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Mosaicking of retinal images is potentially useful for ophthalmologists and computer-aided diagnostic schemes. Vascular bi-
furcations can be used as features for matching and stitching of retinal images. A fully convolutional network model is employed
to segment vascular structures in retinal images to detect vascular bifurcations. /en, bifurcations are extracted as feature points
on the vascular mask by a robust and efficient approach. Transformation parameters for stitching can be estimated from the
correspondence of vascular bifurcations. /e proposed feature detection and mosaic method is evaluated on retinal images of 14
different eyes, 62 retinal images. /e proposed method achieves a considerably higher average recall rate of matching for paired
images compared with speeded-up robust features and scale-invariant feature transform. /e running time of our method was
also lower than other methods. Results produced by the proposed method superior to that of AutoStitch, photomerge function in
Photoshop cs6 and ICE, demonstrate that accurate matching of detected vascular bifurcations could lead to high-quality mosaic of
retinal images.

1. Introduction

Retinal images are crucial for ophthalmologists to diagnose a
series of diseases. Fundus lesions caused by fundus and
systemic diseases, such as diabetes, hypertension, macular
lesions, fundus arteriosclerosis, and retinopathy, can appear
in the retina [1]. Patients can receive timely and appropriate
treatment if specialists examine and diagnose these diseases
early. At present, mosaic images have been extensively used
to provide a comprehensive view of the retina to assist
ophthalmologists during laser surgery or other procedures.
However, the retinal image captured by a fundus camera or
scanning laser ophthalmoscope can only cover a local area of
the eye. /e retinal images captured in different field areas
must be stitched together to form a mosaic image that ul-
timately meets the needs of the analysis of the entire area of
the fundus in research and clinical diagnosis.

Numerous retinal image registration and stitching
methods have been proposed in the literature. Can et al.
[2–4] introduced a layered mosaicking algorithm that uses
bifurcations as features of the vascular structure. However,
one disadvantage of this algorithm is the occasionally in-
distinguishable landmarks. Ryan et al. [5] also studied the
registration of retinal images using landmark correspon-
dence. However, this approach obtains remarkably few
matching point pairs. Landmarkmatching formulation [1] is
based on retinal image alignment by enforcing sparsity in
correspondence matrix. However, such approach needs a
complicated computational process and high cost.

In 2010, Kwon and Ha [6] introduced panoramic video
technology based on extracting important information from
the image. /e scale-invariant feature transform (SIFT) is
one of the most robust and widely used methods. However,
identifying corresponding points becomes difficult in the
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case of changing illumination or two surfaces with a similar
intensity, as SIFT extract features using only gray infor-
mation. Brown and Lowe [7] used the invariant feature for
automatic mosaicking of natural images, adopting the
multiresolution image fusion. Alomran and Chai [8] pre-
sented an image stitching algorithm based on speeded-up
robust features (SURF), but the algorithm is restricted to an
image set without exposure differences and extremely high
lens distortion.

/e disadvantages of methods based on SIFT or SURF
include clustered detection points on the edge, uneven
distribution, and insufficient effective information to de-
scribe the image. Matching of bifurcations is more appealing
compared with image registration. /ese previous methods
are limited only to images containing clearly visible vascular
structures. However, the vascular structures in retinal im-
ages are often blurred when the fundus bleeds or becomes
tumorous. /us, the detection of robust features in retinal
images for feature matching presents a difficulty. Simulta-
neously, indistinguishable features may result in matching
ambiguities.

