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Glioblastoma represents the most devastating form of human brain cancer, associated
with a very poor survival rate of patients. Unfortunately, treatment options are currently
limited and the gold standard pharmacological treatment with the chemotherapeutic drug
temozolomide only slightly increases the survival rate. Experimental studies have shown
that the efficiency of temozolomide can be improved by inducing ferroptosis – a recently
discovered form of cell death, which is different from apoptosis, necrosis, or necroptosis
and, which is characterized by lipid peroxidation and reactive oxygen species
accumulation. Ferroptosis can also be activated to improve treatment of malignant
stages of neuroblastoma, meningioma, and glioma. Due to their role in cancer
treatment, ferroptosis-gene signatures have recently been evaluated for their ability to
predict survival of patients. Despite positive effects during chemotherapy, the drugs used
to induce ferroptosis – such as erastin and sorafenib – as well as genetic manipulation of
key players in ferroptosis – such as the cystine-glutamate exchanger xCT and the
glutathione peroxidase GPx4 – also impact neuronal function and cognitive capabilities.
In this review, we give an update on ferroptosis in different brain tumors and summarize
the impact of ferroptosis on healthy tissues.
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INTRODUCTION

Ferroptosis is as an iron-dependent form of cell death, which is different from previously known
forms of cell death such as apoptosis, necrosis, or necroptosis. It is characterized by the
accumulation of reactive oxygen species (ROS) and lipid peroxidation (1–3). After finding that
activating ferroptosis in cancer cells of mice improved the effectiveness of temozolomide
treatment – a first-line chemotherapeutic drug against glioblastoma (glioma WHO grade IV)
(4, 5) – further investigations revealed the important role of ferroptosis also in human cancer patients.

Glioma is a type of primary brain tumor that is generated from glial cells in the central nervous
system. These gliomas are classified by the WHO into low-grade glioma (WHO grade II) and high–
grade glioma (WHO grade III/IV), where higher grading is associated with poorer prognosis (6).
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Ferroptosis represents an option to improve treatment for
patients suffering especially from these more malignant
tumors, including glioblastomas, because these are difficult to
cure by radiation, resection, or pharmacological treatment alone.
Especially because pharmacological treatment is affected by drug
resistances (7).

Since the discovery of ferroptosis in 2012 (1) several key
molecules have been identified, which are either directly
integrated into the ferroptosis process or act as inducers.
Current data about key players in ferroptosis and their role in
glioma have been reviewed elsewhere (8, 9). The recently
launched database ferrDB provides an overview of these
regulators and markers in ferroptosis (10).

This review provides an overview of ferroptosis in the therapy
of various brain tumors with a focus on ferroptosis gene
signatures, which have a strong translational value in
predicting patients’ prognosis, and of the effects of ferroptosis
induction in non-cancerous tissue that is also affected during
treatment (Figure 1).
PROMISING FINDINGS ON FERROPTOSIS
INDUCTION IN NEUROBLASTOMA
AND MENINGIOMA

Expanding on the treatment boosting effects of ferroptosis
induction in glioma, there are also promising findings in other
types of cancer. Neuroblastoma is a highly relevant pediatric
cancer in younger children (11), with limited treatment options
and therapy resistance if occurring in its high–risk form (12).
Induction of ferroptosis to limit tumor growth has been
emerging as a striking new concept to treat neuroblastoma.

Ferroptosis can be induced by several small molecules [as
reviewed elsewhere (8)] or by inhibition of the glutathione
peroxidase GPx4 (13) and glutamate/cystine antiporter system
x−c (SLC7A11; also referred to as xCT) through the drugs erastin
(1), sulfasalazine (14), or sorafenib (15), amongst others.

Recently, treatment with the steroidal lactone withaferin A
was found to induce the nuclear factor erythroid 2–related factor
2 (Nrf2) pathway and to inactivate the GPx4 pathway, a duality
making this strategy highly effective in treating both
neuroblastoma cells and transplanted xenografts in mice (16).
In this study the substance was targeted to the tumor site with
nanoparticles, which reduces side-effects (17).

