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Through advances in the past decades, the central role of aberrant protein aggregation

has been established in many neurodegenerative diseases. Crucially, however, the

molecular mechanisms that underlie aggregate proliferation in the brains of affected

individuals are still only poorly understood. Under controlled in vitro conditions, significant

progress has been made in elucidating the molecular mechanisms that take place during

the assembly of purified protein molecules, through advances in both experimental

methods and the theories used to analyse the resulting data. The determination

of the aggregation mechanism for a variety of proteins revealed the importance of

intermediate oligomeric species and of the interactions with promotors and inhibitors.

Such mechanistic insights, if they can be achieved in a disease-relevant system, provide

invaluable information to guide the design of potential cures to these devastating

disorders. However, as experimental systems approach the situation present in real

disease, their complexity increases substantially. Timescales increase from hours an

aggregation reaction takes in vitro, to decades over which the process takes place in

disease, and length-scales increase to the dimension of a human brain. Thus, molecular

level mechanistic studies, like those that successfully determined mechanisms in vitro,

have only been applied in a handful of living systems to date. If their application can

be extended to further systems, including patient data, they promise powerful new

insights. Here we present a review of the existing strategies to gain mechanistic insights

into the molecular steps driving protein aggregation and discuss the obstacles and

potential paths to achieving their application in disease. First, we review the experimental

approaches and analysis techniques that are used to establish the aggregation

mechanisms in vitro and the insights that have been gained from them. We then discuss

how these approaches must be modified and adapted to be applicable in vivo and

review the existing works that have successfully applied mechanistic analysis of protein

aggregation in living systems. Finally, we present a broad mechanistic classification of in

vivo systems and discuss what will be required to further our understanding of aggregate

formation in living systems.
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1. INTRODUCTION

Aggregated forms of normally soluble proteins have emerged
as key structures in the pathology of a large number of
neurodegenerative diseases, most notably Parkinson’s disease
(PD) and Alzheimer’s disease (AD) (Chiti and Dobson, 2006;
Eisenberg and Jucker, 2012; Knowles et al., 2014; Meisl et al.,
2020b), but also in infectious prion diseases (Prusiner, 1982;
Eigen, 1996). The appearance of aggregates is a common
feature although the identity of the aggregating protein differs.
For instance, in PD aggregates consist mainly of α-synuclein
(Spillantini et al., 1997), while aggregates of the tau protein
and of the Aβ peptide (or amyloid beta in its aggregated form)
are both hallmarks of AD (Fitzpatrick et al., 2017; Yang et al.,
2022). By contrast, prions are aggregates composed mostly of
the PrP protein (Prusiner, 1991). Although the presence of
protein plaques and tangles in the brains of affected individuals
has long been identified as a hallmark of disease, work in
recent decades has strengthened the evidence for a causative
link between the presence of aggregates and pathology in
several of these neurodegenerative diseases. In particular low
molecular weight oligomeric intermediates have been recognized
as particularly damaging to cellular function and many such
soluble aggregate species are toxic in cell culture and cause
inflammation. Furthermore, aggregate amounts in the brain
correlate with the extent of atrophy, and mutations that increase
the aggregation propensity or increase the concentration of the
aggregation-prone protein often lead to earlier onset (Akiyama
et al., 2000; Haass and Selkoe, 2007; Selkoe and Hardy, 2016;
Chiti and Dobson, 2017). In the context of prion diseases, the role
of protein aggregates, the prions, as causative agents of disease
has been even more clearly established, with infection by prions
being a sufficient condition for emergence of disease (Aguzzi,
2006).

To what extent the prion-like ability to effectively self-replicate
and spread the disease-associated conformation is also present in
other aggregation-related diseases has important implications for
their management. Thus, the rate at which an aggregate is able
to self-replicate is a fundamental characteristic of aggregating
systems and can be a powerful way to quantitatively compare
the aggregation in different systems. While in the context
of self-replication, prions, and prion-like aggregates, behave
similar to typical infectious agents, their underlying chemistry is
remarkably simple: despite being normally soluble, aggregation-
prone proteins can also exist in an alternate stable conformation,
when associated with other proteins in a large, ordered aggregate.
Formation of these aggregates in the test tube is often kinetically
inhibited due to the energetic cost of nucleation of a new
aggregate (Knowles et al., 2014). However, once a nucleus has
been formed, further addition of proteins into the aggregate
from solution is fast. In many systems existing aggregates can
also trigger the formation of new aggregates by self-replication,
altogether bypassing the need for further nucleation events once
the first aggregated species are present (Knowles et al., 2011;
Meisl et al., 2020b, 2022). This nucleated polymerization reaction
can easily be reproduced in solutions of purified protein in vitro
and has been shown to occur for many proteins (Meisl et al.,

2016a), not only those linked to disease (Dobson et al., 2001;
Fowler et al., 2007; Meisl et al., 2022).

The fact that the formation of these disease-associated
aggregates is governed by this comparatively simple chemical
reaction means the process lends itself to the application of
powerful tools and techniques from physical and biophysical
chemistry (Knowles et al., 2009). In particular, the framework
of chemical kinetics offers a toolbox designed to answer key
mechanistic questions. It allows quantification of the rates of
different processes, to enable comparison between systems, as
well as identification of the rate determining steps of a particular
reaction. In this review, we will discuss the formation of prions
and prion-like aggregates in neurodegenerative diseases from the
perspective of molecular mechanisms. We initially outline the
fundamental processes that make up different components of a
mechanistic description of aggregate formation and then briefly
discuss the strategies to establish mechanisms from in vitro data.
We then discuss how these techniques can be applied in the
analysis of data from living systems and conclude by providing
our perspective on what will be needed to further ourmechanistic
understanding of neurodegenerative diseases.

2. MECHANISMS AND RATE-LIMITING
STEPS IN COMPLEX REACTION
NETWORKS

A wide variety of different model systems are used to study
different levels of complexity and aspects of aggregation related
diseases, from mouse or cell models, down to studies of purified
protein by methods of physical and biophysical chemistry. While
these studies are usually able to answer well the very specific
questions within their systems, progress is hampered by both,
the difficulty of combining individual studies into a coherent
picture and, more importantly, the challenge of translating the
findings to human disease. This is partly due to the difficulty
of extracting quantitative mechanistic parameters that can be
compared across systems: the timescales involved differ by many
orders of magnitude, from the hours needed to complete an
aggregation reaction in the test tube to the decades it takes
for the disease to progress through its stages in humans. As
the techniques to monitor these experimental systems at a
high temporal and spatial resolution and to modify them in a
targeted manner are rapidly improving (Blennow et al., 2015;
Ossenkoppele et al., 2016; Fitzpatrick and Saibil, 2019; Sang
et al., 2021; Zimmermann et al., 2021), there is also a rapidly
growing need for approaches that allow their analysis using
biophysical models.

