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Abstract

Automatic cell segmentation and tracking enables to gain quantitative insights into the pro-

cesses driving cell migration. To investigate new data with minimal manual effort, cell track-

ing algorithms should be easy to apply and reduce manual curation time by providing

automatic correction of segmentation errors. Current cell tracking algorithms, however, are

either easy to apply to new data sets but lack automatic segmentation error correction, or

have a vast set of parameters that needs either manual tuning or annotated data for param-

eter tuning. In this work, we propose a tracking algorithm with only few manually tunable

parameters and automatic segmentation error correction. Moreover, no training data is

needed. We compare the performance of our approach to three well-performing tracking

algorithms from the Cell Tracking Challenge on data sets with simulated, degraded segmen-

tation—including false negatives, over- and under-segmentation errors. Our tracking algo-

rithm can correct false negatives, over- and under-segmentation errors as well as a mixture

of the aforementioned segmentation errors. On data sets with under-segmentation errors or

a mixture of segmentation errors our approach performs best. Moreover, without requiring

additional manual tuning, our approach ranks several times in the top 3 on the 6th edition of

the Cell Tracking Challenge.

Introduction

The ability of cells to migrate is essential for many biological processes such as tissue forma-

tion, immune response, or wound healing [1]. Disruptions in cell migration can contribute to

diseases such as malformation [2], autoimmune disease [3], and metastasis [4]. To better

understand the mechanisms driving cell migration, the cell behavior can be analyzed quantita-

tively, for instance by tracking cells over time. However, tracking cells manually is tedious,

even for small data sets, and becomes for large data sets infeasible. Therefore, automated cell

tracking methods are needed which minimize manual curation effort and expert knowledge

for parameter adjustments.
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Recent cell tracking methods can be categorized into tracking by detection and tracking by

model evolution approaches [5]. In tracking by model evolution approaches an initial segmen-

tation is propagated over time [6], whereas tracking by detection approaches split segmenta-

tion and tracking in two steps. In this paper, we focus on tracking by detection approaches,

due to promising improvements of cell segmentation algorithms [7–11].

At present a vast variety of tracking by detection approaches has been proposed. The most

simplistic approaches use nearest neighbor methods [12, 13] or are based on overlap [14, 15].

Bayesian filters like the Kalman filter [16], particle filter [17–19] or Bernoulli filter [20, 21]

have been adapted for cell tracking as well. Hybrid methods combine simplistic tracking meth-

ods, like nearest neighbors, with more sophisticated tracking methods [22–25]. Furthermore,

deep learning based approaches have been proposed for cell tracking [26, 27]. Graph-based

approaches offer the possibility to model cell behavior such as motion, mitosis or cell death

explicitly [28–36].

Tracks are created by linking segmentation masks over time based on a “linking” measure.

A simple linking measure is the Euclidean distance between the positions of the cell centroids.

Other linking measures are based on handcrafted features, such as position and appearance

[25, 30, 37, 38], features of the cell’s neighborhood [39], features derived from a graph struc-

ture [40], or learned features [18, 19, 26, 27, 41]. The contribution of the extracted features in

the measure is often learned for instance by using logistic regression [30], a structured support

vector machine [42], a random forest [33] or training convolutional neural networks [18, 19].

Besides that, some approaches train additional detectors to detect mitosis [12, 14, 19]. How-

ever, to fit such linking measures to new data sets, annotated data are needed, which requires

additional annotation effort. Using simple, position-based linking measures, in contrast, can

be applied to a vast set of experiments without training.

As tracking by detection methods split tracking and segmentation, a reasonable segmenta-

tion quality of cells is needed for good tracking results. However, segmentation approaches

need to handle challenging imaging conditions such as low signal-to-noise ratio or low con-

trast [6] as well as the wide range of appearance due to different imaging methods and cell

types [5]. Therefore, an error-free segmentation is almost impossible. The resulting segmenta-

tion errors can be classified as False Positives (FP), False Negatives (FN), over-segmentation,

under-segmentation, and wrong partitioning of touching cells [43].

To handle such segmentation errors in tracking by detection methods, two strategies exist:

1) Generating overlapping segmentation masks and selecting the final set of segmentation

masks in the tracking step [31, 32, 34, 36, 42, 44]. 2) Using non overlapping segmentation

masks and detecting and correcting segmentation errors [24, 28, 30, 33, 35, 39, 40, 45–47]. The

first strategy is computationally expensive as several segmentation hypothesis are competing.

For the second strategy, semi-automated methods with manual data curation [45, 46, 48] and

automated methods [24, 28, 30, 33, 35, 39, 40, 47] have been proposed.

While semi-automated methods need manual effort for error correction, automated seg-

mentation correction approaches often require a learning step. For instance, classifiers that

estimate the number of objects per segmentation mask are trained [30, 33], where no objects

correspond to FPs, and more than one object to an under-segmentation error. Another

approach is to train a support vector machine to distinguish mitosis from over-segmentation

[39]. While there are approaches resolving multiple over- or under-segmented cells, they

assume no mitosis events are occurring [40, 47]. To detect FPs, prior knowledge on the length

of mitosis cycle [35], or on the expected track length [24] is used. Also, a two stage tracking is

proposed to first construct short tracks and then resolve segmentation errors in the second

step to yield the final tracks [28]. Besides that, uncertainty information is propagated through

the segmentation and tracking pipeline to improve results [49].
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In summary, current tracking approaches are either simple to apply but need manual error

correction, or are able to correct segmentation errors but have a vast set of parameters to tune

or need additional training data. In this work, we propose a compromise between the two

sides, a simple to apply tracking algorithm, which needs no training and extensive parameter

tuning, yet able to correct certain types of segmentation errors.

The main contributions are: a) We propose a tracking approach able to handle the segmen-

tation errors under- and over-segmentation with more than two objects involved and FN. b)

We make our Python code available as open source https://git.scc.kit.edu/KIT-Sch-GE/

2021-cell-tracking. c) We compare our tracking approach to three other tracking approaches

which performed competitive on the Cell Tracking Challenge (CTC) http://

celltrackingchallenge.net/ [5, 50] and investigate how robust the selected tracking approaches

perform, when the segmentation quality decreases. d) We show that our tracking algorithm

performs well on a vast set of 2D and 3D data sets of the CTC using the same parametrization

of our manually tunable parameters for all data sets.

Materials and methods

In this section, we describe our tracking algorithm, which is able to process 2D and 3D image

sequences, in more detail. To create a tracking by detection algorithm, our proposed tracking

algorithm can be combined with an arbitrary segmentation algorithm, which predicts instance

segmentation masks. Moreover, the tracking can be included in a full image analysis pipeline

which typically consists of sample preparation and imaging, cell segmentation, cell tracking,

and subsequent analysis [51, 52].

Our tracking algorithm is based on the following assumptions: The cell movement is small

compared to the overall image size and the majority of segmentation masks are segmenting

single cells correctly. The cell movement assumption is motivated by the need of a reasonable

temporal resolution of the image sequence for a detailed analysis of cell lineage or cell behav-

ior. The segmentation assumption is motivated by the availability of reasonably well-perform-

ing segmentation approaches [7–11]. Due to potentially occurring segmentation errors, we

refer to segmentation masks as segmented objects and not as cells, as the segmentation masks

can contain an as cell detected artifact, only parts of a cell, a single cell or several cells.

We split the task of cell tracking into three steps: tracklet step, matching step, and post-pro-

cessing step. In the tracklet step, the segmented objects are coarsely followed over time to find

potential objects belonging to the same track. In the matching step, the segmented objects are

assigned to tracks by solving a graph-based optimization problem. The graph models cell

behavior including appearance, disappearance, movement, and mitosis as well as the segmen-

tation errors over- and under-segmentation and FN. Lastly, a post-processing step is applied

to correct segmentation errors. An overview of the tracking pipeline based on an example is

shown in Fig 1.