Chemosensitization to erastin–induced ferroptosis was also
accomplished after knockdown of the iron exporter ferroportin
in neuroblastoma SH-SY5Y cells (18).

In about 25% of neuroblastoma cases MYCN is amplified
(19). In patient-derived xenografts of these cases, the xCT-driven
antioxidant response after sulfasalazine application is increased
compared to controls, which leads to an increase in ferroptosis
and subsequently limited tumor growth (19). Further studies
revealed that the transferrin receptor 1 was upregulated in
response to such MYCN amplification, leading to increased
GPx4 sensitivity and rendering neuroblastoma cells vulnerable
Frontiers in Oncology | www.frontiersin.org 2
to ferroptosis induction (20). In addition to this genetically
mediated sensitization, the inhibition of PKCa stimulated
ferroptosis and sensitized neuroblastoma stem cells to
etoposide, which is particularly relevant given the central role
of stem cells in conferring resistance to therapy (21).
Neuroblastoma cell lines also express a very low level of
ferritin heavy chain 1, whose reduction leads to a rise in ROS
and a higher sensitivity to ferroptosis (22). In meningioma cell
lines derived from patients covering WHO Grades I–III, the
vulnerability to erastin-induced ferroptosis was increased both
by a loss of neurofibromin and by a low level of E-cadherin. The
expression of these proteins is driven by the myocyte enhancer
factor 2C, making it a promising factor to manipulate during
meningioma treatment (23, 24).

In summary, treatment of cancers such as neuroblastoma and
meningioma in their advanced stages may be improved by
exploiting the role of ferroptosis.
FERROPTOSIS-GENE SIGNATURES
IN GLIOMA

Gliomas represent a major form of brain cancer, divided into
WHO grades I to IV with glioblastoma being the most
devastating form of human brain cancer (6) because it is
associated with a low survival, therapy resistance and limited
treatment options (25). To overcome these obstacles, genetic
studies based on large patient databases have examined the link
between gene expression in glioma and overall survival in risk–
stratified patient cohorts. In these studies, ferroptosis– and
glioma–related genes of interest were identified by screening
RNA sequencing data and associated clinical data. These gene–
signatures constitute a risk-model, predicting the overall survival
of the patients. To avoid overfitting, the models were each
constructed in one database, e. g. Chinese Glioma Gene Atlas
(CGGA), and validated using other databases, e. g. Repository for
Molecular Brain in Neoplasia Data (REMBRANDT) or The
Cancer Genome Atlas (TCGA) (26–32). The risk–models are
shown and described in Table 1. The risk models that are based
on the ferroptosis–related genes stratified glioma patients into a
low–risk and high–risk cohort.

In high-risk cohorts, the median survival probabilities indicated
by Kaplan-Meier curves were significantly decreased. The risk-score
was often correlated with clinicopathological features such as the
WHO grade or the O–6–Methylguanine–DNA Methyltransferase
(MGMT) promotor methylation status, proving the suitability of
ferroptosis–related gene expression pattern for patient outcome
prediction. Interestingly, functional annotation of the ferroptosis–
related genes in the risk–models revealed that often the immune
system is involved: Investigation of RNA sequencing data from
glioblastoma (TCGA) revealed that the expression levels of
ferroptosis suppressors such as CD44, HSPB1 and SLC40A1
correlated with the degree of immunosuppression and were related
to survival of patients (34). The expression of these suppressors could
also be induced by acetaminophen (34).
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This bioinformatics-based immunology-ferroptosis-link was
substantiated by experimental data showing that glioma GL261
cells during their early ferroptotic stages (induced by RSL3)
promoted the activation of dendritic cells, which indicates a
vaccination-like effect of the tumor cells on the immune system
(35). With this, a link between ferroptosis and immunological
responses in the context of glioma is strongly suggested and
awaits further experimental clarification.