Both, a mechanistic interpretation and a quantification of
the contribution of different processes to the overall behavior
of the system are key for gaining a deeper understanding
of aggregation phenomena across different systems and for
driving rational drug development efforts. Chemical kinetics
provides the toolset to achieve exactly this: a framework
within which to formulate mechanistic hypotheses and then
translate macroscopic observations into information about
the microscopic mechanisms (Connors, 1990). A particularly
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powerful idea from chemical kinetics in the context of complex
reaction networks, such as those encountered in aggregation in
living systems, is that of a rate-determining, or rate-limiting,
step. The idea is that, while a large variety of processes are
occurring during the reaction, only one, or a handful of processes,
actually control the overall behavior to a significant degree
(Eigen, 1996; Meisl et al., 2017a). These processes are the
control switches, the places at which interference significantly
affects the system. Alterations to other processes have little to
no effect on the overall behavior. Thus, identification of these
processes can provide not only a more intuitive understanding
of expected system behavior, but also point toward the most
promising targets for pharmacological intervention (Bulawa
et al., 2012; Arosio et al., 2014b). Much of the following
will concern how the rate determining steps can be identified
and show how different processes can be rate-determining in
different systems.

3. THE FUNDAMENTAL REACTION
NETWORK OF AGGREGATE FORMATION

Despite the significant differences between the mechanisms of
aggregate formation in different systems, such as the test tube
and a living organism, a number of fundamental properties can
be identified which will remain valid across systems. Indeed,
four broad classes of processes can be defined: initiation, growth,
multiplication, and removal (see Figure 1). Initiation refers to
the formation of the first aggregates, without the involvement
of any existing aggregates. This is a necessary first step in the
aggregation of any purely monomeric system and can be the
process that limits the rate of overall aggregate formation. In
the context of some diseases, such as acquired prion diseases,
this process is so slow that disease normally only arises when
initiation is bypassed by the introduction of an initial aggregate,
or seed, from an external source (e.g., another infected organism).
Growth is the process by which existing aggregates increase
in size. Once aggregates have formed, they can grow by
addition of further proteins from solution, typically to sizes
of several hundreds or thousands of proteins. In vitro, growth
usually proceeds from the ends of linear aggregates, producing
long fibrillar structures. Multiplication is the ability of existing
aggregates to trigger the formation of new aggregates. Within
this class we account for fundamental biophysical processes,
which include the fragmentation of fibrils or the catalysis of
nucleation on the surface of existing aggregates in the process of
secondary nucleation. The latter in particular is a key mechanism
of templated self-replication and interestingly represents a
general process found in contexts beyond protein aggregation
(Törnquist et al., 2018). In addition to these intrinsic means
of multiplication, we also include indirect mechanisms which
might be active in living systems, such as existing aggregates
triggering a deleterious response in the organism that in turn
triggers the formation of more aggregates. Multiplication is not
necessary to completely aggregate a population of monomeric
protein, however, it is a very common process. Finally, removal
refers to all ways by which living systems can actively remove

FIGURE 1 | The different classes of processes combine into the fundamental

reaction network of aggregation. Initiation is the formation of the first

aggregates, without the involvement of existing aggregates. Growth is the

increase in size of existing aggregates by addition of further protein subunits.

Multiplication denotes any process by which existing aggregates trigger the

formation of new aggregates, shown here schematically are fibril

surface-catalyzed secondary nucleation and fragmentation. Finally, in vivo,

aggregates can be removed by a number of clearance or degradation

pathways. These fundamental classes of processes form the reaction network

of aggregation, with growth and multiplication coupling together in a positive

feedback loop, that gives rise to the characteristic exponential growth in

aggregate mass that many systems display.

aggregates. This is the key fundamental difference in the
reaction network of aggregate formation between the test tube
and living systems and may be key in preventing run-away
aggregation in organisms.

These broad classes of mechanisms can be found in relatively
simple reactions in the aggregation of a purified protein in
vitro, such as those shown schematically in Figure 1. As the
complexity of the system increases, additional and more complex
mechanisms will be coarse-grained into each of these classes.
For example, initiation may involve attachment surfaces in a
heterogeneous nucleation reaction, the formation of condensates,
or interactions with lipid membranes. By coarse-graining these
processes into the classes that make up the fundamental
reaction network of aggregation, a key property is retained:
the processes of growth and multiplication, when present,
couple together in a positive feedback loop allowing aggregates
to self-replicate. Thus, the presence of a multiplication step
fundamentally changes the properties of the system: a few
initiation events producing the initial fibrils can give rise to
many child fibrils via self-replication, leading to exponential
growth of the aggregate mass over time (Knowles et al., 2009;
Cohen et al., 2011). Furthermore, one can bypass the slow
initiation step by introducing a small number of preformed
aggregates, significantly speeding up the reaction (Arosio et al.,
2014a). By contrast, if aggregates are unable to multiply,
each fibril has to be formed by a separate initiation event.
This lack of positive feedback leads to a much more gradual
increase of aggregate mass over time, and the introduction
of pre-formed seed fibrils has little effect on the behavior of
the system (Meisl et al., 2016a).
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It is clear that the ability to self-replicate, both by providing a
means to spread the aggregated conformation and by promoting
rapid, exponential increase in aggregate amounts, might pre-
dispose a protein toward involvement in disease (Törnquist
et al., 2018). While little quantitative data exist on the self-
replication of aggregates in living systems, the mechanism
of aggregation of purified protein in the test tube has been
determined for a large number of proteins. In Meisl et al. (2022)
we analyzed a large number of published datasets within a
chemical kinetics framework to quantify the contributions of
the relative contributions of initiation and multiplication. These
data show that the intrinsic ability to self-replicate, i.e., without
the requirement for any cellular machinery, simply by means
of fibril fragmentation or secondary nucleation, seems to be an
almost ubiquitous property of protein aggregates. Remarkably,
for those aggregates involved in disease, the intrinsic rate of
self-replication is always fast enough to be relevant on a disease
time-scale. Although these observations are based on test tube
measurements, they nonetheless highlight that self-replication
has to be considered as a mechanism of central importance
across the range of aggregation-related disorders. To quantify this
process, we define the doubling time, t2, which is the time taken
for the number of aggregates to double. As self-replication leads
to exponential growth in aggregate numbers, t2 is a constant and
directly related to the rate of self-replication, κ , by the equation
t2 =

ln(2)
κ

. Typical doubling times range from under 1 hour
(for µM test tube concentrations of Aβ42) (Cohen et al., 2013)
to 5 years (for the accumulation of tau aggregates in the brains
of Alzheimer’s disease patients) (Meisl et al., 2021a). Doubling
times provide a powerful and intuitive way to quantify the self-
replication propensity in different systems.