Step 1: Tracklet step

Based on the cell movement assumption, segmented objects belonging to the same track

should be spatially close between successive time points. Similar as in [9], we define for each

segmented object a rectangular shaped region of interest (ROI), which size is derived from the

average size of the segmentation masks, to find objects which could belong to the same track at

successive time points. The ROI is propagated over time by estimating a displacement between

successive frames using a phase correlation [53]. We consider segmented objects which over-

lap with the propagated ROI as matching candidates which will be linked in the matching step.
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Step 2: Matching step

We model segmented objects and their matching candidates as nodes in a directed graph. The

graph models the cell behavior: appearance, disappearance, movement, and mitosis as well as

the segmentation errors: FNs, under- and over-segmentation. By finding optimal paths

through this graph, the segmented objects are linked over time.

Let G = (V, E) be a directed graph with a set of nodes V ¼ fu; v;w; . . .g and a set of edges

E ¼ fðu; vÞg connecting pairs of nodes u and v. Edges (u, v) are directed, starting from node u
and ending in node v.

Nodes. We define node types to model cell behavior and segmentation errors:

• q−: source node

• q+: sink node

• o�,�: object nodes modeling segmented objects

• s�,�: split nodes modeling mitosis / over-segmentation errors

• m�,�: merge nodes modeling under-segmentation errors

• x�,�: skip nodes modeling FNs

• d�: delete nodes modeling disappearing objects

• a�: appear nodes modeling appearing objects

A specific node in the graph is referred to as vi,t, where v is the node type and i is an unique

identifier referencing a segmented object and t a time point.

Fig 1. Tracking pipeline. Steps of our proposed tracking algorithm based on an input image sequence with erroneous

segmentation data. After processing the image sequence through the tracking pipeline, the cells are tracked and

segmentation errors are corrected. The node IDs in the tracking graph indicate the assigned track ID to the segmented

objects.

https://doi.org/10.1371/journal.pone.0249257.g001
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For each segmented object i at time point t a corresponding object node oi,t is added to the

graph. To link tracks with missing segmentation masks over a maximum time span of Δt, we

add skip nodes for each segmented object from time point t at Δt − 1 successive time points.

For each time point t an appearance node at is added to model appearing objects at time point

t + 1, whereas a delete node dt is added for each time point t to model disappearing objects at

time point t − 1. Mitosis and over-segmentation errors are modeled by adding for each object

node and skip node at time point t a split node si,t+1 at time point t + 1. Under-segmentation

errors are modeled by adding a merge nodemi,t−1 at time point t−1 for each object node and

each skip node at time point t. The source node q− is added before the first time point and a

sink node q+ is added after the last time point of the considered set of time points T .

Edges. The nodes are connected by directed edges to model events, such as linking seg-

mented objects between successive time points. We allow directed edges between the follow-

ing node types, where u: {v, w} means edges starting from node type u can end in the node

types v and w:

• q−: {a�, o�,�}

• q+: {}

• o�,�: {d�,m�,�, o�,�, s�,�, q+, x�,�}

• s�,�: {o�,�}

• m�,�: {d�, o�,�}

• x�,�: {m�,�, o�,�, s�,�, q+, x�,�}

• d�: {q+}

• a�: {d�, o�,�, s�,�}

Fig 2 shows the constructed graph based on the image sequence with erroneous segmenta-

tion from Fig 1.

Connecting all object nodes and skip nodes at time point t naïvely to all other object nodes

at time point t + 1, would result in a quadratically growing number of edges. To reduce the

number of edges in the graph, we use the matching candidates from the tracklet step and con-

nect nodes only to the nodes corresponding with its matching candidates. This is applied to

the split and merge nodes as well, by connecting a split node si,t+1 only to the object nodes at t
+ 1, the object node oi,t or skip node xi,t is connected to. A merge nodemi,t is only connected

to the object nodes and skip nodes at t, the object node oi,t+1 is connected to. A visualization

how nodes are connected is shown in Fig 2. The used costs functions are introduced in more

detail in the following.

Formulation as coupled minimum cost flow problem. In theory the graph could be

spanned over the full time span of an image sequence, however, for data sets with many cells

and time points this would lead to large optimization problems which need to be solved.

Therefore, we solve smaller optimization problems by dividing the image sequence in smaller

time spans and constructing graphs which overlap in time.

In the following, optimal paths through the graph are found by solving a coupled minimum

cost flow problem. Our formulation is most similar to the coupled minimum cost flow prob-

lem [29], which we extend such that many to one and one to many links are possible as well as

introducing skip nodes. Therefore, over- and under-segmentation of two or more objects as

well as missing segmentation masks are modeled in the graph. To find optimal paths through

the graph, a flow variable zf(u, v) is defined for each edge (u, v), where zf ðu; vÞ 2 N0. The
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Fig 2. Matching step. (a) shows a graph constructed from an image sequence with erroneous segmentation. Each segmented object is assigned an

unique ID i. Nodes corresponding to a segmented object share the same ID i, however, depending on the node type these nodes are assigned to

different time points t in the graph. We link segmented objects over a maximum time span of Δt = 2 frames by adding for each object node oi,t a skip

node xi,t+1, which models a missing segmentation mask. The segmented objects are assigned to tracks by finding optimal paths—highlighted in black

—through the graph. (b) visualizes how cell behavior and segmentation errors are modeled in the graph example (a). Annotations c(�, �) on the edges

are assigned edge costs. To model mitosis, edges which are connected to pairs of “daughter” nodes are pairwise coupled—highlighted in green.

https://doi.org/10.1371/journal.pone.0249257.g002
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optimization problem is given as

min
zf ðu;vÞ

X

ðu;vÞ2E

cðu; vÞzf ðu; vÞ

subject to :

gi0 ðzf ðu; vÞÞ ¼ 0; i0 ¼ 0; . . . ;N

hj0 ðzf ðu; vÞÞ � 0; j0 ¼ 0; . . . ;M

ð1Þ

where c(u, v) is a cost and gi0 are equality constraints and hj0 inequality constraints, which will

be introduced in the following.

A flow conservation constraint is added for all nodes apart from source node and sink

node:

X

u2V

zf ðu; vÞ ¼
X

w2V

zf ðv;wÞ: ð2Þ

Flow requirements enforce a flow of a fixed number of units through the graph. We ensure

that each segmented object is assigned to a track, by enforcing a flow of one trough each object

node oi,t and setting the flow from the source node q− to the total number of segmented object

nodes

X

u2V

zf ðq� ; uÞ ¼
X

t02T

jOt0 j;

X

u2V

zf ðu; oi;tÞ ¼ 1;

zf ðq� ; atÞ ¼ jOtþ1j;

ð3Þ

where T is the set of all time points in the graph and jOtj is the number of object nodes at time

point t.
The flow over an edge (u, v) is restricted by a maximum capacity constraint b(u, v):

0 � zf ðu; vÞ � bðu; vÞ: ð4Þ

Edges connected to at least one skip xi,t or object node oi,t have a capacity of one

bðu; oi;tÞ ¼ bðu; xi;tÞ ¼ bðoi;t; vÞ ¼ bðxi;t; vÞ ¼ 1: ð5Þ

To model over- and under-segmentation of more than two objects, the capacity of edges

connecting merge nodesmi,t−1 to delete nodes dt and appear nodes at to split nodes si,t+1

depends on the number of edges ending in the merge node and edges starting from the split

node, respectively:

bðmi;t� 1; dtÞ ¼ jfðv�;t� 1;mi;t� 1Þ j v�;t� 1 connected to mi;t� 1gj;

bðat; si;tþ1Þ ¼ jfðsi;tþ1; v�;tþ1Þ j v�;tþ1 connected to si;tþ1gj:
ð6Þ

The capacity of edges connecting the source node q− to appearance nodes at depends on the

number of segmented objects at time point t + 1, whereas the capacity of edges connecting

delete nodes dt to the sink node q+ depend on the number of segmented objects at time
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points {t − Δt, . . ., t}

bðq� ; atÞ ¼ jOtþ1j;

bðat� 1; dtÞ ¼ jOtj;

bðdt; qþÞ ¼
Xt

t0¼t� Dt

jOt0 j;