/is work aims to improve the robustness of feature
detection for indistinct vascular structures in retinal images.
Numerous publications focus on using the convolutional
neural network (CNN) to segment vascular structures. Jiang
and Tan [9] proposed the use of conditional deep con-
volutional generative adversarial networks to segment the
retinal vessels , by using skip connection to connect the
output of the convolutional layer with the output of the
deconvolution layer to avoid low-level information sharing.
However, a few number of images exist in the data set to
train the network, and the accuracy of vessel segmentation
and the robustness of the network cannot be verified well.
Alom et al. [10] proposed a Recurrent Convolutional Neural
Network (RCNN) based on U-Net as well as a Recurrent
Residual Convolutional Neural Network (RRCNN) based on
U-Net models. 190,000 patches are randomly selected from
20 of the images as the input of networks which was a
complicated computational process. Hu et al. [11] intro-
duced a retinal vessel segmentation method based on CNN
and fully connected conditional random fields. In this paper,
we first employ a CNN segmentation model [12] to segment
vascular structures in retinal images. /en, an effective
approach is proposed to detect bifurcations as features for
matching and stitching by morphology operations in the
vascular structures. Figure 1 shows an example of a mosaic
image produced by the proposed method, our method for
feature detection and matching benefits from previous
works on retinal images.

/e rest of the paper is organized as follows. First,
Section 2 describes the framework and details of our pro-
posed method. Section 3 provides experimental results.
Section 4 discusses the results.

2. Method

2.1. Overview. /is work aims to develop a practical and
useful method for detecting robust and sufficient features
with indistinct vascular structures and constructing an

automatic mosaic of multiple retinal images. /e image
stitching process can be summarized by the steps shown in
Figure 2. /e novelty of the paper include the following:

(1) /e binary image of vascular structures instead of the
original image was used for bifurcation detection.

(2) Vascular structures of the retinal image are seg-
mented using deep CNNmodel instead of traditional
methods. A more accurate binary image of vascular
structures can be obtained using deep CNN model.

(3) Using morphology operations to locate Y- or T-form
bifurcation points from the binary image which has
been proved to be superior to the existing methods
such as SIFT.

(4) Optimal transformation parameters for stitching are
obtained by further revising parameters. /en, a
special coordinate mapping method was used to
transform image coordinates to the same coordinate
system for stitching./ese steps are comprehensively
described as follows. (1) Vascular structures of the
retinal image are precisely segmented using a deep
CNN model. /e center lines of vascular structures
are extracted for subsequent processing. (2) Vascular
bifurcations are detected as key points by mor-
phology operations, and their descriptors are cal-
culated. (3) /e correspondences between retinal
images are established using second and nearest
neighbor ratio matching [13] by calculating the
Euclidean distance between feature descriptors. (4)
Parameters of transformation are estimated to warp
images into a uniform coordinate system using the
homography matrix, which is calculated by the
correspondences between image pairs. (5) /e ret-
inal images and masks are warped to uniform co-
ordination, and vertex coordinates of images are
calculated after a uniform coordinate transforma-
tion. (6) Multibland blending is used to seamlessly
fuse retinal images to generate a mosaic image.

2.2. Feature Detection

2.2.1. Segmentation of Vascular Structures. Classic methods
for addressing vascular structure segmentation involve
hand-crafted filters, such as line detectors and vessel en-
hancement techniques [12, 14–16]. Recent techniques
[17, 18] are available for segmenting vascular structures of
retinal images, but these techniques exhibit poor
performance.

Deep CNN architectures are designed to solve the initial
classification of natural images; they are also very effective
for vascular structure segmentation according to the liter-
ature [12]. Maninis proposed a CNN architecture based on
visual geometry group (VGG) network for retinal vascular
segmentation.

A CNN model for vascular structure segmentation is
already trained on the DRIVE [19] and STARE [20] datasets
(40 and 20 images, respectively). /e trained CNN model is
publically available (All the resources of this paper, including
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code and pretrained models, are available at http://www.
vision.ee.ethz.ch/∼cvlsegmentation/driu/). Our experiment
is installed and configured Caffe on Ubuntu 14.04 with
NVIDIA GPU (TitanX). Download the original DRIU model
and run the model to segment the vascular structures. /e
precision-recall between the obtainedmask and gold standard
(0.822) is higher than that of the precision-recall between
human-annotated result and gold standard (0.791) on the
DRIVE data set. /is model is employed to segment retinal
vascular structures in retinal images in our experiments.