4. DETERMINING AND CONTROLLING
AGGREGATION IN THE TEST TUBE

The aggregation of purified protein molecules under controlled
in vitro conditions allows the intrinsic aggregation properties
of proteins to be determined (Meisl et al., 2016a). The role of
variations in protein sequence and solution conditions can be
studied (Meisl et al., 2016b; Yang et al., 2018) and the effect
of inhibitors and promotors of aggregation can be explored
(Arosio et al., 2014b). Such experiments usually start with either
a solution of purely monomeric protein, or monomeric protein
with a well-defined amount of pre-formed aggregates added.
Aggregation is usually induced by a temperature jump and
then the accumulation of aggregates over time is monitored
using a reporter of change in protein structure (dyes, intrinsic
fluorescence), changes in turbidity, or imaging of aggregates by
microscopy or other high-resolution techniques. Where time-
resolved data is available, the variation of concentration of
the different measured species over time can then be analyzed
using chemical kinetics to determine mechanisms and extract
rates. To do so, proposed mechanisms are turned into systems
of differential equations describing the time evolution of the
concentration of all reacting species using mass action. These
equations are solved, in some cases approximately, to obtain

FIGURE 2 | Complexity of reaction network can be significantly reduced by

the introduction of moments. To fully describe the aggregation reaction one

must account for how all the different sizes of aggregate can interact and

inter-convert, leading to a highly complex reaction network with many

thousands of possible species and reactions. This network can be enormously

simplified by instead considering only the moments of the fibril length

distribution, the aggregate number concentration, P, and the aggregate mass

concentration, M. While some information about the detailed size distribution

is lost in this step, the description of the system in terms of its moments is

usually sufficient to fully describe most experimental data and to extract the

rate constants of interest: kn, k2, k−, and k+. These are the rate constants of

primary nucleation, secondary nucleation, fragmentation, and elongation,

respectively. Adapted from Meisl et al. (2017a).

integrated rate laws which can then be used to fit the data (Meisl
et al., 2016a). The power of this approach stems from the fact that
all the parameters determined in the fitting of these integrated
rate laws have a physical meaning and link directly to the reaction
mechanisms used to derive the rate law.

In the context of protein aggregation, the rate law consists
of a system of thousands of coupled differential equations,
the master equation, which describe the population dynamics
for each different aggregate size and type, from dimers to
higher molecular weight species. Due to the non-linear nature
of this equation integrated rate laws cannot easily be found
(Figure 2). This difficulty can to some extent be overcome by
coarse-graining the system to describe quantities that can be
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FIGURE 3 | Global fitting and the use of scaling to determine mechanisms. Varying a number of different experimental parameters is crucial for determining possible

mechanisms. In particular, variations of the monomeric protein concentration can provide important mechanistic insights due to the differing dependence of different

mechanisms on monomer concentration. A powerful and easy way to apply this technique in practice is the use of scaling exponents, which describe how a

representative quantity of the aggregation reaction, such as the half time, varies with the monomer concentration. (Top) The half time can easily be extracted from

kinetic traces. Plotting the half time against monomer concentration then allows the determination of the scaling exponent and exclusion of mechanisms that are

inconsistent with the observed scaling. Often scaling exponents alone already allow the qualitative determination of mechanisms (here an example in which

fragmentation can be excluded simply based on the scaling exponent). (Bottom) To then quantify the rates and confirm mechanisms, one performs a global fit, i.e.,

using one set of parameters to describe the entire dataset at all monomer concentrations, of the integrated rate laws derived for different models (points are

experimental measurements of aggregate amounts, solid lines the best global fit of the model shown in the schematic, different colors denote different protein

concentrations). Here the fits confirm the conclusions from the scaling analysis, that a fragmentation dominated mechanism is inconsistent with the data while a

secondary nucleation dominated mechanism describe it well. Adapted from Meisl et al. (2016a, 2017b).

monitored experimentally: in this spirit, rather than focus on
how all aggregate sizes evolve over time, one considers only
the total number of aggregates and their average length, the
first two moments of the aggregate length distribution. The
resulting system of just two differential equations, the moment
equations, is more tractable and fitting it to experimental data is
in principle sufficient to determine the rates of initiation, growth,
and multiplication (Knowles and Buehler, 2011). Beyond the
derivation of mathematically accessible rate laws, the process
of fitting itself also requires careful considerations of the data
to be analyzed. The proposed mechanisms should be no more
complex than required to fully describe the data and in turn
the data should be acquired in such a way as to maximally
constrain the possible mechanisms. Best results are thus achieved
when experimental design and analysis go hand in hand, and
one constantly informs the other. In practice this usually means
that aggregation data should be acquired at different initial
monomer concentrations and in the absence and presence of
preformed seed fibrils. By analysing all those data together in

a global fitting approach, one can obtain strong constraints on
the possible models, despite the complexity of the underlying
reaction network (Figure 3; Meisl et al., 2016a).