ð7Þ

where jOtj is the number of object nodes at time point t. The sum of the capacity constraint b
(dt, q+) results from the added skip nodes which enable linking segmented objects over a maxi-

mum time span Δt. For Δt = 1, no skip nodes are added resulting in bðdt; qþÞ ¼ jOtj þ jOt� 1j,

providing a large upper bound. For Δt = 2 for each object node a skip node is added, allowing

a flow from an object node at t − 2 over its skip node to a merge node at t − 1, which is con-

nected to the delete node dt. To provide a large enough upper bound, the number of object

nodes from time point t − 2 is added to the maximum capacity:

bðdt; qþÞ ¼
Xt

t0¼t� 2

jOt0 j ¼ jOtj þ jOt� 1j þ jOt� 2j:

To model under-segmentation of two or more objects, for each merge nodemi,t−1 the fol-

lowing constraints are added:

zf ðmi;t� 1; oi;tÞ � zf ðmi;t� 1; dtÞ � 0;

zf ðv�;t� 1;mi;t� 1Þ � zf ðmi;t� 1; oi;tÞ � 0 8 v�;t� 1 connected to mi;t:
ð8Þ

Combining Eqs 4 and 8, we derive

0 � zf ðv�;t� 1;mi;t� 1Þ � zf ðmi;t� 1; oi;tÞ � zf ðmi;t� 1; dtÞ:

For a flow zf(v�,t−1,mi,t−1) from a node v�,t−1 to the merge nodemi,t−1 larger than zero, the flow

from the merge node to the object node zf(mi,t−1, oi,t) and the flow from the merge node to the

delete node zf(mi,t−1, dt) need to be at least as large. The flow conservation constraint Eq 2

enforces the same flow into a node and from a node, resulting in a flow of at least two through

the merge nodemi,t−1 or zero.

To model over-segmentation into two or more objects, for each split node the following

constraints are added:

� zf ðat; si;tþ1Þ þ zf ðoi;t; si;tþ1Þ � 0;

� zf ðoi;t; si;tþ1Þ þ zf ðsi;tþ1; v�;tþ1Þ � 0 8 v�;tþ1 connected to si;tþ1:
ð9Þ

Similar to before, we derive by combining Eqs 4 and 9

0 � zf ðsi;tþ1; v�;tþ1Þ � zf ðoi;t; si;tþ1Þ � zf ðat; si;tþ1Þ:

For a flow zf(si,t+1, v�,t+1) from the split node si,t+1 to a node v�,t+1 larger than zero, the flow from

the object node to the split node zf(oi,t, si,t+1) and the flow from the appear node to the split

node zf(at, si,t+1) need to be at least as large. The flow conservation constraint Eq 2 enforces the

same flow into a node and from a node, resulting in a flow of at least two through the split

node si,t+1 or zero.

To distinguish an over-segmentation from a mitosis and assign different cost functions, we

construct all pairs of “daughter” nodes oj,t+1 & ol,t+1 the “mother” node si,t+1 is connected to
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and add pairwise coupled flow variables. We refer to those pairwise coupled flow variables as

zfjlð�; �Þ,where jl refers to the indices of the pair of coupled daughter nodes. From each mother

cell at most one pair of daughter cells can emerge, which is modeled by connecting the split

node si,t+1 to at most two daughter nodes

zfjlðsi;tþ1; oj;tþ1Þ ¼ z
f
jlðsi;tþ1; ol;tþ1Þ:

X

j

X

l
l 6¼ j

zfjlðsi;tþ1; oj;tþ1Þ � 2: ð10Þ

In addition, a split node si,t+1 can either model a mitosis or an over-segmentation. We enforce

this by adding for all pairs of flow variables that correspond to edges starting from si,t+1 an

inequality constraint:

zfjlðsi;tþ1; oj;tþ1Þ � zf ðsi;tþ1; ol;tþ1Þ � 1: ð11Þ

The number of daughter pairs grows quadratically with the number of potential daughter

cells. To reduce the number of pairwise coupled flow variables, we prune the number of poten-

tial mitosis pairs to Nmax = 10 for each segmented object, based on the mitosis cost which is

given in Eq 15.

Cost functions. Compared to other approaches, we choose costs c(u, v) based on posi-

tional features only. We extract for each segmented object based on its segmentation mask the

mask centroid pi,t, a bounding box, and a set of mask points. The bounding box is spanned by

the top left and bottom right coordinates of the segmentation mask i at time point t and con-

tains all points within the spanned rectangle, it will be referred to as Bi;t. The set of mask points

is derived by calculating a distance transformation on the segmentation mask and will be

referred to as Qi;t, where a single point will be referred to as qi,t. A visualization of the extracted

features is shown in Fig 3.

Fig 3. Extracted features to link segmented objects. Shown are two correctly segmented objects at time point t and a

single segmented object due to an under-segmentation error at time point t + 1. To calculate cost terms, for each

segmentation mask i at time point t the mask centroid pi,t—shown as a cross –, a set of mask points Qi;t—shown in a

lighter shade—and a bounding box Bi;t—shown as a rectangle—are extracted. The Euclidean distance between the

mask centroid pj,t+1 and the propagated mask centroid p̂ i;tþ1 is large, which can result in wrong links. The minimal

Euclidean distance between the propagated mask centroid p̂ i;tþ1 and the set of mask points Qj;tþ1, in contrast, is small.

https://doi.org/10.1371/journal.pone.0249257.g003
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The features are propagated over time by updating their position-based features with the

estimated displacement di,�,�, from the tracklet step:

p̂ i;tþ1 ¼ pi;t þ di;t;tþ1;

B̂ i;tþ1 ¼ fbi;t þ di;t;tþ1 j bi;t 2 Bi;tg;

Q̂ i;tþ1 ¼ fqi;t þ di;t;tþ1 j qi;t 2 Qi;tg:

ð12Þ

Costs between object nodes model the movement of an object between successive time

points:

cðoi;t; oj;tþ1Þ ¼ kp̂ i;tþ1 � pj;tþ1k2; ð13Þ

where p̂ i;tþ1 is the estimated mask centroid of object i at time point t + 1 and pj,t+1 the mask

centroid of object j at time point t + 1. The edge costs involving skip nodes are defined as

cðoi;t; xi;tþ1Þ ¼

kpi;t � p̂i;tþ1k2
¼ kdi;t;tþ1k2

if p̂i;tþ1=2Bj;tþ1 8j

y else

8
<

:
;

cðxi;tþ1; xi;tþ2Þ ¼

kp̂i;tþ1 � p̂i;tþ2k2 ¼ kdi;tþ1;tþ2k2 if p̂i;tþ2=2Bj;tþ2 8j

y else

8
<

:
;

cðxi;tþ1; oj;tþ2Þ ¼ kp̂i;tþ2 � pj;tþ2k2
;

ð14Þ

where θ is a large constant.

The mitosis costs for the pairwise coupled flow variables are defined as

c1 ¼ kpi;t �
1

2
ðpj;tþ1 þ pl;tþ1Þk2

;

c2 ¼ jkpi;t � pj;tþ1k2 � kpi;t � pl;tþ1k2j;

c3 ¼ kpj;tþ1 � pl;tþ1k2
;

cjlðsi;tþ1; oj;tþ1Þ ¼ cjlðsi;tþ1; ol;tþ1Þ ¼

( c1 þ c2 if c3 � 1:5bi;t

y else
;

ð15Þ

where bi,t is the length of the diagonal spanned by the top left and bottom right coordinate of

the bounding box. The cost enforce that daughter cells have a similar distance to the mother

cell, their average position is close to the previous position of the mother cell and the distance

between the daughter cells is small. An estimated position of the mother cell is not used, as the

displacement estimation which is based on appearance of image crops is unreliable, when one

image crop shows a single mother cell and the other shows two daughter cells.