Given that the size of the retinal image is inadequate for
the operation of the CNN architecture, the image must be
sampled before retinal vessel segmentation; the size of
downsampling image is 700× 605 pixels. Figure 3(a) shows a
retinal image, and Figure 3(b) is the segmented retinal
vascular structures obtained using the CNN model. We will
further research how to improve the model to obtain the
resulting output without boundary.

Subsequently, a fast parallel algorithm [21] is applied for
thinning images to extract the center lines of retinal vessels
segmented by the CNN model. /is algorithm extracts the
center lines of an image through the removal of image
contour points, except for points belonging to the skeleton.
Iteration over several times will obtain the final skeletons as
the vascular centerlines (e.g., Figure 3(c)).

2.2.2. Bifurcation Detection and Descriptors. Bifurcations of
vascular centerlines are detected as matching features.
Analysis of geometrical structures of bifurcations is im-
portant to design a scheme to solve this problem. From the
observations, the vascular branch and crossover are gen-
erally presented as Y- or T-form, respectively. Hence, we use
morphological operations to locate bifurcation points with a
set of structural elements. Multiple Y- or T-form structural
elements are applied to erode the vascular centerlines mask.

(a) (b)

Figure 1: Example of a retinal mosaic image produced by our method. (a) Retinal images and (b) mosaics produced by our methods.

Multiple retinal images Vascular structures Vascular centerlines Bifurcation points

Feature matching

Warping

Mosaic image

Blending

Figure 2: Flowchart of the proposed method for mosaic images.
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/e structure element of size 3× 3 is selected according to
the literature [22]. /e last four Y-form structural elements
shown in Figure 4 include most vascular bifurcations by
comparing the various structural elements to erode the same
binary image in our experiments. Finally, 14 structure el-
ements are selected from a set of structural elements to erode
vascular centerlines images to produce the highest number
of correctly detected bifurcations and no falsely detected
features. More criteria will be considered for selecting
structural elements in future work.

One of the structural elements (Figure 4) is used to erode
the vascular centerlines image, which will result in an eroded
image containing numerous discrete points.

A total of 14 images are produced during image erosion
by 14 structural elements. An existing problem is the ad-
dition of the 14 images. We add up all eroded images in a
certain weight. /e function is defined as follows:

C1 �
1
2

AΘB1( 􏼁 +
1
2

AΘB2( 􏼁

for i � 2 to 13 do

Ci �
i

i + 1
Ci− 1 +

1
i + 1

AΘBi+1( 􏼁

end for

(1)

where Bi denotes the 3× 3 structural element, B1, B2, . . ., B14
contains all 14 structural elements. For example, C1 rep-
resents the first image that adds the image eroded by B1 and
that by B2 together with 1/2 weight. Similarly, C2 represents
the image that adds image C1 and the image eroded by B3.
C13 is the ultimate image that adds the 14 eroded images with
weight 1/14.

A binary image is obtained by adding all eroded images,
in which the white points with the gray value of 255 are the
initially detected features./e vessel bifurcation presented as
cross-formmay be satisfied with multiple Y-form structures.
/erefore, several subpixel points around the vessel bifur-
cation may be detected as features by different structural
elements. Only one of these points is taken as the vessel
bifurcation point in the ultimate binary image. Iterating

through each pixel in binary image, if a pixel point with a gray
value of 255, it sets the grayscale value of the 5× 5 neigh-
borhood on the point to 0. Finally, the features are expected to
demonstrate vascular bifurcations. /e coordinates of these
features are marked in the vascular centerlines image, as
shown in Figure 5(a). /e operation on the gray image only
locates the position of the feature. /en, feature matching is
conducted on the original retinal image. Figure 5(b) shows the
marked features in the original retinal image.