In addition to facilitating detailed global analyses, datasets
that span a range of concentrations can give quick mechanistic
insights through simple consideration of the concentration
scaling of an easily accessible observable. In the aggregation of
purified protein, such a quantity is the half time, the time at which
half of the initially present monomeric protein has aggregated
(Figure 3). How this half time scales with the initial monomer
concentration is intricately linked to the underlying mechanism
of multiplication. For example, a system in which aggregates
multiply by fragmentation would show a different scaling from
one in which they multiply by secondary nucleation on the
fibril surface: the fragmentation process proceeds independently
of any monomeric protein in solution, thus its rate does not
depend on the monomer concentration. By contrast, secondary
nucleation involves the coming together of several monomers
on the fibril surface and therefore its rate will depend on the
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monomer concentration. Changes in rates result in changes in the
half time and thus by determining how the half time changes with
monomer concentration, one can determine whether aggregation
proceeded via fragmentation or via secondary nucleation (Meisl
et al., 2016a). A scaling analysis can even give detailed insights
into more complex aspects of the reaction network, such as
whether there are multiple processes competing in parallel or if
a single process consists of several distinct sub-processes (Meisl
et al., 2017a). Scaling laws are commonplace in many physical
systems and in the context of protein aggregation they can be
exploited for their robustness and easily accessible mechanistic
information, both in vitro and in living systems, as we will
demonstrate below. Finally, a crucial step in drawing mechanistic
conclusions form experimental data is a careful interpretation
of the obtained parameters in light of the coarse-graining of the
model that will have necessarily taken place at themodel selection
stage. For example, the reaction orders of the nucleation reactions
are, within the original derivation, interpreted as nucleus sizes
and thus expected to take integer values. In practice, they can take
non-integer values and are in fact unlikely to correspond directly
to the number of proteins in the nucleus, instead describing the
overall reaction order of a multi-step nucleation process (Meisl
et al., 2014, 2016a). If part of the nucleation process takes place
on interfaces, reaction orders can even approach 0 as interface
saturation effects become important (Dear et al., 2020b). In many
cases, the experimental data do not warrant explicit inclusion
of individual steps and a coarse-grained single nucleation step
is capable of fully describing the data (Dear et al., 2020a). If
sufficiently detailed data are available, the system can be fine-
grained to model more individual steps, but the level of coarse-
graining always has to be adjusted to the system at hand and
needs to be kept in mind during interpretation of the results.

Applying these techniques, the in vitro aggregation
mechanism of a large variety of proteins has been determined
in recent years: highlighting the correlation of aggregation
rate and early onset in some disease-associated mutations
(Flagmeier et al., 2016; Yang et al., 2018), describing the
effect of solution conditions (Abelein et al., 2015; Meisl et al.,
2016b), investigating the importance of surfaces in promoting
aggregation (Galvagnion et al., 2015; Pham et al., 2016),
and determining the roles of toxic oligomeric intermediates
(Ludtmann et al., 2018; Dear et al., 2020c; Michaels et al.,
2020). These analyses followed the strategy described above;
first developing a mechanistic model from first principles, then
deriving the integrated rate laws and finally global fitting to
experimental data. However, the types of data analyzed and
models used were diverse. Experimental data was obtained by
different means, from single molecule measurements, over mass
spectrometry, to the use of fluorescent dyes, such as thioflavin
T, that report on total aggregate mass. Models ranged from the
simplest ones only considering monomeric and fibrillar species,
to those that explicitly include intermediate species and account
for the presence of oligomers and their conversion between
different states.

In the context of developing therapies for aggregation-related
diseases, these techniques have also been extended to analyse
the action of potential inhibitors of the aggregation process:

depending on whether initiation, growth, or multiplication
is affected, the addition of inhibitor has a characteristic
effect on both the half time and the shape of the kinetic
curves (Arosio et al., 2014b; Meisl et al., 2016a). This fact
can be utilized to determine the mechanism of action of
different compounds, which can then in turn be used to
modify the aggregation reaction in specific ways. A wide range
of compounds have been classified in this way, including
Aducanumab, the first licensed disease-modifying drug against
Alzheimer’s disease, which was found to be an inhibitor of
multiplication (Linse et al., 2020). Thus, in vitro mechanistic
analysis provides a simple means for determining differences
in intrinsic aggregation properties due to modifications of the
protein and for screening for compounds that inhibit a specific
step of aggregate formation.

5. MEASURING AGGREGATION IN LIVING
SYSTEMS

Extending mechanistic analysis of aggregation phenomena to
include in vivo measurements is crucial for progressing our
understanding of the related disease. However, it is complicated
by the difficulty of monitoring the concentrations of reacting
species over time, as well as the increased complexity of the
reaction itself, through interactions with other molecules present
and also through the addition of a spatial component. The
concentration of aggregates is generally low in living systems,
thus necessitating highly sensitive methods. Furthermore, the
aggregates can range in size and structure so ideally methods
should also be able to address this heterogeneity. A comparison
of a selection of methods is given in Table 1.

ELISA-based methods with sufficient sensitivity to detect the
overall aggregate concentration and follow disease progression
have been developed, but provide little spatial and structural
resolution (Mattsson et al., 2009; Savage et al., 2014; Yang et al.,
2015). Other highly sensitive amplification-based methods have
been developed to quantify the number of aggregates present
using a test tube or cellular seeding assay (Klohn et al., 2003;
Atarashi et al., 2007; Holmes et al., 2014; Groveman et al.,
2018). Those methods utilize the propensity of the disease-
related aggregates to self-replicate by designing a reporter system
that amplifies even minuscule concentrations of aggregates in
a sample to detectable levels. These ideas originally found
application in prion research (and before that in virology; Reed
and Muench, 1938) where the infectivity of a sample was
determined by inoculation of test animals with serial dilutions of
the sample until it no longer caused disease. These measurements
are particularly relevant for the mechanistic analysis of systems
where self-replication of aggregates plays a central role in the
mechanism as they, by design, only detect those species that
are able to self-replicate. The readout of these methods is not
affected by the presence of any inert aggregates, which are not
involved in the reaction and thus should not be considered as
part of the self-replicating aggregate population in the modeling.
While these techniques can be highly sensitive, they suffer from
potential problems that the method used to process the brain
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TABLE 1 | Comparison of a selection of methods for in vivo measurements of aggregate concentrations.

Method Sensitivity Type of aggregate Spatial resolution
Longitudinal

measurement

ELISA High
Most types Medium (brain tissue)/ No (brain tissue)/

(depending on antibody) No (bodily fluids) Yes (bodily fluids)

Seed amplification
Very high

Only replication- Medium (brain tissue) / No (brain tissue) /

(e.g., RT-QuIC) competent No (bodily fluids) Yes (bodily fluids)

Super-resolution
High

Most types Medium (brain tissue) / No (brain tissue) /

Microscopy (depending on reporter) No (bodily fluids) Yes (bodily fluids)

Structural
Low

Highly ordered structures
No No

(e.g., cryo-EM) (at atomic resolution)

Histological stains Medium Large aggregates only High No

PET Low Most types Medium Yes

PET stands out as the only method that is able to record truly longitudinal data of aggregate distributions in the brain; all other methods have to make the choice between spatial

resolution or longitudinal measurements. Seed amplification techniques distinguish themselves by being highly sensitive (potentially down to single seed level), but are selective to only

those aggregates that are replication-competent.

tissue, often homogenization, may break up larger insoluble
aggregates into smaller seeds and less perturbative methods
might be better to extract the aggregates such as soaking (Hong
et al., 2018). Furthermore, there are often no longitudinal
data monitoring the same patient over time (in the case of
post-mortem measurements), nor is there information on the
spatial distribution of aggregates in the brain (when bodily
fluids are used).