In case of over- or under-segmentation, costs based on mask centroids can lead to large

cost terms, as the Euclidean distance between the propagated mask centroid of a correctly seg-

mented object and the mask centroid of merged objects can be large, which is shown in Fig 3.

To better link under- and over-segmented objects to their correctly segmented corresponding

objects at successive time points, we use the set of mask points instead. For over-segmentation
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we define the costs

cðsi;t; oj;tþ1Þ ¼

(
minðfkq̂i;tþ1 � pj;tþ1k2

j q̂i;tþ1 2 Q̂ i;tgÞ if pj;tþ1 2 B̂ i;tþ1

y else
; ð16Þ

where Q̂ i;t is the set of propagated mask points and q̂ i;tþ1 a propagated mask point of the seg-

mented object i at time point t.
For under-segmentation, we define

cðoj;t;mi;tÞ ¼

(minðfkqi;tþ1 � p̂ j;tþ1k2 j qi;tþ1 2 Qi;tþ1gÞ if p̂ j;tþ1 2 Bi;tþ1

y else
; ð17Þ

where p̂ j;tþ1 is the predicted position of the segmented object j at time point t and Qi;tþ1 the set

of mask points of the segmented object i at the next time point t + 1. Appearance costs depend

on a threshold α and the minimum distance of the mask centroid pi,t to the image border

cðat� 1; oi;tÞ ¼ minða;minðminða � pi;tÞ;minðpi;tÞÞÞ; ð18Þ

disappear costs are defined similar

cðoi;t; dtþ1Þ ¼ minða;minðminða � pi;tÞ;minðpi;tÞÞÞ; ð19Þ

where a is the image size and min (min (a − pi,t), min (pi,t)) the minimal distance to the image

border.

We set the parameter θ = 1000α, where α is derived from the largest edge of the default size

of the ROI, which is provided in the section parameter selection. All other edges are assigned 0

cost. An overview of the calculated costs based on the graph example is shown in Fig 2.

To reduce the number of flow variables even further, edges with large costs are pruned. The

formulated problem can be solved using integer linear programming with a standard optimi-

zation toolbox such as Gurobi [54].

The tracking graph is constructed by following the optimal paths through the graph and

assigning segmented objects to tracks if their corresponding object nodes are connected by the

same path. On nodes where several paths start/end, new tracks are created and the predeces-

sor/successor information is kept.

Step 3: Post-processing step

In the post-processing, over- and under-segmentation errors are resolved and missing seg-

mentation masks are added to resolve FNs.

Untangling problem. After the matching step, tracks can be assigned to more than one

predecessor and/or more than two successors as shown in Fig 1. These many to one and one to

many assignments are now resolved, so each track has at most one predecessor and at most

two successors to model mitosis. As the tracks are “untangled”, we will refer to this step as

untangling step. We transform the tracking graph by applying a set of modifications on the

tracking graph which will be referred to as untangling operations: remove an edge, split a

track, and merge tracks. The edge remove operation removes a single predecessor—successor

link. The split operation splits a track into several tracks, whereas the merge tracks operation

merges several tracks resulting in a single track. A visualization of the untangling operations is

shown in Fig 4.

Different combinations of untangling operations lead to valid tracking graphs, which is

shown in Fig 4. The problem is to select a combination of untangling operations, which we
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model as an optimization problem

min
z

X

k

ckzk ð20Þ

where ck are costs and zk variables referring to untangling operations on the graph.

The untangling operations zk are denoted as follows: an edge remove operation will be

denoted as zepn, where the predecessor track is ωp and the successor track is ωn. Splitting a track

ωn into several tracks will be denoted as zsn, whereas merging a set of tracks will be denoted as

zmr , where r is a multi index that indicates a set of tracks.

To merge tracks, the tracks need to: a) share the same predecessors and successors, b) share

the same successors and some tracks have no predecessor but begin after the track with a pre-

decessor starts, or c) share the same predecessors and some tracks have no successors but end

before the track with successors end. Based on the aforementioned conditions, we construct all

possible sets of mergeable tracks.

Moreover, each track should have at maximum one predecessor and at maximum two suc-

cessors. This is modeled by two constraints, one for the predecessor side and one for the suc-

cessor side for each track. The number of predecessors of a track ωn is referred to as jPnj

whereas the number of successors of a track is referred to as jSnj. For each set of tracks r that

can be merged, indicated by zmr , the number of tracks sharing the same set of predecessors as

track ωn is denoted as Pn,r and the number of tracks sharing the same set of successors as track

ωn as Sn,r. Furthermore, for each predecessor track of track ωn all sets of tracks the predecessor

track can be merged with are computed, where the set MðPnÞ consists of all possible sets of

mergeable tracks that contain predecessor tracks of track ωn. Analogously for each successor

track of track ωn all sets of tracks the successor track can be merged with are computed, where

the set MðSnÞ consists of all possible sets of mergeable tracks that contain successor tracks of

track ωn.
For each track we add one inequality constraint to enforce at most one predecessor and one

inequality constraint to enforce at most two successors. As the modification of one track

Fig 4. Untangling problem. The tracking graph is modified by applying untangling operations (a) such that each track

has at most one predecessor and at most two successors—to model cell division. Different combinations of untangling

operations, however, all lead to valid tracking graphs (b). We model the problem of selecting a set of untangling

operations as an optimization problem and choose the set of untangling operations that induces the fewest

modifications on the graph—highlighted in green.

https://doi.org/10.1371/journal.pone.0249257.g004
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influences also its predecessors and successors, the predecessor inequality also includes the

untangling operations on the predecessor tracks, whereas the successor inequality includes the

untangling operations on the successor tracks. Furthermore, as tracks can be linked to more

than one predecessor and more than two successors, the tracks which share the same predeces-

sors or successors need to be considered in the inequality constraints as well. The predecessor

inequality constraint for track ωn is given as:

X

r2Mr

ðPn;r � 1Þzmr
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{

merge tracks

�
X

w2Wn

zsw
zfflfflffl}|fflfflffl{
split tracks

�
X

w2Wn

X

p2Pw

zepw
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

remove edges to predecessors

þ
X

p2Pn

zsp
|fflffl{zfflffl}

split predecessors

þ
X

q2MðPnÞ

minð0; � Sq;n þ 1Þzmq
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

merge predecessors

� � jPnj þmaxð1; jfSp j p 2 PngjÞ;

ð21Þ

where r and q are multi indices referring to sets of mergeable tracks and w and p are indices

referring to a single track. The variables to be optimized are the merge track variables zmr and

zmq , the split track variables zsw and zsp, and the edge remove variables zepw, where zmr denotes

merging the set of tracks r into a single track, zsw denotes splitting the track ωw into several

tracks, and zepw denotes removing the predecessor-successor link between the predecessor track

ωp and the successor track ωw. The set Mn contains all sets of tracks that can be merged with

the track ωn, Pn,r is the number of tracks of the set of mergeable tracks r that share the same

predecessors as ωn, Wn is a set which contains all tracks, including ωn, that can be merged with

track ωn. jPnj is the number of predecessors of track ωn, whereas Pw is the set of predecessors

of track ωw. Sq,n is the number of tracks of the set of mergeable tracks q that have track ωn as a

successor. The total number of successors of the predecessors of track ωn is given by

jfSp j p 2 Pngj.