Compared with features detected in the original retinal
image using SIFT algorithm (Figure 5(c)), the SIFT features
are mainly concentrated on the edge and are low in number.
Similarly, several features are detected in the original retinal
image using oriented FAST and rotated BRIEF (ORB)
(Figure 5(d)). We apply different feature detection algo-
rithms, including SIFT, ORB, and SURF, on 62 fundus
images and calculate the average running time and the
number of detected features. As listed in Table 1, SIFT al-
gorithm spends the longest time, and SURF contains a
number of features. Although SURF acquires the maximum
number of features, this algorithm is time consuming and
mainly focuses on one area, which is easily noticed in feature
matching in the next section. Trading off between the
running time and number of features, our feature detection
algorithm is superior to other feature detection algorithms.

Numerous bifurcations will be produced after feature
detection. A descriptor is then constructed to describe the
distribution of intensity content within the feature neigh-
borhood. Similar to the gradient information extracted by
SIFT [23] and its variants, SURF [24] builds on the distri-
bution of first-order Haar wavelet responses in x and y di-
rections rather than the gradient and uses only 64 dimensions.
SURF first calculated the Haar wavelet responses in x and y
directions within a circular neighbourhood of radius 6s
around the interest point, with s the scale at which the interest
point was detected. /e dominant orientation is estimated by
calculating the sum of all responses within a sliding orien-
tation window of size π/3. /e horizontal and vertical re-
sponses within the window are summed. /e two summed
responses then yield a local orientation vector. /e longest
such vector over all windows defines the orientation of the
interest point.

(a) (b) (c)

Figure 3: Segmentation of vascular structures and extracted vascular centerlines. (a) Retinal image, (b) Vascular structures of retina, and (c)
Vascular centerlines.
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A square window centered around a feature was con-
structed and oriented along the orientation we already got
above./e size of the window is set to 20s. /e region is split
up regularly into small 4× 4 square subregions. For each

subregion, Haar wavelet responses are computed at 5× 5
regularly spaced sample points. /e Haar wavelet responses
in horizontal and vertical directions (filter size 2 s) are
represented as dx and dy, respectively. /en, wavelet
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Figure 4: 3× 3 Y- and T-form structural elements.

(a) (b)

(c) (d)

Figure 5: (a) Features (in red) detected by our algorithm. (b) Features marked in green dots on the retinal image. (c) and (d) Several features
detected by SIFT and ORB, respectively, only concentrating on the edge.
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responses dx and dy are summed up over each subregion as
􏽐dx and 􏽐dy, respectively. /e sum of the absolute values of
responses (|dx| and |dy|) is also extracted to obtain infor-
mation regarding the polarity of intensity changes. Hence,
each subregion has a 4D descriptor vector v for its under-
lying intensity structure v � (􏽐dx, 􏽐dy, Σ|dx|, Σ|dy|). Con-
catenation for all 4× 4 subregions results in a descriptor
vector of length 64. Once the feature descriptors have been
calculated, the correspondences between all image pairs can
be established by calculating the Euclidean distance of those
descriptors.

2.3. Transformation Estimation

2.3.1. Bifurcation Matching. /e matched candidate of each
feature is determined by identifying its nearest neighbor in
the features from the target image [23]./e nearest neighbor
refers to the feature with minimum Euclidean distance of the
descriptors. We obtain the descriptor of a bifurcation in
image Ii and calculate its Euclidean distances to the de-
scriptors of all features in another image Ij. An effective
measure is obtained by comparing the distance of the closest
neighbor to that of the second-closest neighbor to determine
correct matching. To suppress matches that could be
regarded as possibly ambiguous, matches with a distance
ratio larger than 0.3 will be rejected [25]. One of the bi-
furcation matching parameters was customized. /is pa-
rameter is the confidence that indicates two images come
from the same mosaics. /e default value is 1.0. In our user
interface, the confidence was set to an option to choose a
number between 0.5 and 1.5 freely to generate different
mosaics.