In order to obtain spatial information, a range of imaging
methods exist. Histology and in situ methods, using dyes or
antibodies to detect aggregates, can provide spatial resolution
down to a cellular level, and are used as standard ways to
classify the stage of disease progression (Braak and Braak, 1991).
However, they are generally not as quantitative as the techniques
described above, and may be biased toward large aggregate
clusters in the form of plaques or tangles (DeVos et al., 2018).
More recently, single molecule fluorescence has been shown to
have sufficient sensitivity to detect single aggregates and when
combined with super-resolution imaging can obtain information
about aggregate size and structure (Whiten et al., 2018; De et al.,
2019; Zimmermann et al., 2021). While these techniques can
obtain better spatial resolution than ELISA- or amplification-
based methods, they still generally suffer from the drawback that
no longitudinal data are available.

To address this issue, in recent years it has become
possible to quantify the amounts of aggregated tau and Aβ

aggregates directly in living patients using PET imaging.
Although these measurements are significantly less accurate
than the post-mortem measurements discussed above, they
can be used to obtain longitudinal datasets that quantify
how the amounts of aggregated species evolve over the
course of the disease in individuals (Sanchez et al., 2021).
With both temporal and spatial resolution of how aggregates
accumulate, the enormous potential of these datasets to
give key insights highlights the need for frameworks to
analyse them with mechanistic models to complement current
analysis strategies.

6. APPROACHES TO MODELING
AGGREGATION IN LIVING SYSTEMS

The major focus of mathematical modeling has been on the
analysis of patient data in the context of determining correlations
and connections between different measurements and different
aspects of the disease. A hallmark of many neurodegenerative
disorders is a characteristic spatial evolution of the disease,
leading to the classification into successive disease stages, based
on the areas of the brain that are affected by pathology (Braak
and Braak, 1991). A key area of modeling is thus concerned with
these spatial patterns, in particular how they distinguish different
diseases and which parameters, such as neuronal connectivity
or selective vulnerability, drive the appearance of these patterns
(Cope et al., 2018). Many of these current strategies use a coarse-
grained model of the interconnected system of neurons, based on
detailed brain connectivity data. It should, however, be noted that
there is still some debate on themechanisms that allow aggregates
to spread through the brain in different diseases, including via
tunneling nanotubes (Tardivel et al., 2016) or involving microglia
(Pascoal et al., 2021). Such connectivity-based modeling methods
have for example discovered disease-typical spatial patterns
(Weickenmeier et al., 2018) and found a clear link between the
appearance of Aβ aggregates and pathological tau in Alzheimer’s
disease (Vogel et al., 2020). The core focus of these models is
on finding macroscopic correlations and connections, but there
are some recent works to link them to mechanistic models of
aggregation at the molecular level (Fornari et al., 2019; Meisl
et al., 2021a,b).

Generally, when it comes to designing mechanistic models of
aggregation in living systems, a number of factors fundamentally
alter the behavior from what one might expect in vitro: (1) Due to
protein synthesis and degradation, total protein concentrations
are no longer constant as they are in vitro. (2) Modifiers
of aggregation, such as chaperones or the presence of lipid
interfaces, alter the rates of the different classes of processes;
initiation, growth, and multiplication. (3) While in vitro systems
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are generally well-mixed and homogeneous, confinement and
the differences in environment between individual cells and
different brain regions introduce a spatial component. (4) There
are process which actively remove aggregates from the reaction,
such as clearance through autophagy and export from cells.

The first two factors can be addressed by minor alterations
to the reaction networks used in vitro. Inhibitors or promotors
of aggregation can be well-modeled as perturbative effects
(Arosio et al., 2014b; Galvagnion et al., 2015) and different
conservation laws can be enforced to account for monomer
production and removal processes (Nowak et al., 1998; Poeschel
et al., 2003; Meisl et al., 2020a). Post-translational modifications,
such as phosphorylation, nitration, and truncation, could also
be included in this group. However, unlike the other effects
discussed here, the discrepancy between in vivo and in vitro
behavior in that case does not stem from any increased
complexity of the in vivo reaction network, but simply from the
fact that the properties of the aggregating proteins differ. If the
difficulty of obtaining the correctly modified protein in sufficient
quantities for in vitro experiments can be overcome, this problem
can be avoided.

By contrast, spatial inhomogeneities can have a more
significant effect as transport rates can play a significant role in
determining the overall behavior (Fornari et al., 2019; Meisl et al.,
2021a). During modeling, the ordinary differential equations
that are used to describe the reaction in well-mixed systems
may have to be replaced by partial differential reaction diffusion
equations to account for these spatial inhomogeneities. The
introduction of a spatial dimension also poses a key question
in the context of disease progression: how important is the
spreading of aggregates throughout the organism, compared to
their de novo formation and self-replication? Establishing which
of these processes dominates disease progression is thus essential
for targeting the correct steps in the rational search for therapies.
An example of how this question can be addressed is given below
in the Section 7.4.

Finally, the presence of aggregate removal or clearance
processes has the potential to cause the most drastic difference
of the aggregation behavior compared to the situation in the test
tube; it allows systems to be in a stable state, constantly producing
aggregates without ever entering a runaway aggregation regime
(Thompson et al., 2021). One can determine a critical clearance
rate: if aggregates are cleared at a rate faster than this, the
system is stable, and there is no runaway aggregation. If, for
some reason, the clearance rate is decreased below this critical
value however, the system switches to runaway aggregation. This
finding highlights the potentially central role of the clearance
process in the emergence of disease, in particular in light of the
finding that protein quality control mechanisms decline with age
(Labbadia and Morimoto, 2015).

