ9), while intraep-
ithelial γδ T cells frequently express Vδ1 (or other non-Vδ2  
segments) which can pair with different Vγ elements13. Most γδ 
T cells lack CD4 and CD8 surface expression, well in line with 
their MHC-independent ligand recognition (note, however, that a 
substantial proportion of γδ T cells can express CD8 at low lev-
els). Major efforts were made over the years to identify antigens 
and ligands that are specifically recognized by the γδ TCR22,23. A 
list of some currently identified ligands for human γδ T cells is  
presented in Table 1. Obviously, the best-characterized ligands  
are prokaryotic and eukaryotic pAg, which are exclusively rec-
ognized by human Vδ2Vγ9 γδ T cells24. Such pyrophosphates 

Table 1. Some examples of ligands that are specifically 
recognized by subsets of human γδ T cells.

γδTCR Ligand References

Vδ2Vγ9 Prokaryotic pAg, HMBPP 
Eukaryotic pAg, IPP 
F1-ATPase + apolipoprotein A-I 
hMSH2

15 
26 
28 
27

Vδ1 MICA 
CD1d-lipid

31 
30

Vδ5 EPCR 29

Abbreviations: EPCR, endothelial protein C receptor; HMBPP, (E)-4-
hydroxy-3-methyl-but-2-enyl pyrophosphate; hMSH2, human MutS homolog 
2; IPP, isopentenyl pyrophosphate; MICA, major histocompatibility 
complex class I-related chain A; pAg, phosphoantigen
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are intermediates of the eukaryotic mevalonate or the prokarytic 
non-mevalonate (also termed Rohmer’s) pathway of isoprenoid  
synthesis15,25,26. Other ligands for Vδ2Vγ9 T cells include the  
ectopically expressed DNA mismatch repair protein hMSH227 and 
F1-ATPase together with apolipoprotein A-I28. Some of the iden-
tified ligands for non-Vδ2 γδ TCR include endothelial protein  
C receptor29 and lipids bound to CD1d30 but also the stress- 
inducible MHC class I-related chain A (MICA) molecules31. In 
all instances, recognition of respective ligands by the γδ TCR is 
a rapid event and addresses all γδ T cells carrying the appropri-
ate TCR with little, if any, contribution of CDR3 variation. Since 
Vδ2Vγ9 cells comprise the vast majority (up to 95%) of peripheral 
blood γδ T cells and all respond to pAg stimulation with no need 
for antigen processing, this implies that a large proportion (2–4%) 
of all peripheral blood T cells is rapidly activated (e.g. to produce 
cytokines including interferon-γ and tumor necrosis factor-α) upon 
encounter of such pAg13.

In addition to the TCR, γδ T cells express other activating cell  
surface receptors, notably natural killer group 2 member D 
(NKG2D), which is a receptor for multiple stress-inducible 
MHC class I-related molecules including MICA/B and six mem-
bers of the UL16 binding protein family (ULBP1-6)32. NKG2D 
is expressed on innate natural killer (NK) cells, some CD8 and 
CD4 T cells, and essentially all γδ T cells. While normal cells 
usually do not express NKG2D ligands, cell surface expression is 
induced by cell stress, DNA damage, and cellular transformation.  
Upon ligand binding, NKG2D transmits cellular activation  
via the PI3-kinase pathway, resulting in cytokine production and 

triggering of cytotoxic activity33. NKG2D ligands can be released 
from the surface of tumor cells via protease-mediated shedding or 
via exosome secretion, and soluble NKG2D ligands may block 
NKG2D receptor activation and thereby serve as a tumor immune 
escape mechanism34.

