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Abstract: Herd immunity is the most critical and essential prophylactic intervention that delivers
protection against infectious diseases at both the individual and community level. This process of
natural vaccination is immensely pertinent to the current context of a pandemic caused by severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) infection around the globe. The conventional idea
of herd immunity is based on efficient transmission of pathogens and developing natural immunity
within a population. This is entirely encouraging while fighting against any disease in pandemic
circumstances. A spatial community is occupied by people having variable resistance capacity against
a pathogen. Protection efficacy against once very common diseases like smallpox, poliovirus or
measles has been possible only because of either natural vaccination through contagious infections or
expanded immunization programs among communities. This has led to achieving herd immunity in
some cohorts. The microbiome plays an essential role in developing the body’s immune cells for the
emerging competent vaccination process, ensuring herd immunity. Frequency of interaction among
microbiota, metabolic nutrients and individual immunity preserve the degree of vaccine effectiveness
against several pathogens. Microbiome symbiosis regulates pathogen transmissibility and the success
of vaccination among different age groups. Imbalance of nutrients perturbs microbiota and abrogates
immunity. Thus, a particular population can become vulnerable to the infection. Intestinal dysbiosis
leads to environmental enteropathy (EE). As a consequence, the generation of herd immunity can
either be delayed or not start in a particular cohort. Moreover, disparities of the protective response
of many vaccines in developing countries outside of developed countries are due to inconsistencies
of healthy microbiota among the individuals. We suggested that pan-India poliovirus vaccination
program, capable of inducing herd immunity among communities for the last 30 years, may also
influence the inception of natural course of heterologous immunity against SARS-CoV-2 infection.
Nonetheless, this anamnestic recall is somewhat counterintuitive, as antibody generation against
original antigens of SARS-CoV-2 will be subdued due to original antigenic sin.
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1. Introduction

Herd immunity, or community immunity, is fundamentally a concept of acquiring immunity
through natural infection, or mass vaccination, in a particular population. While the purpose of
individual vaccination is to prevent or reduce the chances of recurrent infection, in public health,
the goal of herd immunity is to increase immunization efficacy to control or eradicate the infection in a
particular cohort. Herd immunity is evidently a sequential process, because natural or vaccine-based
immunity is lost over time through the waning of immune individuals due to death, and arrival of
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newly susceptible individuals due to birth or migration. Thus, to sustain herd immunity, it is important
to vaccinate at regular intervals [1]. Herd immunity recuperates the protection against pathogens that
are contagious in nature [2–4]. The successful eradication of several viral diseases such as smallpox [5]
and poliovirus, reduction in transmission of pertussis and protection against influenza, pneumococcal
disease, cholera [6] and rotavirus [7] was possible only through expanded immunization programs that
have been fundamental factors for evolving herd immunity [8]. In addition, the level of vaccination
needed to be achieved through herd immunity varies depending upon the frequencies of secondary
infections [3,9]. For example, in measles, a highly contagious viral disease, one person can infect
up to 18 individuals. Thus, 95% of the people are required to be immune in order to achieve herd
immunity. The new SARS-CoV-2 has a lower infection rate than measles. On average, each infected
person can pass the virus to two or three new people [10]. This means that herd immunity should be
achieved when around 60% of a particular population becomes exposed to coronavirus disease 2019
(COVID-19) [11].

Here, we outline several factors that can directly or indirectly alter the acquisition of immunity.
Among those factors, the gut microbiota is an essential element that contributes to shaping individual
immunity and thereby mapping the population immunity. Gut microbiota, along with nutrients and
environmental factors, play an indispensable and cumulative role in establishing herd immunity
against any infectious disease. We propose that heterologous immunity is the most important factor
contributing protection against SARS-CoV-2 infection in India. The robust poliovirus vaccination
program developed herd immunity. This same method has the ability to deliver the protection against
coronavirus infection.

2. Trinity of the Immune System Development: Microbiome, Nutrients and Environmental
Factors

2.1. Putting the Microbiome, the Second Brain to Develop the Immune System

To generate efficient herd immunity, the maturation of the immune system is an essential and
fundamental factor. Alterations of the microbiota by any means could pose an negative impact on
the immune system’s development which upsets the vaccination program and subsequently, herd
immunity [12,13]. Collectively, the microbial community residing in our body is termed as the
microbiota. Microbiota, the ‘second brain’ of the body, outnumber the total cells of the human body by
several fold. Ninety-nine percent of the total genome of human comes from microbiota. One percent
comes from 23,000 genes of the body’s own cells [14–16]. The gut microbiota dysbiosis significantly
affects the development and function of both innate and adaptive immunity [17,18]. The human
microbiome regulates several functions of the body such as nutrient metabolism, intestinal barrier
functions, shaping of the immune system, etc. It supports the prevention of several diseases and
contributes to improving the genetic diversity in the population [19]. The absence of normal microbiota
aggravates the maturation of the immune system, affecting both structure and functions as suggested
by studies in germ-free (GF) mice [20,21]. However, by restoring microbiota symbiosis, all these effects
can be reinstated.

