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Abstract: The mechanical properties of polymeric materials are strongly affected by molecular ori-
entation occurring under processing conditions. Infrared dichroism is particularly well suited for
characterizing polymer chain orientation at a molecular level. The usefulness of this technique
has been demonstrated through various applications in homopolymers, semi-crystalline polymers,
copolymers, polymer blends, as well as in polymer composites. Determination of molecular ori-
entation can be carried out in the mid- and near-infrared ranges and very small dichroic effects
can be detected with the use of a photoelastic modulator. Chain orientation in polymer composites
is seen to increase with the filler content in the case of a strong interface between the two phases,
making possible a quantification of the degree of bonding between the host polymeric matrix and the
incorporated inclusions.

Keywords: infrared spectroscopy; infrared dichroism; chain orientation; polymers; semi-crystalline
polymers; copolymers; polymer blends; polymer composites

1. Introduction

Polymer properties especially mechanical behavior, highly depend on polymer mor-
phology. In addition to the chemical composition, the mechanical properties can be mod-
ified by many factors including the orientation of the polymer chains, a phenomenon of
great technical and theoretical importance that can occur during stretching or during poly-
mer processing. The knowledge of this phenomenon at a molecular level allows a better
understanding of the deformation mechanisms of the material and the establishment of a
correlation between the processing conditions and the properties of the fabricated sample.
Measurements of orientation have been performed on homopolymers and multicomponent
systems [1–8]. Spectroscopic techniques including nuclear magnetic resonance, polarized
fluorescence, and polarized vibrational spectroscopies (infrared linear dichroism and polar-
ized Raman) have been used for quantifying molecular orientation [9–15]. Among these
techniques, infrared spectroscopy is one of the most frequently applied since it can be used
for the analysis of many oriented polymeric materials and can allow the determination of
the orientation of both crystalline and amorphous phases of semicrystalline polymers if the
infrared spectrum contains bands associated with vibrational modes specific for each phase.
It is also particularly well-suited for the determination of the orientation of the different
components of copolymers, polymer blends, or polymer composites. Therefore, this chapter
will only concentrate on infrared measurements of uniaxially stretched polymeric systems.

Infrared spectroscopy probes the vibrational states of a molecule, but infrared absorp-
tion requires a change in the dipole moment during the vibrational mode considered. The
occurrence of almost constant vibrational frequencies associated with the presence of partic-
ular chemical functional groups, vibrating independently of the rest of the macromolecule,
makes infrared dichroism particularly interesting for an evaluation of the level of orien-
tation of the chemical groups of interest and for the different phases of multicomponent
materials [16,17].

The careful analysis of segmental orientation in polymeric systems has brought in-
dispensable information on the intrinsic conformational properties of the macromolecular
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chains. After recalling the basic principles of infrared linear dichroism, we present some
applications in homopolymers, semi-crystalline polymers, copolymers, polymer blends,
and in polymer composites.

2. Definition of Orientation and Orientation Functions

The absorption of infrared radiation results from the interaction between the electric
field vector of the incident light, E and the electric dipole-transition moment, M, of a given
vibrational mode. For linearly polarized radiation, the absorbance A of a band associated
with a particular vibrational mode is proportional to the square of the scalar product of
M and E, which in turn is proportional to the square cosine of the angle γ between the
dipole-transition moment and a reference axis (z), which can be taken as the stretching
direction of a polymer film (Figure 1):

A ∝ (M . E)2 ∝ (ME)2 cos 2 (1)
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Figure 1. Definition of the axis system and angles to describe polymer orientation. Source: Reprinted
with permission from Bokobza, et al., 2000.

The absorbance is maximum when γ = 0 and is zero when γ = 90◦.
For a uniaxially oriented sample, with the electric vector respectively parallel and

perpendicular to the symmetry axis (which coincides with the direction of stretch):

A// ∝ M2 E2 < cos 2 γ> (2)

A⊥ ∝ M2 E2 1/2 < sin 2γ> (3)

<cos2 γ> can be obtained by combining Equations (2) and (3):

< cos 2 γ>=
A//

A// + 2A⊥
(4)

A// and A⊥ are the absorbances of the investigated band measured with light polar-
ized parallel and perpendicular to the z-axis. One can then compute the dichroic ratio R
(R = A///A⊥) or the dichroic difference ∆A (∆A = A// − A⊥); these two parameters are
commonly measured to characterize molecular orientation in drawn polymers.
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The orientation of the transition moment vector itself with respect to the direction of
stretch is expressed in terms of the second Legendre polynomial 〈P2 (cos γ)〉 related to the
dichroic ratio by the expression:

< P2 (cos γ >=
1
2
(3 cos 2 γ − 1) =

R − 1
R + 2

(5)

The quantity (R − 1)/(R + 2) is the dichroic function and can be accessed experimen-
tally. The dichroic function is equal to 0 if R = 1, no anisotropy is detected. This is the case
if the sample is isotropic or if cos2 γ = 1/3 (γ~55◦). It has also to be mentioned that the
derived orientation is an average over all the identical chemical groups in a given polymer
chain, and over all the identical polymer chains present in the sample.