7. MECHANISTIC ANALYSIS IN SPECIFIC
SYSTEMS FROM CELL CULTURE TO
PATIENT DATA

Initial progress made in the mechanistic analysis of data from
living systems shows promising insights, which we briefly outline

here in systems of increasing complexity. While the specifics
will differ from system to system, the crucial questions generally
revolve around which process or processes are rate-limiting for
the overall process and how their rates compare to that of the
same protein aggregating under different conditions, such as in
its purified form in vitro.

7.1. Cellular Removal Processes and
Seeding
In the context of studying aggregation mechanisms, experiments
in cell culture have been key for investigating the factors that
might influence propagation, such as exploring how seeds enter
into the cells. For example, in the context of tau aggregation,
it was found that aggregates themselves are taken up by cells
and are then able to induce the conversion of more monomeric
tau inside the cell into its aggregated form, in analogy to
how seeding proceeds in vitro (Frost et al., 2009). Far fewer
studies have focused on the mechanisms by which seeds then
trigger aggregation and by which the cell can combat aggregate
accumulation, since answering these questions requires still
more sensitive and quantitative measurements. Super-resolution
imaging offers a way to follow the accumulation of different
types of aggregates, both within the cell and in the cell medium.
Employing this technique to monitor α-synuclein aggregation in
SH-SY5Y cells, seeding was found to be a very inefficient process,
requiring high levels of seeds to overcome protective cellular
mechanisms (Sang et al., 2021). Similarly, in an organotypic slice
model of tau seeding, it was found that no significant seeding was
observed even at concentrations of tau higher than physiological
levels (Miller et al., 2021). Remarkably, in this organotypic slice
culture, tau seeding efficiency scaled more strongly than linear
with tau seed concentration, implying that multiple tau seed
aggregates were needed for seeding. It is, however, difficult to
directly translate these findings into human disease, given the use
of recombinant seeds, tau over-expression, and the uncertainty
about what other factors may alter the efficiency of the seeding
process in the diseased brain. Nonetheless, these studies show
that seeding is an inefficient process in slice and cell culture and
that multiple aggregates may need to stress a single cell in order
to overcome its protective mechanisms.

Once seeding occurs, aggregate formation inside the cell
may be a comparably fast process. In SH-SY5Y cells aggregate
formation upon successful seeding was found to be a rapid
process with a doubling time of 5 h, orders of magnitude
faster than in the test-tube (Sang et al., 2021). Remarkably,
in this system, blocking proteasome activity revealed that
the proteasome was responsible for increasing the rate of
aggregation. This is likely to occur via an increase in the rate of
fragmentation by at least 10-fold, as has been observed previously
(Cliffe et al., 2019). By contrast, small aggregates (∼35 nm
long) of both Aβ and α-synuclein were found to be secreted
continuously into the media and this export increased upon
seeding. Unlike the proteasome, secretion, therefore, appears
to be an important protective process for aggregate removal.
These observations highlight that aggregate degradation and
removal is likely to be a complex process involving several
distinct mechanisms. In addition to secretion and degradation,
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FIGURE 4 | Confinement and determination of the kinetics by a stochastic nucleation event. In bulk, many initiation events take place in a short amount of time,

compared to the overall timescale of the reaction (A). This leads to reproducible curves (B) and can often mean that little information about the initiation process can

be obtained from an analysis of the data because they are dominated by other processes. By contrast, when the same reaction is carried out in volumes so small that

initiation is rare on the timescale of the aggregation reaction, stochastic behavior emerges. Each experimental curve is governed not only by the rate constants of

aggregation but also by when the random event of nucleus formation occurred. This effect can also be observed in the aggregation of polyQ in C. elegans worms

(scale bars 50 µm), where each cell behaves like an independent reaction vessel (C). By globally fitting how the fraction of aggregated cells varies over time for

different polyQ concentrations, the reaction order of the initiation process can be determined (D). Adapted from Sinnige et al. (2021).

autophagy is likely to be a key process employed by organisms
to combat protein aggregation (Nixon, 2007; Rubinsztein et al.,
2015) and as such may find application in therapy (Menzies et al.,
2017; Uddin et al., 2018).

7.2. Initiation Events and Stochasticity
While cell culture can thus answer questions surrounding
clearance by export and the susceptibility to aggregation induced
by seeds introduced to the cellular medium, multicellular
model systems can also investigate intercellular interactions.
In particular, the question whether initiation happens in a
cell-autonomous manner or whether aggregation in one cell
can induce aggregation in neighboring cells is important
for understanding the emergence of disease in multicellular
organisms. Sinnige et al. (2021) studied this question in the
context of polyQ aggregate formation in C. elegans, as a model
system for Huntington’s disease. Monitoring the aggregation

by imaging methods, they found that initiation proceeds in a
cell-independent manner and that the rate-limiting step is the
initiation of aggregation in a given cell. In other words, in this
system cells behave as independent reaction vesicles, with only
the nucleation step controlling the appearance of aggregates.
Once nucleation has occurred, the cell rapidly reaches its fully
aggregated state, but nucleation events are rare and therefore
the system contains mostly non-aggregated or fully aggregated
cells (Figure 4). This simple behavior resembles that of a set of
confined in vitro volumes, as for example in aggregation reactions
carried out in microdroplets (Knowles et al., 2011). Remarkably,
the reaction orders determined in C. elegans for polyQ parallel
those determined for the purified protein in vitro. These systems
highlight the special role that the initiation event can play: when
growth and multiplication are fast enough, the behavior of the
entire cell can be governed by a single, stochastic molecular event,
the formation of the first aggregate. Such a behavior is only
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possible when initiation is so rare that on average only a single
event occurs over a typical aggregation timescale. Its hallmark
is a significant variation in the kinetics of equivalent repeats
of the experiment, due to the inherently random nature of the
process that dominates the kinetics (Michaels et al., 2018). Thus,
stochastic nucleation cannot generally be observed in bulk in
vitro reactions where many nucleation events take place. The
“lag time” in those typical bulk aggregation experiments should
therefore not be misinterpreted as a waiting time for nucleation
to occur. As has been exhaustively demonstrated, the lag time in
bulk aggregation reactions is simply the time until a sufficient
quantity of aggregated material has accumulated to be detected
and the sudden increase of the curves is merely a property of
the expected exponential increase in aggregate amounts (Arosio
et al., 2015).