In addition, the microbiome seems to provide a plausible explanation about the differential response
of vaccination at both individual and population level. Gut microbiota have specific immunomodulatory
properties [22]. Bacteroides fragilis, a Gram-negative bacteria (Phylum-Bacteroidetes) regulates mucosal
tolerance to self-antigens by maintaining T-cell homeostasis, preventing T-helper-1 (Th1)/Th17
balance [23] and induces suppressive forkhead box p3+ (Foxp3+) T-regulatory cells (Treg) functions
by encouraging anti-inflammatory cytokines such as interleukin-10 (IL-10) and transforming growth
factor-β (TGF-β) [24]. Similar preferment of Treg differentiation has been shown with the presence of
Clostridia sp. in the colon, but not in the small intestine in maintaining the immune cell homeostasis [25].
Additionally, differentiation of Th17 cells and mucosal immunoglobulin-A (IgA) secretion are possible
only with the colonization of segmented filamentous bacteria (SFB) [26]. Several mucosal pathogens
such as bacteria, virus and fungi uphold both Th17 and IgA. The ecology of the microbiome is crucial,
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attaining the highest efficacy of vaccination since infants born because the immunization process has
mostly been accomplished during childhood (Figure 1). An infant’s microbiome is determined by the
maternal–offspring exchange of microbiota [27]. It becomes similar to the adult microbiome by three
years of age. Until then, it is highly variable [28] and grows uninterrupted, along with the development
of the immune system [20]. The total microbiome composition of infants is mostly occupied by the phyla
such as Firmicutes, Tenericutes, Proteobacteria, Bacteroidetes and Fusobacteria based on commensal
microbiota harbors in the placenta [29–31]. The variation of commensals is also related to mode of
infant delivery. The intestinal flora of neonates born by vaginal delivery resemble the maternal vaginal
flora. They are prevalent with Lactobacillus sp. and Prevotella sp. [32]. In another report, vaginal delivery
supports higher existence of facultative anaerobic organisms like Escherichia coli, Staphylococcus sp.,
Streptococcus sp. and other Enterobacteriaceae (Phylum Proteobacteria) for first few days of birth [27,33].
Nonetheless, caesarean babies are predominantly colonized with maternal-skin microbiota such as
Clostridium, Staphylococcus, Propionibacterium and Corynebacterium [34,35]. After birth, milk feeding has
the most significant impact on changing the microbiome composition of children. Breast milk provides
increased prevalence of Bifidobacterium sp. (phylum Actinobacteria) in the intestinal track of infants.
Infants are also occupied with higher abundance of Staphylococcus sp. Streptococcus sp., Lactobacillus sp.
(phylum Firmicutes), Serratia sp., Ralstonia sp. (phylum Proteobacteria), Corynebacterium sp. (phylum
Actinobacteria), etc. in their gut [36]. In contrast, there is a richness of aerobic bacteria and lower
frequencies of Bifidobacterium sp. in the guts of bottle milk-fed infants [37–39]. The neonatal gut
microbiota not only programs the metabolic function, but also educates the naïve immune system,
without which, the success of vaccination will be precluded.
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Figure 1. Trinity of the immune system development and vaccine efficiency. The immune system
and microbiota mutually co-evolve together in a symbiotic relationship. The impact of microbiome
on the immune system development cannot be ignored. From fetus to adulthood, microbiomes are
synchronized by maternal transfer and environmental factors. Early maternal factors such as mode
of delivery, breastfeeding, antibiotics and diets all influence the immune system. Hence, all have an
impact on subsequent immunological responses to many vaccines. Development of herd immunity
in a community against any infection is the result of a complex outcome of host-specific factors such
as microbiota, metabolism and environmental conditions. Malnutrition and repeated gastrointestinal
infections reduce many vaccines’ efficacy. Microbial dysbiosis, along with environmental enteropathy
(EE) influences undernourishment. It impairs the immune system development and decreases the
efficiency of vaccines in a community, thereby compromising herd immunity.
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2.2. Impact of Nutrients

The balance among nutrient metabolism, microbiota and vaccination efficiency is affected by
leptin signaling [40], which regulates the hunger threshold, as well as cellular immunity by maintaining
Th1/Th2 balance [41] and suppressing Treg cell differentiation [42]. In addition, GF mice have reduced
leptin expression, suggesting a connection between microbiota and leptin-mediated immune response
in the vaccination process [43]. Furthermore, several metabolites are critical, as short-chain fatty acids
(SCFAs) show an example of how nutrient processing by microbiota shapes the development of the
immune system [44]. SCFAs are generated exclusively by microbiota. Important SCFAs (butyrate and
acetate) help to maintain intestinal epithelial integrity [45,46]. Vitamin A (retinoic acid) deficiency in the
diet has also been linked to the amplified frequency of E. coli, causing enteric infections [47]. Vitamin
A can promote the balance between both Treg and Th17 subsets. Imbalance of Vitamin A causes
amelioration of Th17 subsets in the small intestine, which is associated with increased SFB [48,49].
Thus, microbiota frequencies are the indispensable factors for successful immunization. The impact of
nutrients to support the microbiota symbiosis cannot be disregarded (Figure 1).

2.3. Impact of Environmental Factors

The aforementioned reports suggest that both nutrition metabolism and composition of microbiota
influence the expansion of innate and adaptive immune systems (Figure 1). According to the Centers
for Disease Control, every 1 in 10 children in the USA and one in four children in Europe suffer
from various allergic disorders [50], bringing allergic diseases to an epidemic condition [51,52]. This
is strongly aggravated in urban environments involving various pollutants. Exposure to various
pollutants disturbs the frequencies of the microbiome in the body. In contrast, the concept of the
hygienic hypothesis recommends that exposure to certain viral infections in early life and large family
size reduces the risk of suffering from hay fever and allergic rhinitis [53]. The hygienic hypothesis
basically takes into account the “critical period of development” or “window of opportunities” in
early childhood, during which the immune system of the adult is shaped by intrinsic or extrinsic
factors [54] (Figure 1). The shaping of ideal immune system decides the success of the vaccination.
Dietary changes and the environmental factors can account for up to 57% of gut microbiota changes,
affecting the immune system [55]. Consequently, westerners have less microbial diversity in the gut
because of diets high in saturated fats and low in fiber, which affect the microbiota enrichments [56,57].
In a similar study, Filippo C et al. 2010, observed that the microbiota of rural Africans fluctuates
vividly from that of city-dwelling European children. African children had more anti-inflammatory
commensal bacterium such as Bacteroides sp., Prevotella sp., Faecalibacterium prausnitzii, Xylanibacter sp.,
etc. They had lower frequencies of both Firmicutes and Enterobacteriaceae that help in the generation
of short-chain fatty acids (SCFA) for providing anti-inflammatory responses in the gut. These studies
further implied that higher frequencies of anti-inflammatory commensal microbiota augmented the
immunization adeptness to protect children from certain pathogens (including enteropathogens). In
contrast, malnutrition aggravated vaccine efficacy in a community where microbiome dysbiosis is
prevailing due to EE [12,58].