The successor inequality constraint is given as:

X

r2Mn

ðSn;r � 1Þzmr
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{

merge tracks

�
X

w2Wn

zsw
zfflfflffl}|fflfflffl{
split tracks

�
X

w2Wn

X

v2Sw

zswv
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

remove edges to successors

þ
X

v2Sn

zsv
|fflffl{zfflffl}

split successors

þ
X

q2MðSnÞ

minð0; � Pq;n þ 1Þzmq
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

merge successors

� � jSnj þ 2jfPv j v 2 Svgj þ 1;

ð22Þ

where r and q are multi indices referring to sets of mergeable tracks and w and v are indices

referring to a single track. The variables to be optimized are the merge tracks variables zmr and

zmq , the split track variables zsw and zsv, and the edge remove variables zewv, where zmr denotes

merging the set of tracks r into a single track, zsw denotes splitting the track ωw into several

tracks, and zewv denotes removing the predecessor-successor link between the predecessor track

ωw and the successor track ωv. The set Mn contains all sets of tracks that can be merged with

the track ωn, Sn,r is the number of tracks of the set of mergeable tracks r that share the same

successors as track ωn, Pq,n is number of tracks of the set of mergeable tracks q that have track

ωn as a predecessor, and Wn is a set which contains all tracks, including ωn, that can be merged

with track ωn. jSnj is the number of successors of track ωn, whereas Sw is the set of successors

of track ωw. Pq,n is the number of tracks of the set of mergeable tracks q that have track ωn as a

predecessor. The total number of predecessors of the successors of track ωn is given by

jfPv j v 2 Svgj.
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A track can be merged with at most one set of tracks r, which we model by adding for each

track a constraint

X

r2Mr

zmr � 1: ð23Þ

In addition, if a set of tracks is to be merged, their edge remove operations are coupled, such

that for merged tracks either all edges are removed on the predecessor or successor side or

none. To enforce this, we construct from each set of mergeable tracks r all pairs of tracks

which share a predecessor or successor and add two constraints

zepv � z
e
pn � � zmr þ 1;

� zepv þ z
e
pn � � zmr þ 1;

ð24Þ

where r = {n, v, . . .} and the tracks ωn and ωv share the predecessor track ωp. The merge tracks

and edge remove variables are constraint to be binary variables, whereas the split variables are

of integer type to provide the number of tracks a track will be split into.

Predecessor and successor inequality constraints example. We illustrate the setup of the

proposed inequality constraints from Eqs 21 and 22 for the track with track ID 5 from the

tracking graph shown in Fig 4. The track is connected to three predecessor tracks with the

track IDs 2, 3, 4 and two successor tracks with the track IDs 6 and 7. As the track does not

share its predecessors or successors with other tracks, there are no tracks the track can be

merged with, therefore, the set containing all sets of mergeable tracks is M5 ¼ fg and

W5 ¼ f5g. The set of predecessor tracks is P5 ¼ f2; 3; 4g and jP5j ¼ 3, whereas the set of suc-

cessor tracks is S5 ¼ f5; 6g and jS5j ¼ 2.

The set containing all possible sets of mergeable tracks that contain predecessor tracks is

MðP5Þ ¼ ff2; 3g; f2; 4g; f3; 4g; f2; 3; 4gg, whereas the set containing all possible sets of

mergeable tracks that contain successor tracks is MðS5Þ ¼ ff6; 7gg. The predecessors of

track 5 have only one successor, which is track 5, resulting in jfSp j p 2 P5gj ¼ 1. The succes-

sor tracks of track 5 have only one predecessor, which is track 5, resulting in

jfPv j v 2 S5gj ¼ 1.

By merging predecessor tracks or successor tracks into a single track, the number of prede-

cessors or successors a track is connected to changes. The change in the number of predeces-

sors or successors if sets of them are merged is represented by the terms (Pn,r − 1) and min(0,

−Sq,n + 1) from Eq 21, and (Sn,r − 1) and min(0, −Pq,n + 1) in Eq 22. For example, by merging

the tracks {2, 3, 4} into a single track, which is modeled by zm
f2;3;4g

, two predecessor links of

track 5 are removed, as now instead of three predecessor tracks only one predecessor track is

connected to it. Therefore, zm
f2;3;4g

is multiplied by a factor of 2.

After inserting the terms in the inequality constraints, we derive for the predecessor

inequality constraint of track 5

0
z}|{

merge tracks

� zs
5

z}|{
split tracks

� ðze
2;5
þ ze

3;5
þ ze

4;5
Þ

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{
remove edges to predecessors

þzs
2
þ zs

3
þ zs

4|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
split predecessors

� 2zm
f2;3;4g

� zm
f2;3g
� zm

f2;4g
� zm

f3;4g
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

merge predecessors

� � 3þ 1 ¼ � 2;
ð25Þ
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and for the successor inequality constraint

0
z}|{

merge tracks

� zs
5

z}|{
split tracks

� ðze
5;6
þ ze

5;7
Þ

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{
remove edges to successors

þ zs
6
þ zs

7|fflfflffl{zfflfflffl}
split successors

� zm
f6;7g

|fflfflffl{zfflfflffl}
merge successors

� � 2þ 2þ 1 ¼ 1:
ð26Þ

The successor inequality constraint Eq 26 is fulfilled without applying untangling operations,

as the right hand side of the inequality constraint is 1. However, untangling operations need to

be applied so the predecessor inequality constraint Eq 21 holds, as the right hand side of the

inequality constraint is −2. This makes sense, as track 5 has three predecessors and two succes-

sors and the aim of the untangling step is to transform the tracking graph such that each track

has at most one predecessor and at most two successors.

Untangling costs. The untangling costs can be chosen arbitrarily. Here we propose simple

cost terms based on the temporal length and number of merged tracks:

cepn ¼ g;

cmr ¼ DorðNr � 1Þ;

csn ¼ Don;

ð27Þ

where cepn is the cost of removing the edge between the tracks ωp and ωn, cmr is the cost of merg-

ing the set of tracks r, csn is the cost of splitting track ωn, γ is a constant, Nr is the number of

merged tracks, Δωn is the temporal length of the track ωn and Δωr is the temporal length of the

track after merging, respectively. For the chosen cost functions, merging K tracks or splitting a

track in K parts over the same time span, results in the same change of the value of the objec-

tive function. In theory, over- and under-segmentation errors can be resolved by only applying

merging and splitting of tracks. However, there can be constellations where removing edges

provides better tracking results, for instance due to a wrong link assigned in the matching step.

To define a cut off when removing edges is more beneficial than modifying tracks, we set γ to

2dΔt0.3ΔN0.99e, where Δt0.3 is the 0.3 quantile of the track length and ΔN0.99 the 0.99 quantile of

the number of predecessors/successor links per track.

The set of untangling operations is selected by solving an integer linear program using a

standard optimization toolbox such as Gurobi [54]. After solving the optimization problem,

the untangling operations are applied to the selected tracks. Tracks are split by computing for

each mask zsn seed points, where zsn is the value of the split variable from the optimization prob-

lem. Based on the seed points, a nearest neighbor approach is applied to the mask and each

mask pixel is assigned to the closest seed point, resulting in zsn segmentation masks. To merge

tracks, their segmentation masks are concatenated for each time point.

FN correction. Finally, we correct FN errors by adding segmentation masks to tracks with

missing segmentation masks. We place the last available segmentation mask, before a FN error

occurs, at positions computed from a linear interpolation between the available segmentation

masks. In image sequences with touching cells, adding masks can lead to conflicts, where an

interpolated mask overlaps with another segmentation mask. We resolve those mask conflicts

by assigning conflicting pixels to the segmentation mask with the closest centroid.

PLOS ONE Graph-based cell tracking with few manually tunable parameters and segmentation error correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249257 September 7, 2021 15 / 28

https://doi.org/10.1371/journal.pone.0249257


Data sets

We select the cell data sets Fluo-N2DH-SIM+ and Fluo-N3DH-SIM+ from the CTC [5, 50] for

evaluation, as they are publicly available and provide a fully annotated ground truth, i.e. seg-

mentation masks are given for all cells as well as the cell lineage. Both cell data sets show syn-

thetically generated human leukemia cells, where Fluo-N2DH-SIM+ is a 2D data set and Fluo-

N3DH-SIM+ is a 3D data set. Per data set two image sequences are available which will be

referred to as sequence 01 and 02. Statistics of the chosen data sets are shown in Table 1.