Each pair of potentially matching images includes a set of
feature matches that are geometrically consistent (inliers) and
another set of inconsistent features (outliers) inside the area of
overlap. Random sample consensus (RANSAC) [7, 26] can be
used to select a set of inliers that are compatible with a
homography between images. Let X be a point on the retina
with projections xi and xj in two images taken from different
angles. A homography matrixH describes the transformation
that connects xi and xj for any point X on the retina, xj�H xi.
/e inliers or outliers are classified by the distance threshold t.
When ‖xj − Hxi‖> t, the matching point is considered as
outliers, t� 3 and the number of iterations is 2000. /en, it
can get a pure sample with probability p � 0.99. /e optimal
homology matrix H is obtained.

Figure 6 shows the correspondence between different
features of an image pair. /e first, second, third, and fourth
rows indicate our algorithm, ORB, SIFT, and SURF, re-
spectively. /e number of matching points of ORB and SIFT

is less than that in our algorithm. Otherwise, although SURF
contains more matching points, it mainly concentrates on
certain areas drawn by a blue circle. /ese points contain
little information as they occupy a small number of retinal
vessels.

2.3.2. Image Warping. /e next step estimates transfor-
mation through the matching of detected bifurcations for
retinal image pairs. Assuming that the camera rotates
around the center of the optical axis, the transformation
model of the image is estimated. /is section first introduces
how to use the homography matrix to calculate the pa-
rameters of the transformation model and then uses these
parameters to transform image coordinates to the same
coordinate system and perform image stitching.

Assuming that the camera rotates around its central axis,
the transformation model of the image is defined as follows:

T2(p; R, K) � RK
− 1

p. (2)

Each image has a camera intrinsic parameter matrix K
and an extrinsic matrix R. K is a 3× 3 intrinsic parameter

matrix, K �

fx 0 cx

0 fy cy

0 0 1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦. f is the focal length of the camera

and (cx, cy) is the center point coordinates of the image.
Estimation of focal length f [27]is as follows:

f
2
0 �

h2
23 − h2

13

h2
11 + h2

12 − h2
21 − h2

22
, if h

2
11 + h

2
12 ≠ h

2
21 + h

2
22

orf
2
0 � −

h13h23

h11h21 + h12h22
, if h11h21 ≠ − h12h22,

(3)

where h11, h12, . . . are elements of the homographymatrixH.
Calculate f of two images from images set and take the
median of f of all image as the focal length of all images.

R is a 3× 3 extrinsic matrix./ematrix R of the reference
image is the identity matrix. R can be roughly estimated
according to the intrinsic parameter matrix and the
homography matrix, Rj � RiK

− 1
i H− 1

ij Kj. Given the matrix R
of an image, intrinsic parameter matrix Ki Kj of the two
images, and the homographymatrixH of the two images, the
matrix R of another image can be obtained. All image camera
parameters are revised by beam adjustment. /e matching
points of pairs of images are mapped into the three-di-
mensional space, calculating the camera parameters with the
minimum sum of squares of matching errors./e function is
defined as follows:

(R, K) � min 􏽘
p∈P,q∈Q

RiK
− 1
i p − RjK

− 1
j q

�����

�����
2
, (4)

where RiK
− 1
i � RjK

− 1
j Hij. Let the matching points of pairs of

images be denoted as P and Q. An initial correspondence
set (pi, qi) ∈C0 containing all matching points is estab-
lished. Levenberg-Marquardt [28] algorithm is used to
solve the function, and the optimal parameters R and K are
obtained.

Table 1: Comparison of the running time and the average number
of features for 62 images using different feature detection
algorithms.

Algorithm ORB SIFT Ours SURF
Running time (s) 0.152 0.741 0.141 0.255
Average number of features 65 98 256 585
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/e parameters of the transformation model are used to
transform the coordinates of all stitched images to the same
coordinate system. Coordinate transformation is performed
on the image in the following steps:

(1) Suppose the point (x, y, z� 1) of the initial image T is
projected to the same coordinate (x′, y′, z′).
According to K, R, there is a relation as follows:

x′

y′

z′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � RK
− 1

x

y

z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

(2) Mapping the coordinate in (1) to the spherical co-
ordinate system (u, w, v). /e relationship is as

follows: u� atan (x′/z′), w � y′/
������������

x′
2

+ y′
2

+ z′
2

􏽱

,
v � π − a cosw.