3. Route of Immunization Determines the Efficacy of Herd Immunity

The vaccine is the imperative prophylactic intervention preventing the burden of several
infectious diseases [59,60]. Oral vaccines are used mostly in developing countries, although significant
discrepancies exist in the competency of the oral vaccines based on the geographical distributions [61–63].
Many vaccines with both living or non-living agents, such as B-subunit-inactivated whole-cell
combination vaccine [64], poliovirus vaccine, SC602 live Shigella flexneri 2a vaccine [65], oral rotavirus
vaccine (RVV) [66], CVD 103-HgR live cholera vaccine [67,68], have also demonstrated differential
immunogenic responses based on their route of immunization. In the case of oral poliovirus vaccine
(OPV), live attenuated poliovirus is given orally in India from birth. OPV can spread efficiently and
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triggers the innate immunity followed by T-cell and B-cell activation because live microbes can persist
for longer periods than dead organisms. Thus, significant T-memory cells and B-memory cells are
generated, which are key factors for the competence of herd immunity. OPV can generate antibodies
which limit the proliferation of challenged wild poliovirus and thwart person-to-person transmission.
Nonetheless, in the USA, formalin-fixed inactivated poliovirus vaccine (IPV) is given in newborn
babies. IPV cannot spread to different organs, and can activate only B-cell for antibody production.
The dead vaccines sometimes escape T-cell activation because the antigens do not persist in the immune
system for a substantial period. To activate T-cells, vaccine candidates must endure in the body long
enough for antigen presentation (Figure 2a,b). In the case of IPVs, dead vaccine candidates are directly
processed by B-cells to produce antibodies for neutralizing the pathogens. Thus, IPV poses only
individual protection but cannot prevent the spread of wild poliovirus in the community. Hence,
the chances of herd immunity against the IPV is very low. In different oral vaccinations, the microbiome
plays a pivotal role in providing mucosal immunity [69]. The enhancement of mucosal immunity
is the symphony of the immunization process. Similarly, in OPV, the intestinal microbiome has a
significant influence on mucosal immunity-mediated adequate vaccine responses. This is deficient
in IPV, in which the route of immunization is parenteral [70]. Thus, the microbiome seems to give
plausible justification for developing herd immunity in the OPV (Figure 3).
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Figure 2. Vaccine efficiency depends on the repertoire diversity of T-cells and B-cells. (a) Upon contact
with antigen-presenting cells (APCs) through the T-cell receptor (TCR)–antigen–major histocompatibility
complex (MHC) complex, naïve T-cells are differentiated into effector and memory T-cells. Based on the
antigenic property, effector T-cells are of two types, i.e., CD4+ T-helper (Th) or CD8+ T-cytotoxic (Tc)
cells. Antigens exposed by MHCII binds with TCRs of Th cells and antigens exposed by MHCI binds
with TCRs of Tc cells. Th cells have the potential to further differentiate into Th1, Th2, Th17 and induced
regulatory T-cells (iTreg), a process controlled by the lineage-specific transcription factors and effector
cytokines produced by APCs. Effectiveness of memory T-cells decides the efficacy of vaccination;
(b) B-cells (APCs) recognize antigens by their B-cell receptors (BCRs), followed by internalization of
antigens and presented to Th cells, which are specific to same antigen. The TCRs of Th cells interact
with antigens exposed by MHCII of B-cells. Then, activated B-cells trigger their own proliferation and
differentiate into antibody-secreting plasma cells and memory B-cells. Activation and class switching
of B-cells is the key factor for the success of immunization.
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Figure 3. Herd immunity and microbiota. Maturity of the herd immunity against any infectious disease
is a significant means of acquiring protection during an epidemic or pandemic situations. A spatial
community is occupied by people having a variable degree of resistance against a particular infection.
Microbial symbiosis regulates pathogen transmission dynamics and the efficacy of vaccination among
different individuals in a population, promoting the development of herd immunity. In contrast,
dysbiosis of the microbiome causes immune dysregulation, generating the suboptimal immune response
and negative impacts on a vaccination program. Therefore, the number of sick individuals increases in
a particular cohort. This reduces the chances of evolving herd immunity and increases the sick and
contagious patients in a community.

4. Potential Role of the Microbiome in the Individual Vaccination to Community Immunity

4.1. Differential Expression of Microbiota Decides the Fate of Vaccination

Vaccines are the most important preventive interventions for reducing the burden of several
infectious diseases [59,60]. The microbiome plays an essential role in shaping the immune system,
and determines the efficacy of different vaccines, developing protective immune responses against
variety of diseases. Earlier reports have suggested that differences in even normal residential
intestinal microbiota between different individuals of a population can produce remarkable variations
in efficacy of many vaccines, both locally and systemically [71]. The microbiota seem to give a
plausible explanation for this (Table 1). Due to intestinal dysbiosis, there are different residential
intestinal microbiota among different individuals. It has been shown that gut colonization of
GF mice with human Bifidobacterium sp. led to enriching immune response against rotaviruses
by increasing anti-rotavirus IgA secretion. Thus, Bifidobacterium sp. engrossment is required for
the priming of the infant’s adaptive immunity [61,72–75]. Conversely, a lower vaccine response
has been correlated with increased frequencies of “Enterobacteriales”, “Pseudomonadales” and
“Clostridiales” in the case of both oral and parenteral vaccines [61]. This differential immunization
response decreases the likelihood of developing community immunity in a particular cohort. In a
separate study, a positive correlation was found between the intestinal Bifidobacterium sp. (B. longum,
B. infantis or B. breve) and heightened anti-poliovirus IgA antibodies after immunization of OPV with a
pentavalent diphtheria–tetanus–acellular pertussis–inactivated poliomyelitis–Haemophilus influenzae
type B vaccine [76]. Thus, some specific microbiome frequencies are more desirable because they are
a source of natural adjuvant for facilitating the efficacy of vaccine responses and developing herd
immunity against pathogens [77].
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4.2. Effect of EE on Vaccination