Simulation of segmentation errors. We modify a fixed fraction of n% of the ground

truth segmentation masks, to simulate data sets with an erroneous segmentation. We model

the segmentation errors FNs, under- and over segmentation, and the combination of the afore-

mentioned segmentation errors. FNs are simulated by removing segmentation masks ran-

domly, the resulting data sets are referred to as “FN error”. Over-segmentation is simulated by

splitting segmentation masks randomly in two parts and is referred to as “over-segmentation

error”. Under-segmentation is simulated by selecting neighboring segmentation masks ran-

domly and merging them to a single mask by applying a morphological closing operation.

Data sets showing this error type will be referred to as “under-segmentation error”. Further-

more, the error types are mixed by combining FN, under- and over-segmentation errors

equally so in total n% of the segmentation masks are modified, which is referred to as “mixed

error”.

FN and over-segmentation errors are simulated by drawing uniformly from the set of seg-

mentation masks until a fraction of n% of the ground truth masks is modified. Under-segmen-

tation errors, in contrast, are sampled by constructing neighbor pairs of segmentation masks

and assigning them a sampling weight proportional to their distance. As a result, cells with a

smaller distance have a higher probability to be merged, which is also the case in real segmen-

tation data. Segmentation masks are merged iteratively until a fraction of n% of the ground

truth masks is merged, also allowing more than two cells to be merged.

For each cell data set and image sequence we modify n = 1, 2, 5, 10, 20% of the ground truth

masks and generate N = 5 runs for each defined segmentation error which results in a total of

400 data sets for evaluation. A visualization of a raw image with corresponding ground truth

and simulated segmentation errors is shown in Fig 5.

Evaluation measure

We evaluate the segmentation and tracking performance using the SEG, TRA, and DET mea-

sure [5] from the CTC. The SEG measure is the Jaccard similarity index, which is the quotient

of the intersection of segmentation and ground truth over the union of the two. In the TRA

measure, graphs are constructed from the ground truth and the tracking data. Nodes in these

graphs represent segmented objects, whereas edges represent links between the segmented

Table 1. Statistics of cell data sets. Information about the number of frames, tracks and cells of the CTC data sets.

Data Set Fluo-N2DH-SIM+ Fluo-N3DH-SIM+

Sequence 01 02 01 02

N frames 65 150 150 80

N tracks 95 107 81 117

avg. number of cells/frame 40 22 19 43

min number of cells/frame 30 8 6 30

max number of cells/frame 47 54 43 55

https://doi.org/10.1371/journal.pone.0249257.t001
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objects over time. The tracking data graph is transformed into the ground truth graph by

applying untangling operations: add/remove/split node, add/remove an edge and edit the edge

semantic. Each graph operation results in a penalty, where adding nodes (FN) is penalized the

most. The final measure is normalized between 0 and 1, where 1 means that ground truth

graph and tracking data graph match perfectly. The DET measure is constructed similarly as

the TRA measure, however, the penalties for modifying edges are set to zero.

Compared tracking algorithms

We select three tracking by detection approaches from former CTC participants to compare

our approach with: Mu-Lux-CZ, KIT-Sch-GE(1), and KTH-SE (http://celltrackingchallenge.

net/participants/). All approaches provide an implementation which we used for comparison.

The MU-Lux-CZ algorithm [15] is an overlap-based approach for 2D, which we extended to

3D. The tracking algorithm links segmentation masks between successive frames if their over-

lap is larger than a fixed threshold. Due to the simplicity of the algorithm, no automatic seg-

mentation error correction is available. The KIT-Sch-GE(1) algorithm [9, 55] implements a

coupled minimum cost flow algorithm which is capable to detect mitosis and handles FNs for

short time spans. The KTH-SE algorithm [30, 56] uses the Viterbi algorithm to link cells. It

includes segmentation error correction for FP, FN, over- and under-segmentation.

Compared to the tracking algorithm of Scherr et al. (Team KIT-Sch-GE(1) in CTC) [9, 55],

our proposed tracking models FNs as skip nodes as well as over- and under-segmentation of

two or more objects. Moreover, we propose different costs and the untangling post-processing

step to correct segmentation errors automatically.

Fig 5. Simulated segmentation errors. Shown is a raw image of the Fluo-N2DH-SIM+ 01 data set with corresponding

ground truth segmentation masks and modified segmentation masks with simulated segmentation errors, highlighted

with white arrows.

https://doi.org/10.1371/journal.pone.0249257.g005
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Parameter selection

For the tracking approaches MU-Lux-CZ, KIT-Sch-GE(1), and KTH-SE we kept the same

parameters as provided by their CTC submission, and only modified the algorithms such that

they use the provided erroneous segmentation masks instead of using their own segmentation.

For our tracking algorithm we manually set two parameters: Δt, and the default ROI size.

We set Δt = 3 and the default ROI size to twice of the average segmentation mask size. All

other parameters are estimated automatically from the data or are based on these two

parameters.

Results

Post-processing analysis

We investigate the influence of the post-processing steps, untangling tracks and FN correction,

by modifying the post-processing step, while keeping all other steps the same. The FN correc-

tion step is replaced by creating short tracks without a predecessor for each track with missing

masks, as the TRA measure yields for tracks with missing masks an error during TRA score

computation. The untangling step is replaced by removing predecessor information of tracks

with more than one predecessor and removing successor information of tracks with more

than two successors. In the following, we will refer to the untangling step as untangle and the

FN correction step as masks.

For under- and over-segmentation errors, tracking approaches without the untangling step,

indicated by untangle, perform worse as shown in Fig 6a and 6b for 2D and in Fig 7a and 7b

for 3D data sets. On data sets with FN errors, tracking approaches without the FN correction

step, indicated by masks, perform worse which is shown for 2D data sets in Fig 6c and for 3D

data sets in Fig 7c. When combining different segmentation error types, applying both post-

processing steps performs best, which is shown in Figs 6d and 7d. Compared to segmentation

only (No Tracking), the segmentation measures DET and SEG shown in Figs 6 and 7 increase

after applying the tracking with the corresponding correction step in the post-processing.

Tracking performance comparison

We compare the performance of our proposed approach including the proposed post-process-

ing to the tracking approaches of KTH-SE, KIT-Sch-GE(1), and MU-Lux-CZ on erroneous

segmentation data. The results are shown in Fig 8 for 2D data sets and in Fig 9 for 3D data sets.

For under-segmentation errors, our approach performs best, as shown in Figs 8b and 9b.

On data sets with over-segmentation errors, our approach and the KTH-SE approach perform

similarly, which is shown in Figs 8a and 9a. Both approaches lead to an increase in the segmen-

tation measures SEG and DET on data sets with over-segmentation errors; applying the

KTH-SE approach on any other type of erroneous segmentation leads to a decrease in the seg-

mentation measures. In case of FN errors, our approach and the KIT-Sch-GE(1) approach per-

form similarly, as shown in Figs 8c and 9c. Also, both approaches yield higher scores in the

segmentation measures DET and SEG compared to applying no tracking at all. For data sets

with a combination of segmentation error types, our approach outperforms all other

approaches, as shown in Figs 8d and 9d.

Run-time comparison

We compare the run-time of the tracking algorithms when provided with perfect, ground

truth segmentation data and when provided with erroneous segmentation data. As erroneous

segmentation we choose the 20% mixed error segmentation data. We evaluated all tracking
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algorithms on a desktop computer with an Intel Core i7–6700 processor and 64GB of RAM

running Python 3.7 and MATLAB 2018b in Windows 10.

For the KTH-SE algorithm, which is implemented in MATLAB, we used the tic/toc
functionality of MATLAB for benchmarking, whereas for all other algorithms, which are

implemented in Python, we used the default_timer of the timeit package. The run-

times are shown in Table 2. The results show that the proposed method can track 2D and 3D

data sets in reasonable times.

Fig 6. Influence of the post-processing on Fluo-N2DH-SIM+ 01. Scores of a single run are shown as circles, while + shows a CTC measure score

averaged overN = 5 runs. Per run a fixed fraction of ground truth segmentation masks is modified randomly to simulate segmentation errors.