The degree to which confinement into individual cells
dominates the overall behavior will depend on the specifics of the
system, such as how the rate of initiation compares to the rate
at which aggregates formed in one cell induce the formation of
aggregates in another cell. The above is an example of an extreme
situation where the initiation dominates. By contrast, acquired
prion disease in which all aggregates stem from those introduced
upon infection, is an example of the opposite extreme. As with the
other general classes of processes we have introduced here, it is
important to remember that initiation itself is the coarse-graining
of potentially several molecular steps which together result in the
formation of the first self-replication-competent aggregate (Dear
et al., 2020a). Initiation in particular may involve interactions
with surfaces, such as lipid membranes which are believed to play
an important role in the initiation of α-synuclein aggregation
(Galvagnion et al., 2015), or the formation of condensates by
liquid-liquid phase separation (Babinchak and Surewicz, 2020).

7.3. Scaling and Detailed Mechanisms
As has been outlined above, the scaling of the half time, or
equivalently of the reaction rate, with protein concentration
can help narrow down possible mechanisms of aggregation
in vitro (Meisl et al., 2017a). When sufficiently detailed data
are available, such an analysis can also be carried out in
vivo, although the situation is complicated by the fact that
there are now a much larger number of reasonable reaction
mechanisms. This can be addressed by a careful consideration
of the fundamental requirements on aggregation reactions in
vivo in order to obtain a set of classes of minimal models
(Meisl et al., 2020a). While a scaling analysis will then not
produce a single reaction mechanism at molecular resolution,
it will be able to exclude entire classes of mechanisms that are
inconsistent with the data. The application of this technique is
demonstrated in Meisl et al. (2021b), where the mechanism of
prion multiplication was determined in mice. Four strains of
mice that express the monomeric prion precursor protein (PrP)
at different levels were inoculated with prions. The concentration
of prions was then determined at different timepoints throughout
the disease. As the assay requires the post-mortem determination
of prions in brain homogenate, a pseudo-timecourse has to
be pieced together by combining measurements from different
mice at a number of timepoints after inoculation. Obtaining

a time-evolution of the concentration of aggregated species is
crucial for mechanistic analysis, thus, when only post-mortem
measurements are available, they need to be combined into a
representative time-trace. From the reconstructed time-traces,
the rate of self-replication can be determined through fitting
and the scaling of this rate with monomer concentration can
be calculated (Figure 5). In the case of prions in mice, it was
found that the rate of self-replication scales approximately with
the square root of the protein concentration. This scaling is
consistent with the class of mechanisms that include formation
of linear aggregates that multiply by fragmentation and allows
exclusion of the originally proposed hetero-dimer mechanism as
the mechanism of multiplication. Fragmentation of linear fibrils
has also been established as the mechanism of aggregation of
purified PrP in vitro, indicating that the in vitro and in vivo
mechanisms may be surprisingly similar. Despite this potential
similarity in mechanism, a determination of the rate of self-
replication shows that it is slowed down significantly in the
mouse compared to the purified protein in the test tube. These
findings demonstrate the power of scaling analyses in the
determination of aggregation mechanisms and the importance
of obtaining data under a range of conditions, for example at
different concentrations of the monomeric precursor.

7.4. Spatial Factors and Human Data
Mechanistic analysis of human data is even further complicated
beyond that of animal model systems since no control can
be exerted over factors such as the monomer concentration
and that longitudinal data of neurodegenerative diseases is
challenging to obtain. Thus, the questions being asked and
models being used in analysis must be adjusted accordingly. At
the top level lies the determination of the relative importance
of the different fundamental classes of processes; initiation,
self-replication and spreading through space. We were able to
demonstrate this approach in a recent work by using data from
patients to determine the rate-limiting step for the formation of
tau aggregates in the later stages of Alzheimer’s disease (Meisl
et al., 2021a). The spatial evolution of aggregate concentration
forms the basis for staging AD into Braak stages and thus the
process of spreading has received a large amount of attention.
However, we found that in the mid to late disease stages (Braak
stage III onwards) the rate-determining step was the local self-
replication of aggregates, rather than spreading between brain
regions. Through modeling we were able to show that changes in
the rate of spreading between brain regions are expected to have
very little effect on overall progression. As in other systems where
the rate of self-replication has been determined, the doubling
time observed in vivo is orders of magnitude longer than that
observed for the purified protein in vitro, hinting that there are
powerful mechanisms to prevent aggregate accumulation at play
in vivo (Figure 6). This finding is also supported by the effect
of bodily fluids on slowing the aggregation of purified protein
in the test tube (Frankel et al., 2019). The analysis of AD data
demonstrates that even a top level analysis with models coarse-
grained into only the very fundamental classes of processes can
provide new mechanistic insights and a means to quantitatively
compare different systems.
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FIGURE 5 | Use of scaling analysis to determine the mechanism of replication in a living system. The concentration of prions was determined as a function of time

after inoculation by prions in a number of different mouse lines, with technical and biological replicates shown as solid points (A–D). The mouse lines express the

different amounts of the monomeric precursor, PrP, as shown in (E) relative to the wild type line Prnp+/+. The rate of replication is extracted from those data by fitting

of a minimal model (solid lines). In turn, the variation of the replication rate with the concentration of the precursor protein PrP allows one to determine the scaling

exponent, γ = 0.6 (E). This low scaling, with the rate increasing approximately with the square root of the protein concentration, allows a range of mechanisms to be

excluded and is consistent with the mechanism of prion multiplication determined for the purified protein in vitro. Adapted from Meisl et al. (2021b).

7.5. Strains and Sporadic vs. Acquired
Diseases
A question of major importance is how aggregates appear
throughout the brain in early disease. One can imagine two
limiting behaviors: a prion-like spreading mechanism where one
or a small number of initial aggregates replicate exponentially
and spread through the brain, and a direct initiation mechanism
where aggregates form spontaneously in individual cells. Most
real systems may fall somewhere between these two limits,
and the behavior of different aggregate strains may provide
information on the dominant process. Elegant cryo-electron
microscopy experiments have shown that the aggregates formed
in different diseases have distinct structures while people with the
same disease have aggregates with the same structure (Fitzpatrick
et al., 2017; Falcon et al., 2018; Zhang et al., 2019). If the
type of strain determines the type of disease, this observation
of distinct strains in distinct diseases would imply that single
initiation or infection events, followed by prion-like spreading
are dominant. However, no such conclusion can be drawn if
instead there are other factors (genetic or environmental) that
determine the disease, which in turn determines the strain. If the

type of disease determines the propensity of different strains to
form, the formation of many new aggregates directly, throughout
susceptible areas of the brain, is equally consistent with the
observation of strains as a single initiation event from which
prion-like spreading occurs. While for acquired diseases, there
is little doubt about the dominance of prion-like mechanisms, in
spontaneous disease, the observation of distinct fibril structures
in different diseases does not allow one to distinguish between the
two limiting mechanisms until the causal relation between fibril
strain and disease type can be established.