Metabolic dysfunction is associated with a weak response to many established oral vaccines.
Due to low-incomes, the availability of a balanced diet in some populations is compromised. This
exacerbates the efficacy of the oral vaccines such as cholera, poliovirus and rotavirus vaccines.
Imbalance of nutrients cultivates EE, leading to small bowel bacterial overgrowth (SBBO) among
some individuals [78]. Underprivileged children in slum communities commonly have excessive
bacterial colonization at their proximal small intestine. This impairs the architecture of intestine with
blunted villi, abnormal crypt-to-villus ratio [71,79–81]. Overburden of bacterial growth augments
the number of intraepithelial lymphocytes [82,83], resulting in a marked increase in lymphocytes,
which are the signature factors of allergic diseases [84–86]. Villous atrophy due to regular ingestion of
both contaminated food and water containing fecal–oral bacteria due to poor sanitation aggravates
plasmacytic infiltration in the lamina propria of the intestinal mucosa [87]. Concurrent enteric infections
with entero-pathogens cause intensified small intestinal inflammation, resulting in intestine–barrier
dysfunction and reducing the absorption of nutrients [88]. The aforementioned phenomenon can result
in a blunted immunization process, as has been observed with live cholera vaccine CVD-103-HgR
in an underdeveloped community. High seroconversion rates in Indonesian children living in poor
conditions required 5 × 109 colony forming unit (CFU) which is 10-fold higher dose of CVD-103-HgR
than the 5 × 108 CFU dose that is reliably immunogenic in North Americans and Europeans [67–89]
who generally have healthy diets. Thus, the success of oral vaccines depends upon both diet and
hygienic conditions. People with SBBO typically have immunologically activated small intestine [87],
indicating a pro-inflammatory state in the small intestine. Thus, for any live or attenuated vaccine
material, the proximal small intestine micro-environment becomes hostile, hampering the vaccine
program. Therefore, due to poor induction of specific innate and adaptive immune responses in such
populations, the chances of herd immunity are futile [90]. Live vaccines may then, instead of activating
the innate immunity to enhance adaptive immune responses, be destroyed by already highly activated
leaky innate immune-mediated inflammatory responses [91–93]. The low immunogenicity of oral
vaccines due to EE aggravates herd immunity [60]. Similarly, the live oral Shigella flexneri 2a candidate
SC602 vaccine also showed a protective response in North American volunteers with strong immune
response [94]. In contrast, Bangladeshi toddlers who had poor diets did not have any immunized
efficiency following the ingestion of variable CFU of SC602 [95]. In another study, infants from the
slum area of Bangladesh showed reduced efficacy of both oral RVV and OPV due to intestinal injury,
while there was no impact on the parenterally administered vaccines such as for tetanus, pertussis,
diphtheria, Haemophilus influenzae type B and measles [96,97]. Because microbiome dysbiosis induced
nutritional imbalance, the slum area of Bangladesh witnessed dominancy of both Campylobacter sp.
and enterovirus in the gut. This was negatively correlated with the immunogenicity of OPV and also
diminished IgA titer of rotavirus (Table 1) [98].

Table 1. Impact of intestinal microbiome on immune responses and vaccination.

1. Intestinal dysbiosis: Differences in microbiota composition of vaccine responders and nonresponders among different
populations.

Vaccine Type Microbial Richness Responsible for Vaccine
Effectiveness Tested Population (Ref)

Pentavalent diphtheria–tetanus–acellular
pertussis-inactivated
poliomyelitis–Haemophilus influenzae type B
vaccine (DTaP-IPV-Hib)

Existence of intestinal Bifidobacterium sp.
especially B. longum, B. infantis and B. breve under
phylum Actinobacteria enhanced anti-poliovirus
IgA antibodies.

Infants (France) [76]

OPV, Parenteral tetanus toxoid (TT), Bacillus
Calmette–Guérin (BCG) and hepatitis B
vaccine (HBV)

Abundance of Bifidobacterium longum of phylum
Actinobacteria augmented oral and parenteral
vaccine avidities among infants. Amplified
frequencies of Enterobacteriales and
Pseudomonadales encumbered vaccine specific
immune responses.

Infants (Bangladesh) [61]
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Table 1. Cont.

RVV

i. Streptococcus bovis under Firmicutes correlated
with oral RVV response. Increased Bacteroides sp.
and Prevotella sp. of phylum Bacteroidetes were
associated with lack of RVV response.

Infants (Ghana) [74]

ii. Abundance of bacteria related to Clostridium
cluster IX of phylum Firmicutes and Serratia sp.
and E. coli of phylum Proteobacteria augmented
RVV efficiency in a population.

Infants (Pakistan) [73]

Trivalent inactivated influenza vaccine (TIV)
and OPV

Activation of toll-like receptor 5 (TLR5) enriched
antibody response against TIV and OPV.
Impaired antibody response in both GF mice and
antibiotic-treated mice was restored by oral
reconstitution with flagellated strain of E. coli.

Mice [99,100]

Live attenuated oral typhoid (Ty21a)
vaccine

Cell-mediated immune response was found to be
associated with SFB under phylum Firmicutes,
while humoral response was independent of any
microbial dysbiosis.

Healthy adults [72]

2. EE: SBBO disturbing the normal gut microbiota is responsible for suboptimal response of many vaccines in low-income
settings and developing countries

Live cholera vaccine CVD-103-HgR SBBO could blunt the immunological response to
live cholera vaccine candidate CVD 103-HgR

Children from high- and
low-income countries [60,89]

Live oral Shigella flexneri 2a candidate SC602
vaccine

Lower dose of 104 CFU was adequate to elicit a
protective response in north American cohort
while the ingestion of 104, 105 or 106 CFU of
SC602 was not adequate for Bangladeshi toddlers
because of SBBO.

[94,95]

Oral RVV, OPV

i. EE was found to be associated with refuted
efficacy of oral RVV but had no impact on the
parenteral administered vaccines– tetanus,
pertussis, diphtheria, Haemophilus influenzae type
B and measles.

[96,97]

ii. Enhanced frequencies of Campylobacter sp.
under phylum Proteobacteria and enteroviruses
at the time of immunization was negatively
correlated with immunogenicity of OPV and
diminished rotavirus immunoglobulin A titer
(RVI).

Urban slum area of
Bangladesh [98]

3. Probiotics and prebiotics: Several studies mentioned about the role of both probiotics and prebiotics on vaccine efficacy which
further substantiates the significance of residential gut microbiota on vaccine effectiveness

The impact of several probiotic strains on
the efficacy of 17 different vaccines, e.g.,
diphtheria, tetanus toxoids and pertussis
(DTP), whole-cell DTP vaccine (DTwP),
diphtheria, tetanus, acellular pertussis, with
Haemophilus influenzae type B (DTaP-Hib),
DTaP-IPV-Hib, hepatitis A vaccine (HAV),
hepatitis A vaccine (HBV), Hib, live
attenuated influenza vaccine (LAIV),
attenuated virus MMR vaccine with
chickenpox vaccine or varicella vaccine
(MMRV), oral cholera vaccine (OCV), OPV,
oral rabies vaccines (ORV), pneumococcal
conjugate vaccine (PCV7), pneumococcal
polysaccharide vaccine (PPV23), polio,
trivalent inactivated influenza (TIV)
and Ty21a

Lactobacillus sp., Bifidobacterium sp. and
Saccharomyces boulardii were the most frequently
used microorganisms in probiotics. The beneficial
effects of probiotics were found to be strongest in
both oral and parenteral vaccines

[71]

S. typhimurium SL1479 vaccination

The administration of a prebiotic (a nondigestible
food component that promotes the growth of
beneficial microorganisms),
e.g., fructo-oligosaccharide/inulin mix was shown
to enhance efficacy of S. Typhimurium SL1479
vaccination

Mice [101]
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Table 1. Cont.