Furthermore, γδ T cells can also express some receptors specifi-
cally associated with the innate immune system, notably Toll-like 
receptors (TLRs), and corresponding TLR ligands can co-stimulate 
γδ T-cell activation35. Conceivably, such effects might be primarily 
mediated via monocytic and/or dendritic cells when heterogene-
ous cell populations are investigated36, but it has also been dem-
onstrated that purified γδ T cells express certain TLRs and directly 
respond to TLR ligand co-stimulation37,38. To summarize, γδ T cells 
express receptors of both the innate (e.g. NKG2D and TLR) and 
the adaptive (TCR) immune system, and the outcome of functional 
responses is regulated through integration of various signaling 
pathways (Figure 1). There is another feature of human Vδ2Vγ9 
T cells which further places them as a link between the innate 
and adaptive immune systems: as initially reported by Bernhard  
Moser’s group, activated γδ T cells can serve as antigen-present-
ing cells to specifically stimulate peptide-specific αβ T cells39.  
Importantly, γδ T cells can even take up antigen particles, proc-
ess such antigens intracellularly, and load corresponding peptides  
onto MHC class I molecules for cross-presentation to antigen- 
specific CD8 αβ T cells, a process normally restricted to “pro-
fessional” antigen-presenting cells such as dendritic cells40. The  
antigen-presenting capacity of γδ T cells may help to initiate a  
subsequent tumor antigen-specific CD8 T-cell response once γδ 

Figure 1. Three classes of receptors regulating human γδ T-cell activation. (1) The activating natural killer (NK) receptor NK group 2 
member D (NKG2D) recognizes stress-inducible ligands including major histocompatibility complex class I-related chain A (MICA)/MICB 
and UL16 binding protein family (ULBP) 1–6 and triggers cytotoxic activity and cytokine production via the phosphoinositide 3 (PI3)-kinase 
pathway. (2) The CD3-associated T-cell receptor (TCR) recognizes ligands including “phosphoantigens” (pAg) in a butyrophilin (BTN)  
3A-dependent way and human MutS homolog 2 (hMSH2) (Vδ2Vγ9 TCR), or lipids bound to CD1d and endothelial protein C receptor 
(EPCR) (non-Vδ2 TCR). (3) Pattern recognition receptors including Toll-like receptors (TLRs) sense conserved microbial ligands such as 
acetylated lipids (TLR2/6 heterodimer) or poly I:C (intracellular TLR3) and co-stimulate γδ T-cell activation via the nuclear factor kappa-light- 
chain-enhancer of activated B cells (NF-κB) pathway. APC, antigen-presenting cell.
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T cells have killed opsonized tumor cells and taken up apoptotic 
tumor cell fragments41.

γδ T cells: important players in anti-tumor immunity
Many solid tumors and leukemia/lymphoma cells are quite sus-
ceptible to γδ T-cell-mediated lysis. In contrast to αβ T cells, γδ  
T cells recognize tumor cells not on the basis of tumor-specific  
antigenic peptides presented in the context of MHC class I or  
class II molecules but rather sense cell-surface-expressed stress 
molecules and/or metabolites of the dysregulated mevalonate  
pathway. Moreover, γδ T cells can make use of both the TCR  
and the NKG2D receptor to recognize and kill tumor cells42,43. 
Interestingly, the sensitivity of tumor cells to lysis by Vδ2Vγ9 
γδ T cells can be pharmacologically manipulated. Nitrogen- 
containing bisphosphonates (N-BPs) such as zoledronic acid are 
in clinical use to treat diseases associated with bone resorption.  
In addition to their anti-resorptive bone activity, N-BPs also  
interfere with the mevalonate metabolic pathway where γδ  
T-cell-stimulating pyrophosphates are generated25. N-BPs block 
an enzyme downstream of the synthesis of isopentenyl pyro-
phosphate (IPP), leading to increased accumulation of IPP and  
thereby to γδ T-cell activation44. Therefore, pretreatment of 
tumor cells with N-BP increases their susceptibility to γδ T-cell- 
mediated lysis45. Application of N-BPs to patients also induces  
in vivo activation of γδ T cells46, and in fact some clinical  
responses have been noted in small-scale studies in cancer patients 
given intravenous N-BPs together with low-dose interleukin-247. 
Moreover, γδ T cells have also been adoptively transferred to 
cancer patients, with no obvious major adverse effects but some  
clinical responses in a few patients47. The efficacy of tumor cell 
killing by γδ T cells can be further increased by specifically  
targeting γδ T cells to tumor cells via antibody-mediated cellu-
lar cytotoxicity (ADCC)48 or bispecific antibody constructs49,50.  
While Vδ2Vγ9 γδ T cells can be easily activated and expanded to 
large cell numbers by activation with pAg or N-BPs, it should be 

