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Abstract. The present study aimed to identify genes associ-
ated with increased risk of myocardial infarction (MI) and 
construct an early diagnosis model based on support vector 
machine (SVM) learning. The gene expression profile data 
of GSE34198, containing 97 human blood samples including 
49 patients with MI and 48 healthy individuals, were obtained 
from the Gene Expression Omnibus database. Differentially 
expressed gene (DEG) screening, DEG enrichment analysis, 
protein‑protein interaction (PPI) network investigation and 
clustering analysis were performed. The feature genes were 
identified using the neighboring score algorithm. Furthermore, 
a recursive feature elimination (RFE) algorithm was employed 
to screen risk factors among feature genes. The SVM predic-
tion model was constructed and validated using the dataset 
GSE61144. A total of 1,207 DEGs (724 downregulated, 483 
upregulated) between the two groups were identified. PPI 
analysis investigated 1,083 DEGs and 46,363 edges. In total, 
87 genes were selected as candidate genes, and were primarily 
enriched in functions including ‘G‑protein coupled receptor 
signaling’ or pathways such as ‘focal adhesion’. Furthermore, 
15 genes with a high RFE score were selected to construct 
an SVM prediction model. The model's average accuracy was 
86%. Data set verification showed that the predictive precision 
reached 0.92. High expression of the genes vascular endo-
thelial growth factor A, A‑kinase anchoring protein 12 and 
olfactory receptor 8D2 were potential risk factors for MI. The 
SVM early diagnosis model constructed by candidate genes 
could not only predict early MI, but also provide risk prob-
ability according to the severity of MI.

Introduction

Acute myocardial infarction (MI) is myocardial necrosis 
caused by acute and persistent ischemia/hypoxia of the 
coronary artery (1). As a life‑threatening disease, MI can be 
complicated by arrhythmia, shock or heart failure (2). Although 
classical clinical diagnostic methods, such as characteristic 
electrocardiogram evolution and dynamic changes of serum 
biomarkers, have improved the outcome to a certain extent, MI 
remains a significant problem in terms of morbidity, mortality 
and healthcare costs globally (3). Therefore, effective identi-
fication of risk genes associated with the development of this 
disease is essential for patients with MI.

Genetic variants play important roles during the progres-
sion of MI (4). In certain areas, such as Japan, identification of 
polymorphisms of candidate genes can be beneficial to reveal 
the genetic risk of MI (5). The genes encoding proteins that 
affect hemostasis, such as coagulation factor XIII, play an 
essential role in the pathogenesis of MI and are ideal candi-
date genes for assessing the risk of acute MI (6). Bis et al (7) 
indicated that the variation in inflammation‑related genes, 
including those encoding interleukin  (IL)‑1β, IL‑6 and 
C‑reactive protein, are involved in the progression of nonfatal 
incident MI or the risk of ischemic stroke.

Mathematical modeling is an important tool for the investi-
gation of MI epidemics (8). Support vector machine (SVM) is 
a supervised learning model used for classification and regres-
sion analysis (9). SVM has been successfully employed for the 
detection of acute MI using serial electrocardiograms (10). 
An SVM radial‑based model provided improved classifica-
tion performance compared with the linear SVM model, and 
the use of SVM models could improve disease classification 
performance (11). Despite these advances in the study of MI 
pathogenesis and research tools, the genes associated with a 
risk of MI remain unclear and an early diagnosis model based 
on SVM is yet to be developed. Thus, an investigation of 
abnormal genes and their related biological functions might 
be beneficial to reveal MI risk‑associated genes and enable 
diagnostic model construction.

A previous study has explored the genetic predisposition 
to acute MI  (12). Although genes associated with genetic 
risk of acute MI were revealed, the detailed molecular 
mechanisms of candidate genes and associated models for the 
clinical diagnosis of MI are still unclear. In the present study, 
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an investigation of differentially expressed genes  (DEGs), 
function and pathway enrichment analyses, protein‑protein 
interaction (PPI) network analysis and clustering analysis were 
performed using previously reported data (12). Furthermore, 
an SVM prediction model was constructed and validated 
using other gene expression profiles. These findings may help 
to identify MI risk‑associated genes, and develop an early 
diagnostic model based on these genes using SVM.