4. Antibiotics: Several studies in both mice and humans have shown the effect of antibiotic-mediated dysbiosis on vaccine
responses

BCG vaccine, Bexsero meningococcal
serogroup B vaccine (MenB),
the meningococcal serogroup C
vaccine-NeisVac-C (MenC); the Prevenar
13-valent pneumococcal conjugate vaccine
(PVC13); the hexavalent combination
vaccine against hepatitis B, diphtheria,
tetanus, pertussis, Hemophilus influenzae
type B, inactivated poliomyelitis virus
(INFANRIX Hexa)

Antibiotic-mediated dysbiosis in early life
impaired antibody response against these
vaccines. Restoration of commensal microbiota
retrieved vaccine efficiencies.

Newborn mice [13]

RVV
Positive correlation was observed in
antibiotic-driven microbiota modulation and
increased immunological response

Adult cohort [73]

4.3. Cardinal Effect of Probiotics and Antibiotics on Avidity of Vaccination

Probiotics are defined as live microorganisms that, when consumed orally in adequate amounts, are
beneficial to the vaccine efficacy of the host [71,102]. The advantageous effects of probiotics have been
found to be the strongest in oral as well as parenteral influenza vaccine. Furthermore, the administration
of a prebiotic-like fructo-oligosaccharide/inulin mix augmented efficacy of S. typhimurium SL1479
vaccination in a murine model [101], suggesting that resident gastrointestinal microbiota can be
modulated by prebiotics and may confer improved immunological response towards vaccines.

Further studies have shown that rigorous exposure of antibiotics can exacerbate microbiome
dysbiosis, impairing vaccine responses and may produce long lasting deleterious effects [84]. Infants
exposed to antibiotics early in life have been shown to be more prone to diseases such as obesity [103],
asthma [104] and metabolic syndrome [105]. Lynn et al. 2018 reported that antibiotic-mediated
dysbiosis in early life leads to impaired antibody response against several vaccines. Thus, both
probiotics and microbiome symbiosis are essential factors to sustain the long-lasting success of vaccines
(Table 1).

5. Innate Immunity Controls Antibody Titter

The first line of defense in the immune system is innate immunity, which comprises different
pathogen recognition receptors (PRRs). PRRs can recognize both pathogen-associated molecular
patterns (PAMPs) of microbes and danger-associated molecular patterns (DAMPs), the cellular products
produced in response to cell stress. Examples of PRRs include C-reactive protein, different TLRs, C-type
lectin, nucleotide binding oligomerization domain like receptor (NOD), retinoic acid-inducible gene I
(RIG-I), melanoma differentiation-associated gene 5 (MDA5), stimulator of interferon gene (STING),
etc. [106,107] (Figure 4). Pathogen recognition is a critical practice that must efficiently differentiate
the self from non-self to facilitate a specific immune response against microbial pathogens and to
circumvent collateral damage rendered by autoimmunity. For RNA viruses, the RNA genome, its
replication and metabolic products represent a major non-self-products harboring PAMPs that are
recognized by several PRRs like TLR3 or RIG-I, MDA5 recognition [108] (Figure 4).
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Figure 4. Initial immune response to any pathogen involves the activation of innate immunity. Innate
immunity is activated by germline encoded PRRs which recognize PAMPs and DAMPs of the microbes.
Specific PRRs mainly include membrane-bound several TLRs, cytosolic DNA sensor, e.g., STING,
Rig -1 like receptor (RLR), MDA5, NOD-like receptor, all of which coordinate with the host innate
immune responses through the activation of the nuclear factor κB (NF-κB), activator protein 1 (AP-1)
and interferon regulatory factor (IRF)-signaling pathway which triggers the antiviral interferons type I
(IFNI) pathway. Activated innate immunity can commence the adaptive immunity by triggering both
the T-cells and B-cells.

6. The Specificity of Herd Immunity Relies on Innate Immunity

Under the ideal infectious stage, different PAMPs of microbes activate the innate immune system
(Figure 4) followed by both the arms of the adaptive immunity to generate the memory response
(Figure 2) [109]. In case of herd immunity, this phenomenon happens to be in the mass fraction of the
population to develop the memory response against the different antigens. Nevertheless, each antigen
type has both benefits and difficulties which can perturb the activation of the immune system and
limit the chances of developing herd immunity in the community [110]. In the case of a pandemic or
epidemic situation, pathogens enter the body and the naked DNA/RNA of the microbes start to produce
antigens. These microbial antigens are processed by the innate immunity displaying it on intracellular
PRRs, e.g., TLR3, MDA5, STING, etc. (Figure 4) [106]. Activated innate immunity is involved in T-cells
differentiation through APCs, developing memory T-cells (Figure 2a) and is followed by the activation
of B-cells (Figure 2b). Activated plasma cells produce both a strong antibody response to neutralize
the antigen and also memory B-cells, which provide protection against the same or similar types of
infection in the future (Figure 2b) [111]. These memory responses act as a natural vaccination and
develop herd immunity against the microbes during a pandemic or epidemic or endemic (repeated
infection by similar pathogens in an area) situation. Antibody titer is critical for long-term herd
immunity. Nakaya et al. 2011 completed a systematic biological analysis of trivalent-inactivated
influenza vaccine (TIV) to investigate the antibody-generation sequence. A positive correlation was
found between early expression of TLR5—an important PRR for bacterial flagella of the microbiome
population—and magnitude of antibody response [99,112]. Consistent with this finding, it was also
found that both GF and antibiotic-treated mice were unable to provide immunity to TIV, which suggests
that the intestinal microbiota were a source of TLR5, helping in providing immunity against TIV.
Nonetheless, the antibody titer was reinstated by oral reconstitution with flagellated E. coli. This
observation also reveals a prominent role of the intestinal microbiota in controlling immunity to
parenteral vaccines [100]. Several earlier reports have also shown that abrogation of gut microbiota
symbiosis exacerbates the host susceptibility to several viral infections (Figure 3) [113].
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7. Realm of Herd Immunity Can Be Established by Heterologous Immunity