In Wan et al. the relevance of a link between ferroptosis and
metabolism in the context of glioma was suggested based on a
database analysis (29). For tumors, their increased metabolic
reliance on utilizing amino acids (36) and lipids (37) represents
malignancy hallmarks of cancer in general. In glioma, the
approach of developing an amino acid-risk score – alike the
here-described panels concerning ferroptosis-related genes -
revealed that the expression of genes involved in amino acid
metabolism is important for glioma patients’ survival prognosis
(38). In glioma with non-mutated isocitrate dehydrogenase
(IDH), branched-chain amino acids such as leucine and
isoleucine, and their catabolizing enzyme branched-chain
amino acid transaminase 1 (BCAT1), are more expressed – in
turn, BCAT1 knock-down in glioma cells reduces the viability of
glioma cells (39). Underlining the role of ferroptosis during
amino acid regulation in cancer, the induction of ferroptosis
Frontiers in Oncology | www.frontiersin.org 3
eventually inhibited transcription of BCAT2 and the direct
inhibition of BCAT2 led to ferroptosis in target cells (40).
Additionally, cysteine and glutamate represent important
amino acids during ferroptosis induction (41), whose
homeostasis is interrupted by blocking xCT to achieve cell death.

In general, cancer cell growth and development are reliant on
an increased lipid usage (42, 43). Thus, interfering with these
pathways by oxidation of the lipids may boost cancer therapy by
exploiting ferroptosis (31, 37). Increased lipid peroxidation is the
result of ferroptosis induction and eventually leads to ferroptotic
cell death (1). As one of the proteins that was used to generate
survival-predicting ferroptosis-related genes panels (Table 1),
ACSL4, increases the content of omega-6 polyunsaturated fatty
acids in cellular membranes and thus regulates how sensitive
cells are to ferroptosis (44).

In one ferroptosis–signature panel, the data suggested that a
risk–score built up by 19 ferroptosis genes was negatively
correlated with the expression of MGMT, which confers
resistance to temozolomide (26). However, many different
mechanisms have been proposed to be contributing to
temozolomide resistance in glioma (5, 45), which makes it
difficult to assess their respective translational importance.
Interestingly, not only coding RNA but also long non–coding
RNA was shown to be predictive regarding overall survival (30).
FIGURE 1 | Consequences of ferroptosis induction in cancer cells and neurons.
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In addition to the common prediction of overall survival, one
study was able to also accurately predict patients’ progression-
free survival based on ferroptosis–related proteins (33).

While all presented risk models were capable of stratifying
patients into high-risk and low-risk cohorts, the number of
ferroptosis–related genes required to create the prognostic
model substantially varies from 8 up to 59 included genes
(Table 1). Redundancies of several genes between different risk
models might indicate their general importance.

To evaluate if these genes are exclusively predictive of the
outcome prognosis in glioma, we examined their role in
Frontiers in Oncology | www.frontiersin.org 4
comparable gene signature panels in other cancer types: A
number of genes that are part of glioma risk–models (CARS,
FANCD2, HMGCR, NCOA4 and SLC7A11) (46) and (AKR1C1,
CARS1, CBS, CD44, CHAC1, DPP4, FANCD2, GOT1, HMGCR,
SLC1A5, NCOA4 and STEAP3) (47) also accurately predicted
patients’ prognosis in clear renal cell carcinoma. Similarly,
survival probability in hepatocellular carcinoma was reliably
predicted by a glioma prediction model (ACSL3, ACSL6,
ACACA, G6PD, SLC1A5, SLC7A11 and VDAC2) (48) and by
a risk model with a strong overlap with the genes in the glioma
models (G6PD, HMOX1, LOX, SLC7A11, STMN1/Stathmin 1)
TABLE 1 | Risk-models using ferroptosis-related genes and their predictive capabilities.

Study Databases Genes inside final gene signature Gene function based on
GO/KEGG

Correlation of the signature/
risk model with:

What does
the gene
signature
predict?