Materials and methods

Data resource. GSE34198 gene expression profile data (12) 
were downloaded from the Gene Expression Omnibus (GEO) 
database based on the GPL6102‑11574 platform. The dataset 
was obtained from peripheral blood samples of 97 participants, 
including 49 samples from patients with acute MI (MI group) 
and 48 samples from healthy individuals (control group).

Data preprocessing and investigation of DEGs. The 
downloaded original data were processed using the RMA 
package (version 0.1.0; https://www.rdocumentation.org/pack-
ages/affy/versions/1.50.0/topics/rma) in R software (13). To 
investigate the DEGs among different groups, the Z‑score 
method was used for the standardization of data (13). Then, the 
Limma package (version 3.38.3) (14) in R was used to reveal 
DEGs between the control and MI groups. P<0.05 and |log fold 
change (FC)|>1 were considered to be the standards for the 
screening of DEGs.

PPI network construction. Based on Human Protein 
Reference Database protein interaction data (15), the DEGs 
were mapped to a human protein interaction network, 
and the interaction relationship was edged to construct an 
MI‑specific PPI network. The degree (number of connections 
for the target protein) was used to evaluate the important 
target genes (16). The PPI network was constructed based 
on Cytoscape (version 3.4.0) software (17). To complement 
the incomplete gene interaction network, the network was 
extended by introducing non‑DEGs that interacted with at 
least 20 DEGs.

Feature gene investigation. Disease‑related genes often 
participate in the same disease pathway or biological processes 
together with their various adjacent proteins. Since the proteins 
involved in disease pathways and their adjacent proteins are 
related in terms of expression, the genes that were associated 
with MI were identified using the neighborhood score (NS 
score) network algorithm (18). This algorithm calculates the 
FC value of the central node and its surrounding neighbor 
nodes to calculate the degree of node changes in the disease 
state and its impact on other genes around it, so as to identify 
disease‑related genes. According to the probability density 
distribution of the score, the nodes with the highest absolute 
scores were selected as the candidate feature genes.

Unsupervised hierarchical clustering analysis. To verify that 
the candidate feature genes could effectively distinguish the 
control group from the MI group, an unsupervised hierarchical 
clustering analysis was performed on all samples based on 
candidate feature genes. Pearson correlation coefficients were 

used to calculate a similarity matrix, and average linkage was 
used to calculate the value of linkage. The clustering results 
were visualized using a heatmap.

Enrichment analysis of DEGs. Using DAVID software 
(version 6.8) (19), Gene Ontology‑biological function (GO‑BP) 
annotation (20) and Kyoto Encyclopedia of Genes and Genomes 
pathway enrichment analysis (21) were performed on DEGs. 
P<0.05 and a count >5 were chosen as the cut‑off criteria for 
the present enrichment analysis. The enrichment process was 
realized using a corrected Fisher's exact test algorithm (22).

Feature selection of candidate feature genes. To optimize and 
screen out representative genes that could be used as clinical 
diagnostic markers for model construction, all candidate 
feature genes were enrolled for current feature selection. The 
recursive feature elimination (RFE) algorithm (23) in machine 
learning was used to evaluate the effectiveness of classifying 
and identifying patients with different risks through iterative 
random feature combination.

SVM model investigation. The confusion matrix is a standard 
format for precision evaluation. The precision index reflects 
the accuracy of image classification from different aspects. A 
confusion matrix algorithm (24) in SVM was used to construct 
the confusion matrix. SVM is a blend of linear modeling and 
instance‑based learning (25). An SVM selects a small number 
of critical boundary samples, called support vectors, from 
each category and builds a linear discriminate function that 
separates them as widely as possible (26). Five‑fold cross‑vali-
dation on a receiver operating characteristic (ROC) curve was 
used to evaluate the effectiveness of the model. To observe 
the distribution of samples under different characteristics 
intuitively, the result was visualized via two‑dimensional and 
three‑dimensional (3D) images.