The most important consequence of herd immunity is the establishment of persistent
immunological memory responses. Homologous memory responses can be generated by encountering
the pathogens by the innate immune system, followed by activation of adaptive-immune responses.
Nonetheless, herd immunity can also be initiated upon exposure to different pathogens or antigens
in a particular cohort, known as heterologous immunity [114]. Conceptually, the cross-reactivity
(or poly-specificity) of lymphocytes in antigen (or epitope) recognition is the fundamental concept
of heterologous herd immunity (Figure 5a). Cross-reactive memory-T-cell responses, followed by
memory-B cells responses are engaged at the evolutionarily conserved sites among several virus groups,
such as different strains of influenza or Dengue virus (DENV) or among different members of the same
virus group, such as, arenaviruses, flaviviruses and hantaviruses [115]. Nonetheless, the examples of
cross-reactive T-cell or B-cell responses in heterologous immunity involving absolutely isolated viruses
have also been found between human papillomavirus and coronavirus [116] or influenza virus and
hepatitis C virus (HCV) [117] or influenza virus and HIV [118] or lymphocytic choriomeningitis virus
(LCMV) and vaccinia virus (VV) [119,120] or influenza virus and epstein–barr virus (EBV) [121].
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Figure 5. Yin and Yang of the heterologous immunity. (a) Heterologous immunity develops from the
opinion where the antibody of one pathogen may protect an individual from a similar or in some
cases even from phylogenetically distinct invaders. Vigorous immunization program with several
vaccine candidates is required to improve protective response against any new incoming pathogen
having comparable antigens. Both humoral and cellular cross-reactive heterologous memory responses
may influence the foundation of the natural course of herd immunity against any new infection; (b)
original antigenic sin refers to a phenomenon where the development of immunity against pathogens
or antigens is shaped by the first exposure of related pathogens. The memory antibodies generated
as a result of first exposure will interact with similar antigens of second pathogen for neutralizing
it. This anamnestic recall against the second pathogen dampens the probability of immune system
activation against original antigens of the second pathogen. This phenomenon is reasonably applicable
to SARS-CoV-2 infection where its infection rate is very mild.

In these infections, cross-reactive antibodies-mediated responses are frequently observed due
to the presence of the heterologous, but comparable antigens. After immunization with different
vaccines, the body has a mixture of different antibodies. Among these various antibodies, one or
more can recognize the antigens of second pathogens (Figure 5a). This heterologous immunity is
reasonably supportive to engender herd immunity against the new pathogen in a community [122,123].
Nonetheless, heterologous herd immunity can be demonstrated by “coinfections” where the two
unrelated pathogens infect simultaneously or within a short window period prior to the systemic
dissemination of the first pathogen in the host or “superinfections” where a second pathogen enters
after the first pathogen is well-established.
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8. Heterologous Immunity Provides Significant Protection against SARS-CoV-2 Infection in India

8.1. Herd Immunity against Coronavirus and Impact of Microbiota

The generation of herd immunity against coronavirus still has a long way to go. The precise herd
immunity threshold for the SARS-CoV-2 is not yet clear. However, several experts believe that if the
spread of infection is higher than 60% in a population, then herd immunity can be developed against
this virus [11]. Several studies have observed, however, that the size of the tested population is broad,
but the percentage of people who have been infected so far is still in a single digit. This result is due to
stringent lockdowns in different parts of the world. Several countries—notably Sweden and briefly
Britain—have experimented with limited lockdowns in an effort to build up herd immunity in their
populations. However, even in these places, recent studies indicate that no more than 7–17% of people
have so far been infected. In the month of May 2020, SARS-CoV-2 infection spread to as many as
20% of the total city dwellers in New York City, USA. This is the highest number for an outbreak in a
particular cohort in USA. Both the density of city dwellers in an area and the physical contacts among
individuals are critical factors in reaching the threshold of herd immunity [124,125]. Based on several
experts, on average 60% of the population must come in contact with the pathogen or its antigens
to achieve herd immunity. Thus, with the possibility of a faster spread of diseases than is currently
believed, the herd immunity generation could be faster. The variation of immunity, nutrition and
epigenetic effect among residents is likely to drive herd immunity generation, even downwards [126].
Several previously common infectious diseases among children, e.g., measles and chickenpox, are now
extremely sporadic in the United States because vaccines have helped to create enough herd immunity
to impede the outbreaks [2,127]. COVID-19 is potentially a much more dangerous disease than any
other pneumonia-causing pathogens. This virus infects mostly those who are at risk of getting sick
due to carrying any other disease from the past. In several countries, e.g., USA, many people already
have threshold immunity, either because they had been sick with a similar viral strain of pneumonia
in the past, or because they have received a shot of variable vaccines. Among these vaccines, one or
few may have a good match for the version of the virus they encountered. This number is not high
enough for reaching herd immunity—and those viruses still circulate in every year. However, there
are benefits of having partial immunity in a population, which helps to lower the risk of death in that
particular population. COVID-19, unlike influenza, is a brand-new disease. It has the potential to kill
many more people due to SARS-CoV-2-antigen-specific poor immunity in a population.

SARS-CoV-2 is certainly the cause of a pandemic, but also a potential solution against infection
by developing herd immunity. It is imperative to investigate the impact of microbiome in
cultivating herd immunity against SARS-CoV-2. Virulence factors of SARS-CoV-2 provoke the
hyper-inflammatory response generated by the body’s immune system—also called cytokine storm
syndrome—which is responsible for many complications and deaths [128]. The gut microbiome
is the foremost factor to control the cytokine storm [129]. Inflammatory responses are controlled
by specific microbiota composition, which may predict predisposition of COVID-19 [130] (Table 2).
MRx-4DP0004, a strain of the bacterium Bifidobacterium breve in the phylum of Actinobacteria, originally
developed for asthma [131], inhibited hyper-inflammatory response by reducing the expression of
angiotensin-converting enzyme 2 (ACE2) receptors for maintaining the potential antiviral response [132].
The prevalent of the SARS-CoV-2 receptor, ACE2, is highly expressed in microbiome-enriched gut
enterocytes and colonocytes [70,133]. Thereby, in the current crisis, the impact of microbiome cannot be
ignored. The “microbial dark matter” inside the body and around us indeed endorses the potential to
provide us with the tools to develop immunity with a limited spread of multidrug-resistant pathogens.
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Table 2. Differential expression of commensal microbiome between SARS-CoV-2 sensitive and
resistance patients.