The average orientation of several transition dipoles associated with different ab-
sorption bands which precludes any assumption regarding the local chain axis whose
orientation—which is the quantity of interest—is given in infrared spectroscopy, by the
second moment of the orientation function, <P2 (cos θ)> = [3 <cos2 θ> − 1]/2 (θ being the
angle between the chain axis and the uniaxially stretched direction).

If the direction of the dipole transition moment makes an angle β with the chain axis
(Figure 1), according to the Legendre addition theorem, the average second moment of the
orientation function, <P2 (cos θ)> is related to <P2 (cos γ)> by the simple relationship:

< P2 (cos γ) >=< P2 (cos β) >< P2 (cos θ) > (6)

<P2 (cosθ)> is thus related to the dichroic ratio R by the following expression:

< P2 (cos θ) >=
2

(3 cos2 β− 1)
(R− 1)
(R + 2)

(7)

Determination of <P2 (cos θ)> requires the knowledge of the angle β between the
transition moment vector of the vibrational mode considered and the chain axis. β can
theoretically be obtained from considerations arising from group theory provided that the
absorbing functional groups have some symmetry elements. Alternatively, if the second mo-
ment of the orientation function, <P2 (cos θ)>, is known by using a well-defined absorption
band, the angle β related to any other infrared absorption band can be determined.

Measurements are usually performed with the use of a linear polarizer, but they can
be significantly improved by the introduction of polarization modulation technique where
a photoelastic modulator, placed in the beam of light, alternates the polarization state of
the incident radiation between directions parallel and perpendicular to the stretching axis,
thus allowing a direct measurement of the dichroic difference ∆A [18,19]. This technique
allows the detection of very low dichroic effects observed at small extension ratios or
in polymers that display low levels of orientation due to their high chain flexibility like
poly(dimethylsiloxane) (PDMS) [20].

Infrared dichroism measurements by the conventional transmission method, require
the use of absorption bands whose absorbance should be roughly lower than 0.7 to allow
application of the Beer–Lambert law. This implies the use of thin polymer films of thickness
often less than 100 µm. In thick films, fundamental vibrational modes often give rise to
strong absorption bands located in the classical mi-infrared (mid-IR). In that case, overtones
and combinations, much weaker than the fundamental vibrations, located in the mid-
or near-infrared (NIR) range, can be examined. In the NIR region, between 4000 and
12,500 cm−1, bands are found associated with overtones and combinations of fundamental
vibrations of hydrogen-containing groups such as C–H, N–H, and O–H [21–24].

As a typical example, mid- and NIR infrared spectra of poly(dimethylsiloxane) (PDMS)
films are displayed in Figure 2. As seen in Figure 2A, most of the bands associated
with the fundamental modes are very strong even at a thickness of 125 µm. Dichroic
measurements can be performed on the band located at 2500 cm−1 ascribed to the overtone
of the symmetrical bending vibration δs (CH3) located at 1260 cm−1 [25]. On account of
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its weak extinction coefficient, the dichroic behavior of the band at 2500 cm−1 can also be
investigated in samples up to 2 mm thick. Otherwise, several absorption bands can be
used in the NIR range for orientational measurements (Figure 2B). In Figure 3 the dichroic
functions (R − 1)/(R + 2) of several infrared bands are plotted as a function of the uniaxial
draw ratio, λ, defined as the ratio of the final length of the sample along the direction of
stretch to that of the initial length before deformation. The dichroic function of the bands at
2500 and 4164 cm−1 decreases with an increase in uniaxial deformation contrary to that of
the bands located at 5447 and 5917 cm−1 which exhibits opposite behavior. The dichroic
ratio of the bands at 2500 and 4164 cm−1 is <1 thus proving that the corresponding transition
moment is most likely perpendicular to the directional vector while that associated with
the bands at 5447 and 5917 cm−1 is parallel. All the investigated bands are assigned to
vibrational states of the methyl group and obviously belong to two different symmetry
species (A1 and E of the C3v point group of CH3).
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Figure 3. Dichroic functions vs. uniaxial draw ration of different infrared absorption bands of PDMS
films located in the mid- and NIR ranges.