Validation of independent data. The GSE61144 dataset (27) 
[seven pre‑percutaneous coronary intervention (PCI) samples, 
seven post‑PCI samples and 10 control samples; GPL6106 
Sentrix Human‑6 v2 Expression BeadChip platform] obtained 
from the GEO database was used as the validation data in the 
current study. In the independent data validation process, the 
normal healthy control group (10 control samples) and the 
MI disease group (seven pre‑PCI samples and seven post‑PCI 
samples) were used as two subgroups to verify the efficacy 
of the model in predicting patients with MI. The classifica-
tion model was used to classify and identify 24 samples in the 
verification data.

Results

Identification of DEGs and PPI network investigation. A 
total of 1,207 DEGs, which included 724 downregulated and 
483 upregulated genes, were obtained among the groups with 
thresholds of P<0.05 and |logFC|>1.

Based on these DEGs, a PPI network was further 
constructed (data not shown). There were 1,083 nodes and 
46,363 edges in this network. Among the 1,083 nodes, there 
were 328 upregulated genes, 217 downregulated genes and 538 
extended genes directly interacting with at least 20 DEGs.
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Candidate gene exploration and unsupervised hierarchical 
clustering analysis. The probability density distribution of 
all DEGs was evaluated by calculating the NS score. An NS 
score of 0.8 indicated that the corresponding nodal degree and 
FC of genes had a high expression value. Thus, with a score 
of 0.8, a total of 87 DEGs, including EHBP1 (NS score=0.96), 
EX0C6B (NS score=0.96), GRB10 (NS score=0.92), 
A‑kinase anchoring protein 12 (AKAP12; NS score=0.91) 
and SOX4 (NS score=0.91) were selected as candidate genes. 
Unsupervised hierarchical clustering was performed for these 
87 DEGs (Fig. 1). Almost all the MI samples were clustered 
in the left cluster, while most of the normal samples were 
clustered in the right cluster. This indicated that the candidate 
genes identified by the neighborhood score algorithm could be 
used to distinguish MI samples from non‑MI samples.

Enrichment analysis. The functional enrichment of candidate 
genes was performed using Fisher's exact test (Table I). The 
result showed that these genes were mainly enriched in func-
tions such as ‘G‑protein coupled receptor signaling’ [olfactory 
receptor (OR)5I1, OR1A1, ENPP2, CD3E, LHCGR, NPBWR2, 
HTR4, AKAP12, OR1D2, OR1G1, OR51M1, OR8B8, OR7C1, 
OR51B5, OR8D2 and GLP1R] and pathways including ‘focal 
adhesion’ (EGFR, KRAS, PAK3, JUN, TGFA, MAPK8 and 
CAMK2A).

Feature selection and subnetwork analysis for candidate 
genes. To improve the prediction accuracy, feature selection 
was performed using the RFE algorithm (Fig. 2). The model 
had the highest prediction accuracy when 15 features were 
combined  (85%). The gene expression distribution of 15 
genes, HES5, ZNF417, GLRA2, OR8D2, HOXA7, FABP6, 
MUSK, HTR6, GRIP2, OR51M1, OR1C1, KLRK1, vascular 
endothelial growth factor A (VEGFA), AKAP12 and RHEB, 
are shown in Fig. 3. Most of the genes were upregulated in 
patients with MI, although the expression levels of the OR8D2, 
OR1C1, HES5 and VEGFA genes were lower in the MI group 
than those in the control group. These 15 feature genes and 
non‑DEGs that interact with candidate genes were extracted 
from the PPI network to construct the subnetwork (Fig. 4). 
There were 107 nodes and 117 edges in the current subnetwork.