kept in mind that non-Vδ2 subsets of γδ T cells might also have 
potent anti-tumor activity, and protocols for selective expansion of 
those γδ T cells are in development51. Attempts to explore the anti-
tumor capacity of γδ T cells in a clinical setting were boosted by the 
recent demonstration in a large patient cohort that the proportion 
of γδ T cells among tumor-infiltrating immune cells was the best 
positive predictive parameter across a multitude of human tumor 
entities52. On the other hand, however, it must be considered that γδ  
T cells might also negatively regulate anti-tumor immune responses. 
For instance, it has been demonstrated that γδ T cells infiltrating 
into human breast cancer have a regulatory activity and inhibit αβ  
T-cell responses53. Moreover, other potentially tumor-promoting 
activities of γδ T cells have been reported in colorectal and pan-
creatic cancer54,55. Overall, however, it appears that γδ T cells are 
interesting and promising candidates for cellular immunotherapy 
supplementing other strategies such as NK cells and chimeric  
antigen receptor (CAR) T cells56,57.

Butyrophilins: a large family of proteins with 
immunomodulatory functions
BTNs were originally described as plasma-membrane-associated 
glycoproteins in the lactating mammary glands of many species 
which constitute a major component of the milk fat globule  
membrane58. The type 1 transmembrane BTN proteins belong to 
the immunoglobulin (Ig) superfamily and typically consist of  
extracellular Ig-like domains (IgV and IgC), a transmembrane 
domain, and, in some but not all cases, an intracellular B30.2 
signaling domain59–61. BTN and BTN-like (BTNL) proteins are  
variably related to the B7 family of costimulatory molecules (e.g., 
CD80 and CD86) which supports the role of (at least) some BTN 
members in the immune system62. The genes are clustered in two 
regions on human chromosome 6: BTN telomeric to HLA class I 
genes and BTNL near the HLA-DR genes. An additional BTNL  
gene cluster is located on human chromosome 5q3561. The protein 
domain structure of some functionally important BTN and BTNL 

Figure 2. Domain structure of butyrophilin (BTN) proteins. Typically, BTN and BTN-like (BTNL) proteins consist of extracellular 
immunoglobulin V (IgV)- and IgC-like domains, a transmembrane domain, and a cytosolic B30.2 (or PRYSPRY) domain. Three isoforms of 
BTN3A differ in their cytosolic structure (BTN3A1: B30.2 domain; BTN3A2: no B30.2 domain; BTN3A3: B30.2 domain plus additional stretch 
of amino acids). BTNL2 has two tandem repeats of IgV and IgC domains and lacks the cytosolic B30.2 domain.
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members is shown in Figure 2. The cytosolic B30.2 domain (also 
termed PRYSPRY) and the homologous SPRY domain are present 
in many cellular proteins, including tripartite motif molecules 
(TRIM), where they potentially interact with diverse intracellu-
lar molecules including NOD2, retroviral capsids, or Fc parts of 
IgG63,64. Given that BTN molecules have multiple roles in innate 
and adaptive immunity, it comes as no surprise that BTN gene 
polymorphisms may influence disease susceptibility. As an exam-
ple, BTN3A2 has been shown to be associated with susceptibil-
ity to type I diabetes65, and more examples are discussed in 60. 
Interestingly, genetic variants in BTN genes can also alter suscep-
tibility to infection, as has been demonstrated for a selection of  
hepatitis C virus genotypes and subsequent disease progression66.