(26) CGGA, 19 genes Cell death, migration, and
immune systems function !
tumorigenesis and progression

WHO tumor grades, clinical/
pathological tumor features

Overall
survivalTCGA,

GSE16011,
SAT1, ATP5G3, HSPB1, FANCD2, HMGCR, CBS,
GCLC, GCLM, CD44, ALOX12B, ALOX5AP, CISD1,
NFE2L2, EMC2, ALOX4, DPP4, AKR1C2, LPCAT3
and NCOA4

REMBRANDT

(27) CGGA 25 genes Responses to oxidative stress,
nutrient level, and extracellular
stimuli; pathways involve fatty
acid synthesis, ferroptosis

1p/19q codeletion, IDH1
status, MGMT promoter
methylation status, histology,
age, WHO grading, PRS type

Overall
survivalTCGA Protective: BAP1, GLS2, CISD1, PRNP, AKRIC3, TF,

ACACA, ACSL6 and MAP3K5
Hazardous: CDKN1A, G6PD, HSPB1, LOX, STEP3,
ACSL1, CP, HMOX1, CYBB, ANO6, PCBP1, PGD,
AURKA, G3BP1 and TP53

(31) CGGA 12 genes (ferrDB-based) Metabolic processes related to
glutamate, immune systems
response, and plasma membrane
receptor complex

1p/19q codeletion, IDH1
status, MGMT promoter
methylation status, radiation
therapy

Overall
survivalTCGA Protective: VDAC2, MAP3K5, DNAJB6, CHMP5

Hazardous: TP63, NFE2L2, MT3, LAMP2, HSPB1,
FANCD2, ElF2AK4 and ARNTL

(28) CGGA 11 genes Cancer progression by
modulation of the immune system
function

1p/19q non-codeletion,
MGMT promoter methylation
status, IDH status, recurrent
and secondary tumors

Overall
survivalTCGA;

GSE16011,
REMBRANDT

Associated with a poor prognosis were a
-high expression of CD44, FANCD2, HSBP1, MT1G,
NFE2L2 and SAT1

-low expression of AKR1C3, ALOX12, CRYAB,
FADS2 and ZEB1

(29) REMBRANDT,
CGGA-693,
CGGA-325,
TCGA

59 genes, metabolism of Metabolism of iron, lipids,
antioxidants, and energy

High risk scores: glioma WHO
grade IV, IDH wildtype, no
codeletion 1p/19q

Overall
survival-Iron: FANCD2, NCOA4, TFRC, PHKG2, HSPB1,

ACO1, FTH1, STEAP3, NFS1, IREB2, HMOX1 and
MT1G

-Lipid: ACSL4, AKR1C1-3, ALOX15, ALOX5,
ALOX12, CARS, CBS, CISD1, CS, DPP4, GPX4,
HMGCR, LPCAT3, FDFT1, ACSL3, PEPB1, ZEB1,
SQLE, FADS2, ACSF2, PTGS2 and ACACA

-Antioxidants: GCLC, SLC7A11, KEAP1, NQO1,
ABCC1, CHAC1, GSS, GCLM and NFE2L2

-Energy: GLS2, SLC1A5, GOT1, G6PD, PGD and
ATP5G3

Other genes: CD44, HSPB1, CRYABM, RPL8, SAT1,
TP53, EMC2 and AIFM2

(30) TCGA, CGGA,
REMBRANDT

15 Long non-coding RNAs: – Low-risk groups: Radiotherapy
was effective

Overall
survival

SNAI3-AS1, GDNF-AS1, WDFY3-AS2, CPB2-AS1,
WAC-AS1, SLC25A21-AS1, ARHGEF26-AS1,
LINC00641, LINC00844, MIR155HG, MIR22HG,
PVT1, SNHG18, PAXIP1-AS2, SBF2-AS1