Classification model constructed using candidate genes. A 
total of 15 genes obtained from the feature selection in this 
study were used as salient features to construct a classification 
model based on the SVM classifier (Fig. 5A). The five‑fold 
cross‑validation fit the average area under the curve (AUC) 
value of 0.86, which further indicated that the average predic-
tion accuracy of the model was 86%. To compare the accuracy 
of the SVM classification model in predicting patients that are 
high‑risk for MI compared with healthy controls in greater 
detail, a confusion matrix was used for visualization (Fig. 5B). 
The prediction accuracies of the confusion matrix were 88 and 
90% for the MI group and control group, respectively. The 3D 
distribution analysis of prominent features in the MI group 
and control group is shown in Fig. 5C. Significant differences 
were evident in the distribution between the two groups of 
samples. PPP1CC, GLP1R and ERCC3 were the first three 
genes of significance and were selected as the coordinate axis. 
Consequently, this indicated that the SVM model constructed 

in the present study by the MI specific biomarkers could be 
used to predict those at high risk of MI.

Data validation. The validation of independent data was 
performed using the GSE61144 dataset obtained from the GEO 
database. The P‑value distribution indicated that the P‑values 
of pre‑(average 0.64) and post‑PCI (average 0.51) were higher 
compared with the control samples (average 0.19), which indi-
cated that the model could distinguish patients with MI from 

Table I. Function and pathway enrichment of DEGs.

A, GO‑BP analysis

Term	C ount	 P‑value

ErbB signaling pathway	 7	 4.903x10‑5

Focal adhesion	 8	 9.329x10‑4

Pancreatic cancer	 5	 1.500x10‑3

Renal cell carcinoma	 5	 1.500x10‑3

Neurotrophin signaling pathway	 6	 2.000x10‑3

Olfactory transduction	 10	 3.000x10‑3

cAMP signaling pathway	 7	 3.900x10‑3

GnRH signaling pathway	 5	 5.100x10‑3

Oxytocin signaling pathway	 6	 5.700x10‑3

Choline metabolism in cancer	 5	 7.300x10‑3

Proteoglycans in cancer	 6	 1.830x10‑2

Neuroactive ligand‑receptor interaction	 7	 1.890x10‑2

Insulin signaling pathway	 5	 2.120x10‑2

Hepatitis B	 5	 2.490x10‑2

Ras signaling pathway	 6	 2.920x10‑2

B, KEGG analysis

Term	C ount	 P‑value

ErbB signaling pathway	 7	 4.903x10‑5

Focal adhesion	 8	 9.329x10‑4

Pancreatic cancer	 5	 1.500x10‑3

Renal cell carcinoma	 5	 1.500x10‑3

Neurotrophin signaling pathway	 6	 2.100x10‑3

Olfactory transduction	 10	 3.000x10‑3

cAMP signaling pathway	 7	 3.900x10‑3

GnRH signaling pathway	 5	 5.100x10‑3

Oxytocin signaling pathway	 6	 5.700x10‑3

Choline metabolism in cancer	 5	 7.300x10‑3

Proteoglycans in cancer	 6	 1.830x10‑2

Neuroactive ligand‑receptor interaction	 7	 1.890x10‑2

Insulin signaling pathway	 5	 2.120x10‑2

Hepatitis B	 5	 2.490x10‑2

Ras signaling pathway	 6	 2.920x10‑2

GO‑BP, Gene Ontology‑biological process; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; Count, the number of genes 
assembled/enriched in certain GO‑BP function/KEGG pathway; 
DEG, differentially expressed gene.



FANG et al:  RISK GENES AND SUPPORT VECTOR MACHINE MODEL OF MYOCARDIAL INFARCTION1778

normal individuals. Meanwhile, the average P‑value of pre‑PCI 
was higher compared with post‑PCI samples indicated that 
PCI treatment could alleviate the progression of MI (Fig. 6A). 
Moreover, the validation samples were divided into a control 
group and patients with MI group. The ROC curve analysis 
of validation data showed that the accuracy of the AUC value 
calculated using the predicted results of the model was 0.92, 
which proved that this accurately predicted MI (Fig. 6B).