“untangle” refers to the untangling step, which transforms the tracking graph such that each track has at most one predecessor and two successors,

whereas “masks” refers to adding missing segmentation masks. Over lined post-processing steps ð. . .Þ indicate that the post-processing step is missing.

https://doi.org/10.1371/journal.pone.0249257.g006
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Evaluation on the Cell Tracking Challenge

We evaluated the performance of our tracking algorithm on the 6th edition of the CTC. For

segmentation, we chose a deep learning based segmentation approach which utilizes cell and

neighbor distances [9, 57]. The derived segmentation masks and the raw image sequence were

fed into our tracking algorithm. As described on the parameter selection section, we chose the

same parametrization of the two manually tunable parameters for all data sets. The results of

Fig 7. Influence of the post-processing on Fluo-N3DH-SIM+ 01. Scores of a single run are shown as circles, while + shows a CTC measure score

averaged overN = 5 runs. Per run a fixed fraction of ground truth segmentation masks is modified randomly to simulate segmentation errors.

“untangle” refers to the untangling step, which transforms the tracking graph such that each track has at most one predecessor and two successors,

whereas “masks” refers to adding missing segmentation masks. Over lined post-processing steps ð. . .Þ indicate that the post-processing step is missing.

https://doi.org/10.1371/journal.pone.0249257.g007
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the Cell Tracking Benchmark as team KIT-Sch-GE(2), with several top 3 ranks, are shown in

Table 3.

Discussion

Our proposed tracking method can correct the segmentation errors FN, under- and over-seg-

mentation and yields a good tracking quality while having a reasonable run-time. The pro-

posed post-processing with untangling step and FN correction improves in most cases the

Fig 8. Comparing tracking algorithms on Fluo-N2DH-SIM+ 01. Shown are the CTC measure scores DET, SEG, and TRA of tracking algorithms on

2D data set Fluo-N2DH-SIM+ 01 when provided with the same erroneous segmentation data. Scores of a single run are shown as circles, while + shows

a CTC measure score averaged over N = 5 runs.

https://doi.org/10.1371/journal.pone.0249257.g008
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tracking and segmentation measure scores. However, when correcting FN errors on the 3D

data set, shown in Fig 7c, we observe that applying both post-processing steps, referred to as

untangle+ masks, performs worse compared to just applying the mask interpolation step,

referred to as untangle þmasks. We examined the TRA score in more detail and found that

the scores of the untangle+ masks post-processing had more FPs. In some cases if a segmenta-

tion mask is missing and another segmentation mask is spatially close, the track with missing

segmentation masks is linked to the spatially close track in the matching step, which is then

Fig 9. Comparing tracking algorithms on Fluo-N3DH-SIM+ 01. Shown are the CTC measure scores DET, SEG, and TRA of tracking algorithms on

3D data set Fluo-N2DH-SIM+ 01 when provided with the same erroneous segmentation data. Scores of a single run are shown as circles, while + shows

a CTC measure score averaged over N = 5 runs.

https://doi.org/10.1371/journal.pone.0249257.g009
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linked to two segmentation masks a few time points later when the object is segmented again.

As a result the spatially close track has two predecessors assigned, which is resolved in the

untangling step of the post-processing by splitting the track. In the TRA score this behavior is

reported as FPs. An approach to resolve this, is using more complex cost functions in the

untangling and the matching step, which for instance include information on the cell

appearance.

All tracking approaches do not reach perfect measure scores of 1 on data sets with reduced

segmentation quality. However, our approach is able to correct different types of segmentation

errors, indicated by the increase of the segmentation scores DET and SEG compared to no

tracking, without needing training data, a large set of parameters or extensive parameter tun-

ing. Especially on data sets with a mixture of segmentation errors, our proposed method

showed its potential as an “allrounder” method. To further improve tracking results, a manual

correction step can be applied. The similar performance of our approach and the KIT-Sch-GE

(1) approach, shown in Figs 8c and 9c, is due to the capability of both approaches to link tracks

with missing masks over a maximum time span Δt, where both approaches set Δt = 3. Applying

the MU-Lux-CZ tracking does not change the DET and SEG scores compared to applying no

tracking, as this algorithm only links segmentation masks without any segmentation error cor-

rection. To our surprise the in the CTC [50] well-performing approach of KTH-SE drops in

Table 2. Run-times of tracking algorithms. Run times of the tracking algorithms on 2D and 3D data sets when provided with perfect ground truth (GT) segmentation as

well as when provided with erroneous segmentation data.

Tracking Algorithm Data Sets

Fluo-N2DH-SIM+ 01 Fluo-N3DH-SIM+ 01

GT Erroneous GT Erroneous

Proposed 21.82 s 22.94 s 1238.38 s 1179.69 s

MU-Lux-CZ 25.79 s 26.65 s 1055.12 s 1047.86 s

KTH-SE 39.73 s 44.22 s 523.84 s 404.34 s

KIT-Sch-GE(1) 15.11 s 19.56 s 1004.63 s 1585.43 s

https://doi.org/10.1371/journal.pone.0249257.t002

Table 3. Cell Tracking Benchmark (CTB) results (6th CTC edition). Top 3 rankings as team KIT-Sch-GE(2) in the overall performance measure OPCTB—average of SEG

and TRA scores—are written in bold. The latest CTB leader board is available on the CTC website. State of the results: May 10th 2021.

Data Set SEG TRA Ranking TRA OPCTB Ranking OPCTB

BF-C2DL-HSC 0.818 0.984 1 0.901 1

BF-C2DL-MuSC 0.777 0.967 3 0.872 1

DIC-C2DH-HeLa 0.778 0.918 7 0.848 8

Fluo-C2DL-MSC 0.617 0.749 4 0.683 3

Fluo-C3DH-A549 0.849 1.000 1 0.925 1

Fluo-C3DH-H157 0.878 0.980 2 0.929 2

Fluo-C3DL-MDA231 0.710 0.884 1 0.797 1

Fluo-N2DH-GOWT1 0.850 0.938 9 0.894 13

Fluo-N2DL-HeLa 0.883 0.993 1 0.938 10

Fluo-N3DH-CE 0.642 0.901 3 0.772 5

Fluo-N3DH-CHO 0.833 0.906 8 0.869 7

PhC-C2DH-U373 0.876 0.975 9 0.925 10

PhC-C2DL-PSC 0.743 0.967 1 0.855 1

Fluo-N2DH-SIM+ 0.801 0.962 8 0.881 5

Fluo-N3DH-SIM+ 0.759 0.972 1 0.865 1

https://doi.org/10.1371/journal.pone.0249257.t003
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performance when provided with segmentation data which include under-segmentation and/

or FN errors. We examined the predicted tracking masks and observed that the approach

removes some segmentation masks. Besides removing merged segmentation masks, some-

times also masks without added segmentation errors are removed by the tracking algorithm.

In the TRA and DET measure, FN errors are penalized twice as much as not resolving an

under-segmentation error. Hence, the MU-Lux-CZ approach, which applies no modification

on the segmentation masks at all, performs better than the KTH-SE approach on all data sets

which add FN errors and/or under-segmentation errors.

On the CTB, our tracking algorithm ranks several times within the top three without any

manual parameter adaption. The difference in the ranking between OPCTB and TRA measure

are due to the influence of the SEG measure—measuring how well ground truth mask and seg-

mented masks align—on the OPCTB. Improving the SEG score through the tracking—by split-

ting, merging, or adding segmentation masks—is only possible if the overall shapes of ground

truth masks and segmented masks align well. Penalties in the SEG score by too large or too

small segmentation masks can usually not be corrected by the tracking in a tracking by detec-

tion approach.