(3) /e coordinate is backprojected onto the warped
image by means of backprojection. First, the coor-
dinates (x′, y′, z′) are obtained by the inverse
transform for spherical coordinates in (2):
x′ � sin v × sin u, y′ � − cos v, z′ � sin v × cos u.
/en the coordinates of the warped image are ob-
tained by backprojection:

x

y

z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � KR
− 1

x′

y′

z′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (6)

Finally, the coordinates of the initial image T are
transformed to the same coordinate system.

2.3.3. Image Blending. When all images are warped into the
same coordinate system, the images are blended to construct
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Figure 6: Matching result images of evaluation and comparison for different algorithms./e first column shows the initial matching result,
whereas the second column depicts the result obtained after the elimination of outliers using RANSAC. (a) Initial matching result and (b)
matching result after eliminating outliers by RANSAC.
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a mosaic image with invisible image boundaries [29]. Each
sample (pixel) at the same location should exhibit the same
intensity in the images for mosaics. However, no such case is
observed in actual situations. After gain compensation,
several image edges remain visible due to several causes,
such as vignetting (decreasing intensity toward the edge of
the image), misregistration of the mosaicking procedure,
and radial distortion [7]. In 2D, the work of Burt [30] and
Adelson on multiband blending has proven particularly
effective for image mosaicking without blurring and
ghosting artifacts. Suppose image A and image B are images
to be blended. /e method includes the following steps:

(1) Gaussian pyramid is constructed according to im-
ages A and B, respectively: GA0, GA1, GA2, GA3, GA4
and GB0, GB1, GB2, GB3, GB4. /e construction of
Gaussian pyramid is divided into two steps: Gaussian
smoothing and downsampling. /e layers of
Gaussian pyramid are 5. Gaussian kernel of size
5× 5. /e frequency band of the two adjacent layers
decreases by 1/8 times and the width and height of
the image reduces by 1/2 times.

(2) Laplace pyramid is constructed, respectively, by
subtracting adjacent two layer Gaussian pyramid:
LA0, LA1, LA2, LA3, LA4 and LB0, LB1, LB2, LB3, LB4

(3) /e Laplace pyramid at the same level is blended by
mask, denoted as LC0, LC1, LC2 LC3, and LC4

(4) /e Laplacian pyramid of the upper layer is sampled
to the same resolution as LC0

(5) /e images obtained in 4 are superimposed to obtain
a final output image C.

Figure 7 shows the comparison of four sets of mosaic
images before and after image blending. /e first row shows
mosaic images with visible image boundaries (blue arrows).
/e second row showsmosaic images after the application of
the multiband blending. /e boundary of the overlapping
areas of the image transitions naturally, and the quality of the
mosaic image has been greatly improved.

2.4. Evaluation Metrics. /e root mean square error (RMSE)
[31] has been used as a standard statistical metric to measure
the matching performance of our algorithm. Suppose n
samples are used to calculatematching errors (ei, i� 1, 2, . . ., n).
RMSE is calculated for the data set as shown in the following:

RMSE �

��������
1
n

􏽘
n

k�1e
2
k

􏽲

. (7)

Following a certain order, the errors ek,
ek � RiK

− 1
i pk − RjK

− 1
j qk, Ri, Ki, Rj, Kj, which can be known

from equation (4), k� 1, 2, . . ., and n can be written into an
n-dimensional vector, where n denotes the total number of
matching points from two images. For each matching point
(pk, qk) ∈C0, according to equation (7), the RMSE of the
matching points from two images is calculated. A low value
of RMSE indicates desirable matching.

/e feature matching evaluation also refers to the
concept of recall rate [13, 32], which is a well-known

performance metric. Using the recall rate as the metric to
evaluate the matching performance is mainly from the in-
spiration of this reference [32]. /e recall rate is defined as
follows:

Recall �
retrieved correct matches

all correct matches
, (8)

where retrieved_correct_matches denote the number of
correct matching points obtained using our matching al-
gorithm. All_correct_matches are manually marked by
experts in the reference and target images.