Alternation of Microbiome Frequencies Due to SARS-CoV-2 Infection

Sensitive Patients Protective Patients

Phylum Bacteroidetes Phylum Bacteroidetes
Capnocytophaga gingivalis Alistipes onderdonkii
Prevotella melaninogenica Parabacteroides merdae

Bacteroides nordi Bacteroides stercoris
Capnocytophaga sp. Alistipes onderdonkii
Phylum Firmicutes Bacteroides ovatus
Clostridium ramosum Bacteroides dorei
Clostridium hathewayi Bacteroides thetaiotaomicron

Erysipelotrichaceae bacterium Bacteroides massiliensis
Ruthenibacterium lactatiformans Bacteroides stercoris

Veillonella sp. Phylum Firmicutes
Veillonella parvula Faecalibacterium prausnitzii

Streptococcus infantis Lachnospiraceae bacteria
Ruminococcus gnavus Eubacterium rectale
Enterococcus avium Ruminococcus obeum

Phylum Actinobacteria Dorea formicigenerans
Actinomyces viscosus Lactobacillus sp.
Corynebacterium sp. Lachnospiraceae bacteria
Collinsella aerofaciens Phylum Actinobacteria

Collinsella tanakaei Bifidobacterium sp.
Phylum Fusobacteria Phylum Fusobacteria

Leptotrichia buccalis Fusobacterium periodonticum
Phylum Proteobacteria
Acinetobacter baumannii

Klebsiella pneumoniae
Morganella morganii

8.2. Microbiome: New Songs in Old Music

Microbiome frequencies between lung–gut axis are the critical and comprehensive biomarkers for
viral diseases. Several studies revealed that higher frequencies of Capnocytophaga gingivalis, Veillonella
sp., Leptotrichia buccalis, Veillonella parvula and Prevotella melaninogenica in the bronchoalveolar lavage
fluid (BALF) exacerbated the COVID-19 patients [134]. These microbiome populations augmented the
synthesis of both nucleotide and amino acids and enhanced the metabolism rates of carbohydrates,
which is precursor of a worsening infection. The respiratory tract and lungs are enriched with
Streptococcus infantis during SARS-CoV-2 infection [135]. Conversely, Fusobacterium periodonticum,
a prevalent component of the of the lung microbiota has prohibited the severity of COVID-19 [136].
The imbalance of microbiota frequencies in gut also increase the severity of pathogenesis in SARS-CoV-2
infection due to variable expression of ACE2. The few bacteria of microbiome population help in
maintaining the ACE2 expression which expedite the infection rate in the host. Collinsella aerofaciens,
Collinsella tanakaei, Streptococcus infantis, Morganella morganii are preeminent commensals in gut
microbiome of severely infected COVID-19 patients [135]. Several opportunistic pathogens have
been persistently associated with exaggerated patients with COVID-19 (e.g., Ruminococcus gnavus,
Clostridium hathewayi, Enterococcus avium, Collinsella aerofaciens and Morganella morganii). In contrast,
a few bacteria such as Parabacteroides merdae, Bacteroides stercoris, Alistipes onderdonkii and Lachnospiraceae
bacterium of intestinal microbiota have the competence to reduce ACE2 expression in the gut epithelial
cells, thereby influencing the calibrated immune system to encumber the pathogenicity of COVID-19.
These commensal bacteria sustain the nutritional factors in gut. It is cardinal for enhancing the
immune system and essential for the protection against the SARS-CoV-2 infection. Short-chain
fatty acids (butyrate, acetate) are synthesized by Parabacteroides merdae, Bacteroides stercoris, Alistipes
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onderdonkii and a Lachnospiraceae bacterium; an abundance of these bacteria is imperative for providing
prophylactic efficacy against COVID-19. Tryptophan metabolism to melatonin by Alistipes onderdonkii
is necessary to reduce the infection. These bacteria have a salutary role in combating to SARS-CoV-2
infection [137,138] (Table 2). Other than bacteria, COVID-19 patients also have higher frequencies of
Aspergillus flavus, Candida glabrata and Candida albicans which are also pertinent commensals of the
human gut microbiome [139].

8.3. Herd Immunity: Friends or Fes for Covid-19

A wide variety of human leukocyte antigen (HLA) molecules ensures that individuals across
the population present diversified antigenic peptides. It ensures the utmost chance of individuals
of that particular population may survive against the emerging diseases. In contrast, a ‘footprint’ of
immune responses is established during the first exposure of a pathogen. Re-exposure of the same or a
similar type of antigen of latter pathogen stimulates and cross-reacts with memory T-cells which are
specific for antigens of former pathogen or vaccination (Figure 2a). Thereby, an immune repertoire
memory T-cells have been preferentially re-expanded which refuted the clonal expansion of new
antigen-specific T-cells. Consequently, the chances of generation of a new type of memory T-cells of
latter pathogen will be thwarted unwittingly, known as ‘original antigenic sin’ (Figure 5b) [140]. In that
case of heterologous herd immunity, T-cell cross-reactivity and the HLA diversity to past pandemics
can encourage suboptimal protective immune response to the second pathogen owing to ‘original
antigenic sin’ (Figure 5b). A similar type of mechanism has been proposed for B-cells responses
(Figure 2b). This antigenic sin can be extended beyond a simple case of low sensitivity to the second
antigen to an inferior situation in which the original antigen has established a T helper 1 (Th1)- Th2-
or Th17-type of responses, which are unsuitable as well as attrition for the second pathogen. This
dampens the concept of heterologous herd immunity development which is required for evolving the
community vaccination [141].