We would like to emphasize that the tracking performance depends on the instance seg-

mentation which in turn depends on the image quality. To reduce the dependence on the

image quality, the image quality can be improved substantially by applying image restoration

methods before segmentation [58, 59]. In addition, instance segmentation approaches applica-

ble to a broad range of imaging conditions exist [60]. While our tracking approach can be

combined with an arbitrary instance segmentation approach, different instance segmentation

approaches can be prone to different types and quantities of segmentation errors. Our results

on simulated, erroneous segmentation data show, that our tracking algorithm can correct cer-

tain types of randomly occurring segmentation errors, however, with decreasing segmentation

quality the tracking quality decreases as well.

In general, the tracking performance also depends on the temporal resolution of the image

sequence. If the temporal resolution is high with respect to the cell movements—cell move-

ments are small between frames with respect to the cell size—simple, nearest neighbor assign-

ment is sufficient [61]. However, when the temporal resolution is restricted, e.g. to avoid

photodamage, large cell movements between successive frames are possible. To assign the seg-

mented cells correctly, more advanced approaches, such as graph-based approaches, are

needed. As the results of the CTC show, our position-based costs perform well on a broad set

of real world cell data sets, however, there are scenarios which will result in wrong assign-

ments. For instance, consider two cells at time point t which have swapped their positions at

time t+ 1, which is impossible to detect using position-based costs. To resolve such cases, the

tracking costs can be adapted using more complex features based on texture or morphology of

single cells [25, 30, 37].

Conclusion

We proposed a graph-based tracking approach with automatic correction of FN and under-/

over-segmentation errors of two or more segmented objects. Our approach neither needs

training data to learn cost functions nor has a vast set of parameters that need manual tuning.

We investigated the performance of our approach on a 2D and a 3D cell data set with syntheti-

cally degraded segmentation masks simulating FN, under-segmentation, over-segmentation

and a combination of the aforementioned segmentation errors. We evaluated the tracking per-

formance using the CTC measures DET, SEG, and TRA. For a fair comparison, we compared

the performance of our tracking approach against three other tracking methods on the same
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erroneous segmentation data. Our proposed tracking algorithm is capable to correct certain

types of segmentation errors without requiring additional training steps or parameter tuning

automatically. Furthermore, on data sets with under-segmentation or a combination of differ-

ent segmentation errors, our approach outperformed all other approaches, especially a param-

eter heavy tracking algorithm with automated segmentation error correction.

Evaluated on a diverse set of 2D and 3D cell data sets from the CTC, our proposed tracking

algorithm performed competitively without manual fine-tuning, showing its potential as a

strong tracking baseline. Directions of future work could be incorporation of more complex

cost functions for the matching and the untangling step, using more enhanced methods for

the position estimation step, and application to other data sets. We envision that the steady

improvement of automated cell tracking approaches concerning the accuracy, run time, and

ease of applicability will lead to powerful tools to analyze cell behavior quantitatively. The

derived insights on the cell behavior can then help to deepen our understanding of the mecha-

nisms influencing cell migration or, for instance, how cell migration and the formation of

structures depend on each other.
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8. Falk T, Mai D, Bensch R, Çiçek O, Abdulkadir A, Marrakchi Y, et al. U-Net: deep learning for cell count-

ing, detection, and morphometry. Nature Methods. 2019; 16(1):67–70. https://doi.org/10.1038/s41592-

018-0261-2 PMID: 30559429
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36. Akram SU, Kannala J, Eklund L, Heikkilä J. Joint cell segmentation and tracking using cell proposals.

In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI); 2016. p. 920–924.

37. Versari C, Stoma S, Batmanov K, Llamosi A, Mroz F, Kaczmarek A, et al. Long-term tracking of budding

yeast cells in brightfield microscopy: CellStar and the evaluation platform. Journal of The Royal Society

Interface. 2017; 14(127):20160705. https://doi.org/10.1098/rsif.2016.0705 PMID: 28179544

38. Dewan MAA, Ahmad MO, Swamy MNS. Tracking biological cells in time-lapse microscopy: An adaptive

technique combining motion and topological features. IEEE Transactions on Biomedical Engineering.

2011; 58(6):1637–1647. https://doi.org/10.1109/TBME.2011.2109001 PMID: 21278009

39. Li F, Zhou X, Ma J, Wong STC. Multiple nuclei tracking using integer programming for quantitative can-

cer cell cycle analysis. IEEE Transactions on Medical Imaging. 2010; 29(1):96–105. https://doi.org/10.

1109/TMI.2009.2027813 PMID: 19643704

PLOS ONE Graph-based cell tracking with few manually tunable parameters and segmentation error correction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249257 September 7, 2021 27 / 28

https://doi.org/10.1007/s00521-017-3291-2
http://www.ncbi.nlm.nih.gov/pubmed/31751247
https://doi.org/10.1186/1471-2105-15-217
http://www.ncbi.nlm.nih.gov/pubmed/24964866
https://doi.org/10.1109/TCBB.2018.2875684
http://www.ncbi.nlm.nih.gov/pubmed/30334766
https://doi.org/10.1016/j.media.2019.06.015
https://doi.org/10.1016/j.media.2019.06.015
http://www.ncbi.nlm.nih.gov/pubmed/31299493
https://doi.org/10.1038/nmeth.1237
https://doi.org/10.1038/nmeth.1237
http://www.ncbi.nlm.nih.gov/pubmed/18641657
https://doi.org/10.1016/j.media.2010.07.006
https://doi.org/10.1016/j.media.2010.07.006
http://www.ncbi.nlm.nih.gov/pubmed/20864383
https://doi.org/10.1109/TMI.2014.2370951
https://doi.org/10.1109/TMI.2014.2370951
http://www.ncbi.nlm.nih.gov/pubmed/25415983
https://doi.org/10.1016/j.media.2018.04.006
http://www.ncbi.nlm.nih.gov/pubmed/29747154
https://doi.org/10.1109/TMI.2016.2640859
https://doi.org/10.1109/TMI.2016.2640859
http://www.ncbi.nlm.nih.gov/pubmed/28029619
https://doi.org/10.1093/bioinformatics/btu764
https://doi.org/10.1093/bioinformatics/btu764
http://www.ncbi.nlm.nih.gov/pubmed/25406328
https://doi.org/10.1098/rsif.2016.0705
http://www.ncbi.nlm.nih.gov/pubmed/28179544
https://doi.org/10.1109/TBME.2011.2109001
http://www.ncbi.nlm.nih.gov/pubmed/21278009
https://doi.org/10.1109/TMI.2009.2027813
https://doi.org/10.1109/TMI.2009.2027813
http://www.ncbi.nlm.nih.gov/pubmed/19643704
https://doi.org/10.1371/journal.pone.0249257


40. Narayanaswamy A, Merouane A, Peixoto A, Ladi E, Herzmark P, Von Andrian U, et al. Multi-temporal

globally-optimal dense 3-D cell segmentation and tracking from multi-photon time-lapse movies of live

tissue microenvironments. In: Durrleman S, Fletcher T, Gerig G, Niethammer M, editors. Spatio-tempo-

ral Image Analysis for Longitudinal and Time-Series Image Data. Berlin, Heidelberg: Springer Berlin

Heidelberg; 2012. p. 147–162.

41. Hayashida J, Nishimura K, Bise R. MPM: Joint representation of motion and position map for cell track-

ing. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2020.

p. 3822–3831.

42. Jiuqing W, Xu C, Xianhang Z. Cell tracking via structured prediction and learning. Mach Vision Appl.

2017; 28(8):859–874. https://doi.org/10.1007/s00138-017-0872-0
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52. Eliceiri KW, Berthold MR, Goldberg IG, Ibáñez L, Manjunath BS, Martone ME, et al. Biological imaging soft-

ware tools. Nature Methods. 2012; 9(7):697–710. https://doi.org/10.1038/nmeth.2084 PMID: 22743775

53. Kuglin CD, Hines DC. The phase correlation image alignment method. In: Proceedings of the IEEE

International Conference on Cybernetics and Society; 1975. p. 163–165.

54. Gurobi Optimization L. Gurobi Optimizer Reference Manual; 2021. Available from: http://www.gurobi.com.
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