BTN proteins are widely expressed in immune cells and epi-
thelial cells and can exert a multitude of immunoregulatory  
activities60,61. While a few binding partners have been identified 
(such as DC-SIGN [CD209] on dendritic cells and monocytes 
for BTN2A167), specific receptors are largely unknown. It also  
appears that the overall effect of specific BTN molecules depends 
on experimental conditions and respective reagents (recom-
binant proteins, soluble or immobilized antibodies, cell-surface-
expressed molecules, etc.). The extracellular domain of the human 
BTNL protein BTNL8 co-stimulates proliferation and cytokine  
production of anti-CD3 antibody-stimulated CD4 and CD8 αβ  
T cells, and a putative BTNL8 receptor on the cell surface of rest-
ing T cells was detected by flow cytometry with a BTNL8-Fc 
fusion protein68. Olive’s group has generated a number of mono-
clonal antibodies (mAb) directed against the extracellular domain 
of BTN3A molecules (also termed CD277), which do not dif-
ferentiate between the three isoforms BTN3A1, BTN3A2, and 
BTN3A362. They showed that anti-CD277 mAb clone 20.1 co-
stimulated cytokine production and early signaling cascades in 
purified human CD4 and CD8 T cells when immobilized together 
with anti-CD3 mAb in cell culture plates or on microbeads, point-
ing to an αβ T cell co-stimulating activity of BTN3A69. In con-
trast, another anti-CD277 mAb specific for a different epitope in 
the extracellular region of BTN3A (clone 232-5) rather inhibited  
T-cell activation when added to anti-CD3 mAb activated CD4 or 
CD8 T cells70. While these studies indicated that CD277 expressed 
on T cells can transmit positive or negative co-stimulatory sig-
nals, other studies showed that CD277 overexpressed on antigen- 
presenting cells profoundly inhibited T-cell proliferation and 
cytokine production71. Using a Myc-tagged extracellular CD277 
construct, Cubillos-Ruiz also obtained evidence for the expression 
of a CD277-binding protein on activated but not resting human  
T cells71. Together with their observation of strong CD277 expres-
sion on most of the analyzed ovarian cancer tissues, these authors 
argued that CD277 is a negative regulator of human T-cell activation 
with relevance for the immunosuppressive tumor micromilieu71. 
This view, however, does not integrate the fact that T cells them-
selves (like most, if not all, other immune cells) strongly express 
CD27762,69,72.

Other BTN/BTNL members with reported modulatory activity 
on αβ T-cell activation include BTN2A2 and BTNL2. The extra-
cellular part of BTN2A2 (i.e. a BTN2A2-Fc fusion protein) 
inhibited early signaling events in anti-CD3 plus anti-CD28 mAb 

stimulated murine T cells and prevented cell cycle entry. Interest-
ingly, BTN2A2-Fc also induced de novo expression of FoxP3 in 
anti-CD3/anti-CD28 mAb activated naive CD4 T cells, suggest-
ing that BTN2A2 may attenuate T-cell activation through multiple 
pathways, including the induction of FoxP3-expressing regula-
tory T cells (Tregs)73. Recently, BTN2A2–/– mice were reported to 
exhibit enhanced T-cell responses as shown by greater severity of  
T-cell-dependent models of autoimmunity (experimental autoim-
mune encephalomyelitis [EAE]) but also enhanced response 
to tumor vaccination74. Quite similar to BTN2A2, BTNL2 also  
inhibits murine T-cell activation and co-stimulates FoxP3 induc-
tion and thus Treg induction when applied as immobilized  
BTNL2-Fc fusion protein75. Interestingly, BTNL2 was found to be 
upregulated during acute-phase malaria infection, pointing to a  
possible feedback loop between inhibitory BTN/BTNL molecules 
and T-cell activation in inflammation and infection76.

In addition to immune cells, BTN and BTNL proteins are expressed 
in the intestine and regulate tissue integrity, local immune  
responses, and inflammation. Recent gene expression data point 
to a correlation of upregulated intestinal BTN/BTNL gene expres-
sion with inflammatory bowel diseases, in line with an important  
role of BTN/BTNL proteins in shaping local T-cell responses77.  
In murine intestinal epithelial cells, BTNL1 and BTNL6 form 
heteromeric complexes which enhance the proliferative activity of 
intraepithelial lymphocytes, specifically of a subset of γδ T cells 
expressing the Vγ7Vδ4 TCR78,79. Interestingly, it was recently 
shown that human gut epithelial cells express BTNL3 and BTNL8, 
which together also regulate tissue-specific γδ T cells, in this case  
intestinal γδ T cells expressing a Vγ4 TCR80. Taken together, it 
is obvious that BTN and BTNL proteins regulate multiple T-cell 
responses in a negative or positive manner. One of the unsolved 
questions here is how such signals are transmitted to T cells (i.e.  
the nature of putative receptors), an issue which needs further  
investigation.