High-risk group:
Unfavorable immunological
situation

(33) Pubmed-reported
ferroptosis-
proteins, TCGA
GBMLGG, CGGA

8 genes: Lipid metabolism, carboxylic acid
metabolism

IDH1_p.R132H (6/8), tumor
purity (5/8), MGMT methylation
(5/8),

-Overall
survival

-Progression-
free survival

ALOX5, CISD1, FTL, CD44, FANCD2, NFE2L2,
SLC1A5, GOT1
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(49). It is, however, unlikely that ferroptosis signatures are
similar across all different types of cancer, which is exemplified
by a study predicting breast cancer based on a completely
different set of ferroptosis–related genes (50). It will be
interesting to investigate the minimum number of expressed
ferroptosis–related genes in a tumor for the patients’ outcome to
benefit from ferroptosis induction and to investigate, how the
gene expression is systematically distributed across different
kinds of tumors.
FERROPTOSIS IN HEALTHY NEURONS
AND POTENTIAL SIDE–EFFECTS OF
FERROPTOSIS INDUCTION

The functional property of cystine/glutamate exchanger xCT is the
uptake of cystine and the extrusion of glutamate – a keymolecule of
neuronal function, whose homeostasis is key for proper signal
transduction and cognitive behavior (39, 51, 52). Because another
function of xCT is the stimulation of the antioxidative response of
the cell, xCT–inhibitors can induce ferroptosis (1) (Figure 1).

Given the promising preclinical finding of improved
temozolomide (Temodal®, Temcad®) chemotherapy outcome
through combination with xCT–inhibitory small molecules (4),
it appears necessary to also investigate such drugs’ potential
impact on other cells in the vicinity of the tumor tissue and in the
whole body. In particular, diseases of the peripheral nervous
system are known side–effects of some chemotherapeutic
treatments (53), and also have been linked to ferroptosis (54).

Here, we take a closer look at the impact of xCT interference
on neuronal and cognitive function (Figure 1)

An investigation of how the xCT inhibitors erastin and
sorafenib affect cultured hippocampal neurons in their
morphology and their vesicle pool size – a parameter tightly
linked to neuronal function – has shown that such treatment
could significantly disturb neuronal viability (55). In the
hippocampus of xCT–deficient mice, long–term potentiation
and long–term memory were impaired (56), which highlights
the importance of xCT–driven glutamate homeostasis for
cognition. Although a reduction of extracellular glutamate
would be expected after xCT–inhibition or deletion, additional
extracellular glutamate could not reverse this effect (56). In
primary hippocampal cell cultures consisting of both, neurons
and glia, extracellular amino acid profiling could not confirm a
reduction, but rather an increase in extracellular glutamate after
erastin–induced xCT inhibition, suggesting a complex regulatory
interplay between different cell types of the brain (55).

Inhibition of xCT led to a myelination defect in organotypic
cerebellar slices after a few days of treatment, showing that
neuronal function is disturbed also on the axonal level (57).

On a behavioral level, xCT was linked to stress resilience in
the ventral hippocampus, because alterations in the histone
acetylation status increased xCT expression and in turn
recruited other glutamate receptors to modulate glutamate
homeostasis (58). Mice with intraperitoneal erastin injections
developed iron depositions in several organs such as brain,
Frontiers in Oncology | www.frontiersin.org 5
kidney and spleen, mild cerebral infarction and epithelial
changes in the duodenum (59).

Efforts to examine ferroptosis–inhibitory agents to protect
against such adverse effects have demonstrated that hippocampal
HT22 cells could be protected from ferroptosis with
Ajudecunoid C – a chemical isolated from Ajuga nipponensis –
via an activation of an antioxidant response element pathway
(60), or with diphenylamine compounds (61). Similarly, spinal
cord neurons have been protected from erastin–induced
ferroptosis through LipoxinA4–induced activation of the Akt/
Nrf2/HO–1 signaling axis (62), which represents a key player in
the regulating of ferroptosis and also in glioma treatment (63–65).
The impact of erastin on neuronal viability was further
counteracted in primary cortical neurons and SH–SY5Y cells by
the iron chelator deferoxamine (66). Despite ferroptosis being
similar in neurons and cancer cells, class 1 histone deacetylase
inhibitors (HDACs) treatment protected neurons from
ferroptosis but augmented ferroptosis in HT1080 fibrosarcoma
cells (67), thereby providing the best possible outcome. This
promising finding now awaits its experimental evaluation in
other cell types, for example in different glioma cell lines.