8. ROUTE FORWARD, OPEN QUESTIONS,
AND KEY UNKNOWNS

While we have demonstrated a range of techniques and
systems in which it has been possible to gain new mechanistic
insights, many big questions surrounding the aggregation-related
neurodegenerative diseases remain, particularly in humans. To
help structure the discussion, we provide here a way to classify
different questions and hypotheses.
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FIGURE 6 | Quantification of timescales of aggregation across systems. A plot

showing the growth rate versus the multiplication rate, for a number of

proteins, using either rates determined in vivo or rates determined in vitro and

extrapolated to in vivo concentrations. Along the diagonal lines, the doubling

time is unchanged, thus going from the bottom left hand to the top right hand

corner the rate of replication increases. Notably, the same proteins tend to

aggregate orders of magnitude slower in vivo than they do in vitro, highlighting

the ability of living systems to prevent aggregation. Adapted from Meisl et al.

(2021a).

The key questions about disease mechanisms can be separated
into two main categories of “How does aggregate formation
begin?” and “What controls its proliferation?.” In most cases
very little is known about the crucial initiation events, the
triggers that start aggregation. To classify the different hypothesis
we again propose the consideration of two extremes: initiation
is independent of changes in external factors or initiation is
triggered by changes in external factors. We use the term external
factors here to signify any factor that changes over time other
than the formation of aggregates, for example decline in protein
quality control, infection etc. We choose this classification for
its utility in disease prevention as such external triggers can
serve as potential targets if they are important in initiation.
Systems in which initiation is independent of external factors,
as we define them here, would be the aggregation of purified
protein in a test tube (initiation happens at the beginning of the
reaction, aggregates build up over time, and the only relevant
timescale is that of aggregate formation) or the appearance of
polyQ aggregates in the cells of C. elegans worms as discussed
above (initiation is a random event, whose probability is constant
over time). In other words, models in which aggregation proceeds
gradually, with unchanged rate constants, over the entire life of
the organism, or in which it is triggered by a random nucleation
event, fall into this category. Systems which we would classify
as triggered by external factors are any that involve infection,
such as acquired prion disease (aggregation is initiated by the
introduction of an infectious prion), but also those proposed

models in which bacterial infections trigger neurodegenerative
disease, or in which inflammation plays a causative role (Lue
et al., 1996; Akiyama et al., 2000; Rietdijk et al., 2017; Kinney
et al., 2018; Dominy et al., 2019). In the same category, but
somewhat distinct, are those external factors linked to ageing,
such as the decline in protein quality control mechanisms
(Labbadia and Morimoto, 2015). If for a disease the age of onset
is relatively conserved and potentially correlated with external
factors, initiation by a single stochastic event is unlikely. If a
purely random event is the cause of initiation, the variance
of the time of initiation should be comparable to the mean
time of initiation, which is inconsistent with a conserved age of
onset (we expect an approximately exponential distribution of
initiation events over time, as in the case of C. elegans discussed
above; Sinnige et al., 2021). The fact that most neurodegenerative
diseases are diseases of old age suggests that ageing-related factors
play a significant role in determining age of onset, suggesting that
external factors, as we define them here, play at least some part in
determining initiation.

The change in external factors also allows for a new type
of initiation that cannot be produced in this manner in vitro.
In this scenario, the initiation event is not the appearance of
the first aggregates, but rather a switch from a stable state,
in which aggregates are being removed as quickly as they are
formed, to one in which clearance can no longer keep up
with aggregate formation and thus runaway aggregation occurs.
Since the system is initially in a stable steady state, an external
change in parameters, such as a decrease in the clearance rate,
is necessary to trigger the switch (Thompson et al., 2021). When
it comes to controlling such systems, one can either attempt to
inhibit the aggregation process or accelerate the removal process.
Quantification of the rates of both processes would be key in
determining the critical rate at which the switch from run-away
aggregation to a stable state can be achieved.

Somewhat separate from the question of initiation is the
question of progression. As previously demonstrated (Meisl et al.,
2021a), to understand the overall effect on progression, it will
be crucial to quantify the rates of both self-replication and
spreading in order to determine which contribution dominates
the behavior. In order to judge the importance of spreading
compared to self-replication, spatial inhomogeneities have to
be taken into account. Two questions are important in the
consideration of spatial inhomogeneities: (1) how existing
aggregates in one place trigger the formation of aggregates in
a different location, for example by transport along neuronal
connections or involvement of microglia. (2) how reaction rates,
such as the propensity for aggregate formation, vary across brain
regions. Dissecting which process plays a dominant role, can,
for example, help determine if particular regions are intrinsically
protected or vulnerable, or simply less or more affected by
transport from neighboring brain regions.

In principle aggregate formation can proceed without
self-replication, but the overwhelming evidence is that self-
replication, in one form or another, occurs in the majority of
aggregation-related diseases, in particular AD (Clavaguera et al.,
2013; Meisl et al., 2021a). While spatial inhomogeneities and
spreading can affect the overall rate of progression in some
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situations, self-replication always does (Meisl et al., 2021a). The
question of progression is then how existing aggregates trigger
the formation of additional aggregates. The mechanisms of self-
replication can again be separated into those that are direct, likely
paralleling those that are present in vitro, and those that are
indirect, such as stresses exerted by the presence of aggregates
that trigger aggregation within the stressed cells. Identifying the
type of self-replicationmechanism that dominates the overall rate
can thus inform on potential targets for therapeutic intervention.

The application of these ideas to answer key questions in
neurodegenerative disease from patient data will require the
combination of sophisticated mechanistic models with cutting-
edge analysis strategies. In all cases, a crucial component to
successfully develop our mechanistic understanding will be
the accurate measurements of aggregate concentrations and
compositions, resolved both in space and most crucially over
the course of the disease. A deeper quantitative and mechanistic
understanding will enable the determination of rate limiting
processes and thus pave the way toward developing the most
promising strategies to prevent and control aggregate formation
in living systems.
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