The puzzling role of BTN3A1 in γδ T-cell activation
As already mentioned, an indispensable role of CD277/BTN3A 
in the activation of human Vδ2Vγ9 γδ T cells by microbial or 
tumor-derived pAg was reported by Harly and colleagues17. These  
authors used CD277 knockdown and domain-shuffling strategies 
to demonstrate the importance of the BTN3A1 isoform (carrying 
the cytosolic B30.2 domain) in this process. They went on to show 
that the anti-CD277 mAb 20.1 (used in immobilized form in pre-
vious studies to demonstrate co-stimulatory activity on CD4 and  
CD8 αβ T cells69) could selectively activate Vδ2Vγ9 T cells when 
added in soluble form together with interleukin-2 to peripheral 
blood mononuclear cells, and furthermore sensitized a broad 
range of tumor cells to killing by γδ T cells17. They also identi-
fied another anti-CD277 antibody termed 103.2, which binds to 
a different epitope on the extracellular part of BTN3A and spe-
cifically inhibited Vδ2Vγ9 T-cell activation by pAg, N-BP, or 
agonistic mAb 20.117,81. The essential role of BTN3A1 for pAg 
stimulation of human γδ T cells was confirmed by several other  
reports18,19,82–86. While the original study by Harly et al. described 
the importance of BTN3A/CD277 for human γδ T-cell activation 
by pyrophosphate antigens, the molecular mechanism was not yet  
precisely identified. Subsequently, two largely conflicting models 
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Figure 3. Alternative models of the role of butyrophilin (BTN) 3A molecules in phosphoantigen (pAg)-mediated γδ T-cell activation.  
A: pAg directly bind to the extracellular immunoglobulin V (IgV) domain of BTN3A1 and are then “presented” to the γδ TCR; as-yet-unidentified 
transporter molecules would shuffle pAg (generated within tumor cells due to the dysregulated mevalonate pathway) from the cytosol to the 
extracellular compartment for presentation by BTN3A118,87. B: pAg bind to the cytosolic B30.2 domain, leading to the recruitment of linker 
proteins including periplakin and the activation of the RhoB GTPase, which together induce a spatial redistribution of BTN3A1 molecules 
recognized by the γδ TCR19,85,91. APC, antigen-presenting cell; TCR, T-cell receptor.

were proposed, i.e. a “presenting” versus a “pyrophosphate  
sensing” function of CD277 (Figure 3). Vavassori and co-workers 
reported that pAg IPP and HMBPP could directly bind with low 
affinity to the recombinant extracellular IgV domain of BTN3A1; 
furthermore, they also observed weak binding of recombinant 
soluble Vδ2Vγ9 TCR to immobilized BTN3A1 molecules, which 
was further facilitated by IPP18. These observations were in line 
with BTN3A1 serving as an antigen-presenting molecule for 
pAg to be specifically recognized by the human Vδ2Vγ9 TCR  
(Figure 3A18,87). However, direct binding of pAg to the extra-
cellular domain of BTN3A1 could not be verified by other  
groups19,82,84. Instead, Sandstrom and co-workers demonstrated 
that the cytosolic B30.2 domain could directly bind several γδ  
T-cell-stimulating pAg through a positively charged surface 
pocket19, an observation which was confirmed by others84–86,88.  
Currently, most available data thus support the pyrophosphate- 
sensing function of the cytosolic B30.2 domain89,90. How, then, 
can binding of pyrophosphates to the cytosolic domain of a trans-
membrane protein (BTN3A1) translate into TCR-dependent selec-
tive activation of a specific (Vδ2Vγ9) γδ T-cell subset? Recent 
progress in the field has helped to elucidate some of the molecu-
lar mechanisms. Overall, it appears that an “inside-out” signaling  
mechanism induced by intracellular pAg sensing conveys a spa-
tial redistribution or conformational change of the extracellu-
lar CD277 domain, which is then somehow recognized by the  
Vδ2Vγ9 TCR89,91. Recently, crucial steps along this pathway have 
been identified. The cytoskeletal adaptor protein periplakin has 
been shown to interact with a membrane-proximal intracellular  
part of BTN3A185. Periplakin is a member of a family of cytoskel-
etal linker proteins that interact with various membrane-associated 
proteins and are involved in cytoskeletal (re)organization92. It is 

thus conceivable that upon pAg binding the interaction of cytosolic  
parts with periplakin and possibly additional adaptor proteins  
contributes to the spatial rearrangement of BTN3A185. Another 
step in this process is the small GTPase RhoB, which was recently 
identified in a genome-wide screen as an important component in 
BTN3A1-dependent tumor cell recognition by Vδ2Vγ9 T cells91. 
RhoB interacts with and regulates the membrane mobility of 
BTN3A1, and intracellular redistribution of RhoB in different 
tumor cells correlated with their recognition by γδ T cells. These 
results point to a correlation in tumor cells between the dysregu-
lated mevalonate pathway (which also controls small GTPases), 
RhoB activity, accumulation of pyrophosphates, and sensitivity to 
γδ T-cell killing91.