Ferroptosis can also be thwarted on other levels of the
ferroptosis–inducing process, for example by selenium–
mediated inhibition of the antioxidant glutathione peroxidase 4
(GPx4) (68), which is also implicated in the pathophysiology of
glioblastoma (7, 69, 70b). Similar to xCT–deficient mice (56),
conditional deletion of GPx4 in adult forebrain neurons resulted
in impaired functions of memory and spatial learning (71), and
its deletion from dopaminergic midbrain neurons increased
anxious behavior (72). These examples from a list of several
more ferroptosis–inhibitory agents demonstrate that such drugs,
initially intended to counteract neurodegeneration, could also act
as support during chemotherapy to protect healthy tissue.

In contrast to erastin, which remains a purely experimental
substance, multi–kinase inhibitor and ferroptosis inductor
sorafenib has entered human clinical trials that included
assessment of neuropsychological effects during cancer therapy.
Learning, memory, and executive functions suffered over the
course of treatment (73). This is further supported by a study in
rats that revealed neurochemical disturbances in the hippocampus
during treatment with sorafenib (74). Although the histology of
the hippocampus was unaffected in that study, treatment with
sorafenib for 28 days strongly decreased levels of several key
metabolites such as glutamate, GABA, serine, or choline, which
were measured by nuclear magnetic resonance spectroscopy. In
contrast, striatum and prefrontal cortex remained rather
unaffected (74). In primary rat hippocampus cultures, high–
performance liquid chromatography revealed that, already after
24 h of sorafenib treatment, levels of glutamate, serin, and alpha–
aminobutyric acid were increased, and levels of glycine, cystine,
and phosphoethanolamine were decreased (55). These data
illustrate metabolic disturbances in response to sorafenib
treatment, which may account for cognitive dysfunction.

In addition to emerging as possible side effects of ferroptosis
pathway manipulation, cognitive impairment was also described
as a glioblastoma symptom (75). Cognitive impairment often
December 2021 | Volume 11 | Article 783067
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delays diagnosis and is associated with a reduced overall survival
(75), which should be considered when assessing cognitive
dysfunction as potential side effects of add–on drugs.
CONCLUSION

The pharmacological therapy of malignant brain tumors is
difficult, especially of late–stage glioma with its treatment
resistance and recurrences. The novel idea of enhancing
treatment outcome through ferroptosis induction continually
gains attention. Recent data uncovered a link between
ferroptosis–signatures in malignant glioma and overall survival,
with many studies using expression of ferroptosis–related genes to
accurately predict patients’ survival probability. Harnessing
ferroptosis to improve tumor therapy will be an appealing
approach also in malignant neuroblastoma and meningioma.
But interfering with ferroptosis induction also has off–target
effects, which may decrease the quality of life. Therefore, the
increase in survival probability predicted by ferroptosis–gene-
Frontiers in Oncology | www.frontiersin.org 6
based risk models should be traded of against potential harm
through ferroptosis–inducing add–on therapy. Ideally, patients
should be screened for ferroptosis-related gene expression - based
on a unified set of disease-relevant ferroptosis-related genes - and
stratified into high-risk or low-risk cohorts to judge their
individual clinical prospects. Future clinical trials may evaluate
the benefits versus side effects of ferroptosis inducing cancer
treatment enhancement for different patient groups.