Discussion

MI is a disease with high mortality and mobility worldwide (28). 
A family history of MI is an important risk factor for MI, and so 
far, numerous studies have sought to identify genetic factors asso-
ciated with MI (6,29,30). In the present study, in order to identify 
the MI‑associated risk genes, a total of 1,207 DEGs were explored 
between two groups from the GSE34198 dataset, followed by a 
PPI network construction (1,083 genes and 46,363 edges). A total 
of 87 candidate genes were identified by evaluating these genes 
using NS score. The 87 genes were mainly enriched in functions 
such as ‘G‑protein coupled receptor signaling’ and pathways 
including ‘focal adhesion’. Furthermore, an RFE algorithm was 
used to screen out 15 genes with the highest prediction accuracy, 
which were further used to construct a prediction model based 
on SVM. Finally, a microarray dataset GSE61144 was used to 
verify that the accuracy of the model was 0.92.

AKAP12 is a member of the AKAP family, and serves an 
essential role in the morphogenesis of muscles (31). Members 
of the AKAP family participate in various biological functions 
associated with the heart, such as heart potassium channel phos-
phorylation (32) and cardiac muscle contraction (33). AKAP12 

also enhances β2‑adrenoceptor sensitivity in tracheal smooth 
muscle (34). In an animal model, a previous study revealed that 
AKAP12 regulated by heat shock protein A12B participates in 
ventricular dysfunction during the progression of MI (35). The 
biological function of AKAP12 is commonly realized by its 
participation in the G‑protein coupled receptor pathway (36). 
G‑protein coupled genes (such as P2RY2) have been shown 
to play an important role in the progression of atherosclerosis, 

Figure 2. Feature elimination of candidate genes. The x‑axis indicates the 
number of features selected, and the y‑axis indicates the prediction accuracy 
based on the selected feature set. Random combinations of any number of 
features in all candidate genes were used as the feature to compare prediction 
accuracy.

Figure 1. Hierarchical clustering of candidate genes. The x‑axis indicates different samples, and the y‑axis indicates candidate genes. Blue and red denote the 
samples in the control group and the MI group, respectively. Gene expression values are expressed as a thermogram. Blue denotes upregulated genes in the MI 
samples and yellow denotes downregulated genes in the MI samples. MI, myocardial infarction.
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which can lead to the development of MI (37). The variation 
of endothelial G‑protein coupled receptor pathways in arteries 
contributes to compensated left ventricular hypertrophy (38). 
OR8D2 belongs to a subfamily of olfactory receptor genes (39). 
Aisenberg et al (40) showed that the OR family of genes partici-
pates in the biological function of airway smooth muscle and 

belongs to the superfamily of G‑protein coupled receptors. A 
close relationship between the OR family and G‑protein coupled 
receptors has previously been described (41). In the current 
study, genes including AKAP12 and OR8D2 were revealed 
as DEGs between patients with MI and healthy individuals, 
and thus were selected as candidate genes for MI prediction. 

Figure 4. Subnetwork constructed by candidate genes. The red polygon denotes upregulated DEGs. The green rhombus denotes downregulated DEGs. The blue 
square node denotes extended genes that interact directly with DEGs. DEG, differentially expressed gene.

Figure 3. Distribution of candidate genes in the two groups of samples. Red indicates the MI group; green indicates the control group. MI, myocardial infarction.
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Importantly, GO‑BP function enrichment analysis showed that 
AKAP12 and OR8D2 were both associated with ‘G‑protein 
coupled receptor signaling’. Thus, it was hypothesized that 
AKAP12 and OR8D2 might participate in the progression of 
MI via ‘G‑protein coupled receptor signaling’.