8.4. Heterologous Immunity: Poliovirus Vaccine May Provide Protection against SARS-CoV-2 Infection

In a pandemic situation, the entire world has a severe infection with SARS-CoV-2. To date, there
is a very low rate of death of infected children under age of 10, as well as for those not having a
history of any persisting disease (like any type of autoimmunity). This is a significant observation
that children who have received regular immunization of different vaccines may have heterologous
protection against this COVID-19. In pan-India, the continuum of mass vaccinations with OPV, BCG,
measles vaccine, etc. has established memory responses against many types of variable antigens in the
body. A single-type or multiple-types of antibodies from the pool of the antibody mixture, present
in the body, can recognize the novel pathogens carrying the same or similar types of antigens. This
phenomenon is considered the major reason for the unexpectedly low rate of COVID-19 occurrence in
India with a faster recovery rate. The infection rate until September 15, 2020, with SARS-CoV-2 is only
8.45% of tested population. The total tested samples are almost 58 million, whereas the sum of the total
infected patients including death, recovered and active is 4.9 million in India. If we compare the total
infected samples (4.9 million) with the total population of India (1300 million), then the percentage
of infected patients is very negligible (0.37%) which validates that SARS-CoV-2 infection has been
cleared by the community comfortably. The total mortality—including co-morbidity deaths due to
COVID-19—is 80,808, which is actually 0.006% of the pan-India population (1300 million). This higher
percentage of protection has been possible due to heterologous memory immune response against
COVID-19. Dominant antibodies, generated from previous vaccinations have the aptitude to clear the
SARS-CoV-2 comfortably, thus the possibilities of developing herd immunity against recessive antigens
of SARS-CoV-2 are essentially very subdued. Innate and adaptive memory responses in the course of
poliovirus vaccination collude to develop heterologous immunity against SARS-CoV-2 infection and
are helping to slow down the spread of COVID-19 [142]. Among different vaccines, two candidate
vaccines are of paramount importance and are also gradually becoming the focus of repurposing
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of vaccines for COVID-19: the poliovirus vaccine and the BCG vaccine [142,143]. The BCG vaccine
originally administered to provide protection against Mycobacterium tuberculosis (TB) infection. BCG
also has been shown to provide heterologous protection against other un-related infections also, as in
yellow fever viral infection by inducing epigenetic reprogramming of monocytes [144] and reducing
the child mortality rate [145]. BCG also showed heterologous immunological effects in low-birth weight
infants [146]. There has been comparatively less number of SARS-CoV-2 infection-related deaths
observed in countries who have continued with the usage of OPV than those countries who have been
switched to IPV [143]. This correlation of OPV usage and the subdued COVID-19 mortality rate is
urging the scientists to think to explore the possibility of poliovirus vaccine to help in lowering the
COVID-19 severity. Furthermore, the similarity of SARS-CoV-2 encoded 3C-like protease and 3CPro
of picornaviruses which has the role in viral pathogenesis through viral protein maturation, has also
been used to design drugs against the 3C-like protease of SARS-CoV-2 to impede the infection [147].
These available vaccines can provide protection against COVID-19 possibly by antigen similarity with
SARS-CoV-2, or through antigen-independent innate and adaptive memory [148]. We here tried to
look at the first possibility discussed in the next section.

8.5. In Silico Comparison of SARS-CoV-2 with OPV and BCG

To explore the chances of antigen sharing, we ran a preliminary analysis, comparing the
SARS-CoV-2 epitopes with OPV and BCG epitopes at the sequence level using protein basic local
alignment search tool (BLAST). For this comparison, the information of efficient epitopes of the three
organisms was extracted from the Immune Epitope Database and Analysis Resource (IEDB) [149]
which is a database for experimentally known epitopes. We downloaded the sequences of SARS-CoV-2
(ID: 2697049), all three types of poliovirus (ID: 12080,12083, 12086) and BCG (ID: 33892) with only
“linear epitopes” and “human host” using both as the filters from IEDB which provided 321, 88 and
464 epitope sequences for the three respective organisms. As in the majority of epitopes, these epitopes
were 9–12 amino acids long. Then, Protein BLAST was run for each of these 321 SARS-CoV-2 epitope
protein sequences against the database of downloaded Polio and BCG epitope sequences using the
national center for biotechnology information (NCBI) offline Protein BLAST tool [150]. Considering
the usual length range of epitopes (9–12 residues), an E-value cutoff of 10e-2 and minimum alignment
length of eight residues with no gaps was used to filter the BLAST hits. Upon performing this
analysis, SARS-CoV-2 open reading frame 7a (Orf7a) protein epitope (residue 72 to 81 with sequence
‘KHVYQLRARS’) showed similarity (80%) with human poliovirus type 3 Sabin strain epitope (residue
62 to 71 with sequence ‘RHVVQRRSRS’) of VP1 protein. Similarly, the SARS-CoV-2 nucleocapsid
epitope (residue 201 to 209 with sequence ‘SSRGTSPAR’) shared similarity (87%) with part of human
poliovirus type 1 Mahoney epitope (residue 186 to 193 with sequence ‘TYGTAPAR). No such direct
matching of epitope sequence was found between BCG and SARS-CoV-2. However, this is only the
first step to analyze antigen similarity and requires other important factors such as 3D structure of
epitopes, their subcellular localization, anti-sera profile, etc. to be taken into account to understand the
complete scenario of cross-reactivity of antibodies.

9. Perspective and Future Opportunity

The concept of herd immunity—or community immunity—has triggered an intense debate in
concerning whether it would prevent the pandemic of COVID-19, and if so, how much herd immunity
would be required to effectively impede its spread? Along with this, an important unanswered
question in the current pandemic situation is the discovery of a future probable vaccine against
SARS-CoV-2, against which the propensity of herd immunity expansion is rather uncertain. Based
on theory of original antigenic sin, the second infection of an unlike pathogen activates the memory
immune response that was developed from the first infection. The first pathogen-specific antibodies
can neutralize new dominant antigens of the second pathogen. The effective antibodies against
those dominant antigens coming from first infections, are thus able to eradicate the second infection.
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The immune system needs a reasonable time to recognize the new antigens through APCs, followed
by T-cell activation, generation of memory T-cells and triggering of B-cells for antibody secretion.
Nonetheless, if dominant antibodies encounter comparable antigens from the second pathogen that are
enough to eliminate the later infection, then the rest of the different antigens of second pathogen will
be presumed to be recessive antigens. The immune system will only generate the former dominant
antibodies against this new second pathogen, declining to produce new antibodies against the first
pathogen. This phenomenon results in an inefficient and a weak immunity, which has been expected
against SARS-CoV-2 infection in India due to regular poliovirus vaccinations. Thus, the probability
of attaining herd immunity against COVID-19 is very limited given the current context of its low
infectivity rate.

10. Conclusions

1. Herd immunity is the most critical prophylactic intervention, delivering the protective immunity
against several infectious diseases such as smallpox, poliovirus, measles, etc. in the past. The new
paradigm of evolving herd immunity during a pandemic situation cannot be disregarded.

2. Crosstalk among microbiota, metabolism and environmental factors is critical for developing
a competent immune system, which is a prerequisite for evolving herd immunity against any
contagious infections;

3. The importance of herd immunity has been documented with the current context of a pandemic
scenario due to transmissible infection of SARS-CoV-2 virus;

4. In India, the infection rate of SARS-CoV-2 is unexpectedly very low, i.e., only 0.37% of total
population. The prevalence of heterologous immunity due to rigorous vaccination programs at
the grass-root level may provide protection against the SARS-CoV-2 pandemic;

5. Comparisons between SARS-CoV-2 Orf7a protein epitope (KHVYQLRARS) and the human
poliovirus type 3 Sabin strain epitope (RHVVQRRSRS) from VP1 protein offer a great insights
into the concept of heterologous immunity, which can be an alternative providing prophylactic
intervention against both the poliovirus and COVID-19.
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