3. Experiments

3.1. Image Data. We implemented the proposed method in
C++ with OpenCV library./e experiments were performed
on a PC with 8GB RAM and an Intel i5-6500 CPU
(3.20GHz). /e data set, which includes 62 retinal images,
was collected from the hospital in Guangdong, China.
Images are obtained from 14 different eyes. A total of 2–9
images are acquired for each eye. /e image format is JPG
format. /e original size of images in the data set is in-
consistent, including 2304×1728 and 1600×1200. A total of
190 image pairs with overlaps are used to evaluate the
performance of feature matching. Table 2 provides a detailed
description of the overlaps between image pairs. In the
experiment, several stitching software were compared with
the proposed method. /e stitching software included
AutoStitch, photomerge function in Photoshop cs6 and ICE
(Image Composite Editor).

3.2. Comparison of Feature Matching Methods. /e experi-
ment is conducted to investigate the effect of the overlap
ratio of image pairs on the matching error. Table 2 lists 10
pairs of retinal images from the data set and shows matching
errors with different overlap ratios. In general, desirable
matching can generally be achieved when the overlap ratio of
image pairs is high. /e number and spatial distribution of
matched features are important factors that affect regis-
tration results. From experiment results, if an image pair
exhibits a high overlap ratio but contains several detected
vascular bifurcations on the images or unevenly distributed
detected bifurcations, then a high matching error would be
obtained. /e average root mean square error of all image
pairs is 1.82 pixels. To measure the performance of the
matching algorithm more accurately, we plan to compare
the registered image coordinates with the ground truth
coordinates on more manually annotated samples.

Table 3 lists the quantitative matching performances of
different features. /e numbers of matched points for ORB,
SIFT, SURF, and our method total 29, 17, 42, and 62, re-
spectively. Although the number of matched points obtained
by SURF is close to that of our matching method, SURF
spends much more time (0.689 s) than our proposed method
(0.249 s). ORB and SIFT consume less time but have fewer
matched points than our algorithms. Our method found
more correct matches than approaches such as SIFT or
SURF. Vascular bifurcations obtained by our method are
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more evenly distributed than features obtained by SIFT as
shown in Figure 5. In the meanwhile, matching points
obtained by our method are more evenly distributed than
SIFTor SURF according to the matching results. In this case,
having more matches leads to better mosaic.

Figure 8 compares the recall rate of different features for
image pairs. /is figure lists five pairs of retinal images from
the data sets and shows the quantitative results of the recall
rate. As shown in Figure 8, an optimal recall rate is obtained
using our registration method. Although the number of
matching points obtained by SURF is close to that of our

matching method, the average recall rate obtained by our
matching method is considerably higher than that of SURF
(0.70 to 0.35). /e matching recall rate produced by ORB is
lower than that of SIFT (0.47 to 0.57). /erefore, the method
proposed in this paper performs better than other algo-
rithms according to the statistics of the aforementioned
indicators.

3.3. Qualitative Evaluation. Figure 9 shows the mosaic
image stitched by four methods. a∼d are the results of
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r

(a) (b) (c)

Be
fo
re

Figure 7: /e mosaicking before and after the application of the image blending method. /e first row shows the mosaics before the image
blending, whereas the second row depicts the result after the image blending.

Table 2: Performance of feature matching with pairs of images within the data set.

Test sample Overlap (%) RMSE (pixel)
T01-02 24.9 2.85
T03-04 33.1 1.61
T05-06 36.6 2.63
T07-08 38.4 1.09
T09-10 39.1 1.59
T11-12 52.4 1.35
T13-14 57.3 1.20
T15-16 61.2 2.07
T17-18 61.3 1.66
T19-20 67.3 1.40
Mean value 47.16 1.745

Table 3: Average computation time and the average number of matching points for different algorithms.