The VEGF gene encodes a potent and selective angio-
genic agent that is required for mesangial cell migration 
and survival  (42). Endogenous VEGFA is responsible for 
mitogenic effects of macrophage chemoattractant protein‑1 
on vascular smooth muscle cells  (43). The upregulation of 
VEGFA is associated with the progression of MI (44). Gene 
transfer of VEGF‑A165 after MI affects angiogenic and cardiac 
functions  (45). Drugs such as Danshen, improve damaged 
cardiac angiogenesis and cardiac function induced by MI 
by modulating the VEGFA‑related signaling pathway (46). 
Another previous drug experiment using an animal model 
indicated that puerarin accelerates cardiac angiogenesis and 

improves cardiac function of MI by upregulating VEGFA (47). 
SVM is a machine learning method developed on the basis 
of statistical learning theory. SVA uses the training error as 
the constraint condition of the optimization problem, and the 
minimum of the confidence range value as the optimization 
goal. SVM is the realization of a structural risk minimization 
principle (48). Furthermore, SVM was reported to contribute 
to the detection of an acute MI from a serial electrocardio-
gram (10). Autoregressive coefficients were demonstrated as 
being useful to characterize the feature of atrial fibrillation, 
and this feature could be classified using different statistical 
classifiers such as kernel SVM  (49). Based on SVM, the 
automated risk identification of MI was realized based on 
certain features, which included the relative frequency band 
coefficient (50). In the present study, VEGFA was explored as 
a DEG and was revealed as a candidate gene for MI prediction. 
Importantly, the early diagnosis model of SVM constructed 

Figure 6. Results of independent data validation. (A) Distribution of P‑values of samples in the three groups. The red dots represent the control samples. The 
green triangle represent seven patients with MI post‑PIC. The blue square represent the patients with MI pre‑PIC. The x‑axis represents the index (24 samples 
in the validation set) and the y‑axis represents the P‑value corrected by control. (B) ROC curve analysis for model efficacy based on validation data. The x‑axis 
represented the FPR and the y‑axis represented the TPR. ROC, receiver operating characteristic; MI, myocardial infarction; AUC, area under curve; FPR, false 
positive rate; TPR, true positive rate.

Figure 5. Classification model constructed using candidate genes. (A) ROC curve of SVM based on 15 genes as features. The x‑axis indicates the false positive 
rate and the y‑axis indicates the true positive rate. The five‑fold cross‑validation is represented by five colors. The final fitted average is denoted by the black 
dotted line. (B) Confusion matrix obtained by constructing SVM classifiers based on 15 genes as features. The rows represent the true labels and the columns 
represent predicted labels. The more consistent the predicted labels were with the real labels, the more accurate the prediction was, and the closer the color is to 
red. (C) 3D analysis for efficiency of SVM model based on candidate genes. Red represent myocardial infarction samples and blue represents control samples. 
The color gradient is caused by overlapping samples; the darker the color, the more samples overlap. The three axes represent the first three outstanding genes 
including PPP1CC, GLP1R and ERCC3, which were the first three genes of significance. ROC, receiver operating characteristics; SVM, support vector machines.
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using 15 candidate genes, including VEGFA, could be used to 
predict patients at a high risk for MI.

Thus, it is proposed that the early diagnosis model of SVM 
can not only predict early MI, but also indicate the probability 
of risk according to the severity of MI. Genes including 
VEGFA might be novel candidate risk genes for MI prediction. 
Furthermore, AKAP12 and OR8D2 may participate in the 
progression of MI via G‑protein coupled receptor signaling.

The present study has several limitations. More factors 
that may affect the accuracy of the prediction model need 
to be screened to determine the diagnostic efficacy of these 
biomarkers. It is also necessary to confirm whether the patient 
has received relevant treatment, such as nitroglycerin injec-
tion, before taking blood samples and whether the patient has 
other cardiovascular diseases. In addition, these results require 
validation in a larger cohort of patients with MI. In the future, 
a prospective study is required to validate the diagnostic 
potential of these biomarkers. Combining biomarkers with 
other diagnostic methods is also a worthwhile venture.
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