Taken together, it is now clear that BTN3A/CD277 is required 
for pAg-mediated activation of Vδ2Vγ9 γδ T cells and that peri-
plakin and RhoB have important roles in spatial rearrangement of  
BTN3A1 following intracellular pAg sensing (Figure 3B). How-
ever, some pieces of the puzzle are still unsolved. While a mem-
brane reorganization of BTN3A1 (which can apparently also be 
induced by agonistic anti-CD277 antibodies89) is a crucial step, 
it is not yet known what precisely then the γδ TCR recognizes. 
Moreover, and in contrast to initial studies17, it appears that it is not 
just the BTN3A1 isoform and its cytosolic B30.2 domain which 
are involved in pAg-mediated γδ T cell activation—BTN3A2 and 
BTN3A3 isoforms have been implicated85. Furthermore, using  
Chinese hamster ovary cells retrovirally transduced with the  
human BTN3A1 gene and additionally harboring, or not, human 
chromosome 6, Riaño and co-workers obtained evidence for a  
role for additional genes in the BTN3A1-dependent activation  
of γδ T cells by pAg83. Therefore, we can expect to witness the  
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discovery of additional new players before we fully understand 
how cell-surface-rearranged BTN3A molecules and pAg exclu-
sively activate human Vδ2Vγ9 T cells. Along this line, it will be  
important to study in more detail the role of various accessory  
cells in this process. BTN3A is widely expressed on leukocytes, 
yet only monocytes serve as accessory cells for three mechanis-
tically different stimuli for Vδ2Vγ9 T cells, i.e. N-BP, pAg, and 
agonistic anti-CD277 mAb 20.172. In co-cultures with purified γδ 
T cells, purified CD277-positive CD4 T cells can “present” pAg 
HMBPP to γδ T cells72. Given that HMBPP is most likely not 
directly presented by extracellular BTN3A1 domains89,90, how 
then do pAg enter the cell to initiate γδ T-cell activation following  
binding to cytosolic B30.2? A putative transporter molecule has 
been postulated87 (Figure 3A) and recently an energy-dependent 
uptake of HMBPP was demonstrated86, but the precise molecular 
mechanisms remain to be clarified.

Concluding remarks
BTN and BTNL have emerged as potent immunomodulatory  
proteins. The T-cell-inhibitory activity of some BTN/BTNL mem-
bers suggests that they might be novel targets for checkpoint  
inhibitors, in addition to established checkpoint proteins such as 
CTLA-4, PD1, and PD-L193. Some BTN/BTNL proteins have a 
unique role in recruiting and activating particular subsets of uncon-
ventional γδ T cells. The recently discovered role of BTNL3 and 
BTNL8 for shaping Vγ4 γδ T cells in the human gut might be  

relevant for the loss of mucosal barrier function in inflamma-
tory bowel diseases. The perhaps most fascinating example is 
the ménage à trois of BTN3A, pyrophosphate molecules, and the 
human Vδ2Vγ9 TCR. The availability of anti-BTN3A/CD277 
antibodies which selectively activate (e.g. mAb 20.1) or inhibit  
(e.g. mAb 103.2) Vδ2Vγ9 γδ T cells opens new avenues for γδ  
T-cell-directed immunotherapies. In a pre-clinical xenotransplan-
tation model of acute myeloid leukemia, therapeutic application  
of mAb 20.1 enhanced the therapeutic efficacy of adoptively  
transferred Vδ2Vγ9 T cells94. Therefore, humanized agonistic 
anti-BTN3A/CD277 antibodies might be a novel and highly spe-
cific approach to activate tumor-reactive γδ T cells in vivo. Vice 
versa, humanized inhibitory anti-BTN3A/CD277 antibodies might  
represent potent reagents for selective silencing of Vδ2Vγ9 T cells 
in clinical conditions where they might contribute to the disease 
process, e.g. in autoimmune diseases95.
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