Algorithm ORB SIFT Ours SURF
Running times (s) 0.149 0.259 0.249 0.689
Average number of matching points 29 17 62 42
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ICE, photomerge function in Photoshop cs6, AutoStitch,
and our method, respectively. Figures 9(a) and 9(b) both
have mismatched vascular structures, as shown in the
white arrow. /e visible boundary between the stitched
image in Figure 9(c) and the image transition is unnat-
ural. In contrast, the mosaic image produced by our
method possesses the highest similarity with the original
image.

Figure 9 roughly compares the performance of several
stitching software by mosaics. In order to evaluate the
quality of the mosaic image more accurately, the mosaic
image is magnified for comparison, as shown in Figures 10
and 11. Figures 10 and 11 show two examples of mosaics
produced by our method. In the figures, the left images refer
to the original images captured from one retina at different
angles. /e proposed method provides visually appealing
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Figure 8: Recall rate of paired retinal images for different matching algorithms.

(a) (b)

(c) (d)

Figure 9: Results of four different stitching methods: (a) ICE; (b) Photoshop cs6; (c) AutoStitch; (d) proposed method.
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mosaic images. Mosaics in Figures 10(b) and 11(b) are con-
structed from nine and six images, respectively. /e retinal
vessels in the images are accurately stitched./emosaic images
produced by our method and AutoStitch are visually similar.
However, mismatched vascular structures by AutoStitch are
found as indicated by the white arrows in Figure 10(c). /e
corresponding vascular structures of the mosaic image are
stitched excellently by the proposed method.

Our method can produce mosaic images with less blur, as
shown in the zoomed-in regions in Figure 11(b). By contrast,
evident blurring around the vessels can be observed in the
mosaic image produced by AutoStitch (Figure 11(c)). No
evident blur is observed around the vessels in themosaic image
produced by our method. /e contents of the mosaic image
produced by our method are more consistent with the original
retinal images compared with that produced by AutoStitch.

4. Discussion and Conclusion

We construct mosaics from a series of images of the human
retina. Previous methods were limited to work with images

containing clearly visible vascular structures. However, the
vascular structure in the retinal image will often become
blurred when the fundus bleeds or becomes tumorous./us,
for all previous methods, detecting robust features in such a
retinal image presents a difficulty. /is paper addresses the
problem of robust feature detection based on obscure vas-
cular structures of retinal images.

Our paper employs a CNN model [12], which effectively
obtains clear vascular structures, to segment vascular
structures of retinal images. /en, bifurcations in vascular
structure are extracted as features, and different transfor-
mation estimations are utilized to warp images into a
uniform coordinate system for mosaic image blending.
Experimentally, we show the mosaic examples and list a
summary of numerical results, such as RMSE, recall rate./e
proposed feature detection method is superior to other
methods, such as ORB and SURF. /e quality of mosaic
images produced by our method is superior to that of
AutoStitch, photomerge function in Photoshop cs6 and ICE,
which demonstrate uneven vascular mismatching. /e
quality of mosaic images produced by our method is

I1

I4

I3 (a)
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I9I8I7
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I6

(b) (c)

Figure 10: Comparison of mosaic images. Left: retinal images captured from one retina. (a) Magnified source image from sample data. (b)
Mosaics produced by the proposed method. (c) Stitching result obtained by AutoStitch. Regions in red rectangles are zoomed in to display
details. /ree vascular mismatching structures are indicated by white arrows in (c).
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Figure 11: Detailed comparison of mosaic images produced by different methods. (a) Original retinal image. (b) Mosaic image produced by
the proposed method. (c) Stitch result obtained by AutoStitch. Two vascular mismatching structures and one blurred structure are indicated
by white arrows in (c).
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especially valuable for retina change detection. Although
visually appealing results can be produced with the proposed
method, its clinical usefulness should be further confirmed.
We plan to improve the efficiency of the algorithm to realize
real-time stitching algorithm. In addition, we plan to im-
prove the algorithm for precise registration on large images
with different overlaps.
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