In summary, ferroptosis induction is a hope yielding
approach to enhance antitumor therapy but requires an
intricate balance between attacking the tumor and preserving
the different cell types of the healthy tissue.
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GLOSSARY

ACACA Acetyl-CoA carboxylase 1
ACO1 Aconitase 1
ACSF2 Acyl-CoA Synthetase Family Member 2
ACSL1/3/4/6 Acyl-CoA Synthetase Long Chain Family Member 1/4/6
AKR1C1-3 Aldo-keto reductase family 1 member C3 1-3
ANO6 Anoctamin 6
AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2
ALOX12B Arachidonate 12-Lipoxygenase 12R Type
ALOX12 Arachidonate 12-Lipoxygenase 12S Type
ALOX15 Arachidonate 15-lipoxygenase
ALOX5 Arachidonate 5-Lipoxygenase
ALOX5AP Arachidonate 5-Lipoxygenase Activating Protein
ARNTL Aryl hydrocarbon receptor nuclear translocator-like protein 1
ABCC1 ATP Binding Cassette Subfamily C Member 1
ATP5G3 ATP Synthase Membrane Subunit C Locus 3
AURKA Aurora Kinase A
BAP1 BRCA1 Associated Protein 1
CISD1 CDGSH Iron Sulfur Domain 1
CP Ceruloplasmin
CHAC1 ChaC Glutathione Specific Gamma-Glutamylcyclotransferase 1
CHMP5 Charged multivesicular body protein 5
CS Citrate Synthase
CD44 Cluster of differentiation 44
CRYAB Crystallin Alpha B
CDKN1A Cyclin Dependent Kinase Inhibitor 1A
CBS Cystathionine Beta-Synthase
CARS Cysteinyl-TRNA Synthetase 1
SLC7A11 Cystine/Glutamine antiporter xCT or Solute Carrier Family 7

Member 11
CYBB Cytochrome b(-245) beta subunit
DPP4 Dipeptidyl peptidase 4
Hsp40 DnaJ Heat Shock Protein Family
DNAJB6 Member B6
EMC2 ER membrane protein complex subunit 2
ElF2AK4 Eukaryotic translation initiation factor 2a kinase 4
FANCD2 FA Complementation Group D2
FDFT1 Farnesyl-Diphosphate Farnesyltransferase 1
FADS2 Fatty acid desaturase 2
FTL Ferritin Light Chain
G6PD Glucose-6-phosphate dehydrogenase
GCLC Glutamate-Cysteine Ligase Catalytic Subunit
GCLM Glutamate-Cysteine Ligase Modifier Subunit
GOT1 Glutamic-Oxaloacetic Transaminase 1
GLS2 Glutaminase 2
GPX4 Glutathione Peroxidase 4
GSS Glutathione Synthetase
HSPB1 Heat shock protein beta-1
HMOX1 Heme oxygenase 1 gene
IREB2 Iron-responsive element-binding protein 2
KEAP1 Kelch Like ECH Associated Protein 1
LPCAT3 Lysophosphatidylcholine Acyltransferase 3
LAMP2 Lysosome-associated membrane protein 2
HMGCR HMG-CoA reductase
LOX Lysyl Oxidase
MT3 Metallothionein 3
MT1G Metallothionein-1G
MAP3K5 Mitogen-activated protein kinase kinase kinase 5
NQO1 NAD(P)H Quinone Dehydrogenase 1
SLC1A5 Neutral amino acid transporter B(0)
NFS1 NFS1 Cysteine Desulfurase
NFE2L2 Nuclear factor-erythroid 2-related factor 2
NCOA4 Nuclear Receptor Coactivator 4
PEPB1 Phosphatidylethanolamine Binding Protein 1
PGD Phosphogluconate Dehydrogenase
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PHKG2 Phosphorylase Kinase Catalytic Subunit Gamma 2
PRNP Prion protein
PTGS2 Prostaglandin-Endoperoxide Synthase 2
G3BP1 Ras GTPase-activating protein-binding protein 1
RB1 RB Transcriptional Corepressor 1
RPL8 Ribosomal Protein L8
STEAP3 Six-transmembrane epithelial antigen of the prostate 3
SAT1 Spermidine/Spermine N1-Acetyltransferase 1
SQLE Squalene Epoxidase
TFRC Transferrin Receptor
TP53 Tumor protein p53
TP63 Tumor protein p63
VDAC2 Voltage-dependent anion-selective channel protein 2
ZEB1 Zinc Finger E-Box Binding Homeobox 1
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