Chain orientation of thicker polyethylene sheets under uniaxial orientation under uniaxial
deformation was also characterized by near infrared spectroscopy by Mizushima et al. [26].
The authors used the bands at 1728 and 1754 nm assigned to the first overtone of the
asymmetric and symmetric stretching vibrations of the CH2 groups.

3. Orientation of Homopolymers, Semi-Crystalline Polymers, Copolymers,
Polymer Blends

Fourier transform infrared (FTIR) spectroscopy has been applied to evaluate the
orientation of atactic polystyrene films uniaxially drawn at 100 ◦C, in the glass-transition
region and at 110 ◦C, above the glass transition [27]. Measurements were performed on
samples quickly cooled under stress to room temperature after drawing at the adequate
temperature, in order to freeze the state of chain orientation. The dichroic ratio R as a
function of the draw ratio was determined for the bands located at 2850, 1028, 906, and
540 cm−1. While the 540 cm−1, associated with an out-of-plane vibration of the aromatic
ring, is connected with a structure with at least four aliphatic backbone chain bonds in trans
conformation, the other investigated bands are conformationally insensitive. The second
moment of the orientation function <P2 (cos θ)> was determined from the dichroic ratio of
the bands located at 1028 and 2850 cm−1 respectively ascribed to the in-plane CH bending
normal mode of the aromatic ring and to the CH2 symmetrical stretching with a dipole
moment vector perpendicular to the chain axis. An angle β of 90◦ is taken into account
for the band at 1028 cm−1 but a value of 70◦ is chosen for the band at 2850 cm−1 as that
found in polyethylene. The out-of-plane mode of the ring giving rise to the absorption at
906 cm−1, presents a dipole moment vector perpendicular to the plane of the benzene ring
that makes an angle β with the chain axis as seen in Figure 4b. This angle can be determined
by plotting <P2 (cos θ)> calculated from the measurements carried out on the bands at
1028 and 2850 cm−1 against the dichroic function of the absorption at 906 cm−1 according
to Equation (7). It was also shown that the orientation process leads to an increase in the
amount of trans conformational segments and increasing the temperature decreases the
overall orientation of the chains.
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3.1. Semi-Crystalline Polymers

The strain-induced crystallization phenomenon in cross-linked natural rubber (NR),
discovered in 1925 but widely discussed in the literature [28–31], explains the high values
of the stress at rupture and the maximum extensibility. This important characteristic
attributed to the uniform microstructure of NR (cis configuration of the macromolecular
chains), may be regarded as a “self-reinforcing effect”. The formation of crystallites which
may be considered as additional cross-links in the polymer network, able to align along
the drawing axis, explain the exceptional mechanical properties of NR. The strain-induced
crystallization of stretched NR is evidenced by the shift of the C–H out-of-plane absorption
band [32,33] and the respective contributions to this band allow the determination of the
polymer chain orientation in the amorphous and crystalline phases.

The orientation of subunits can be determined if some absorption bands are specific of
a given conformation or configuration.

Polyethylene terephthalate, PET, is an important thermoplastic polymer, commonly
used for the production of fibers, food, and liquid packaging. It is a semi-crystalline
polymer and may contain amorphous and crystalline phases. One peculiarity of PET is
the existence of gauche and trans conformers formed by rotation around the bonds of
the ethylene glycol group. Cis and trans conformers can also be formed by rotation of
the carbonyl groups around the aromatic group. The conformational changes induced by
drawing or thermal annealing can be followed by infrared spectroscopy [34–37].

Cole et al. [35] used specular reflection FT-IR spectroscopy to study thick films of amor-
phous PET submitted to uniaxial stretching or thermal annealing. PET in the amorphous
state is primarily constituted of gauche conformers that convert into trans conformers upon
uniaxially stretching the film at 80 ◦C. These conformational changes are of great practical
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interest since they determine the degree of crystallinity and orientation that strongly impact
the physicochemical behavior of the material. The orientation of the gauche and trans con-
formers was evaluated through the determination of the dichroic function (R − 1)/(R + 2)
of the bands located at 1370 cm−1 and 1340 cm−1 respectively assigned to the CH2 wag-
ging mode of the gauche and trans segments. While gauche conformers do not exhibit
detectable orientation up to an extension ratio of 5, the trans conformers orient from the
start of drawing and reach a high level of orientation. Interestingly, the carbonyl band of
the amorphous sample stretched at 80 ◦C does not display any change of its wavenumber
located at 1723 cm−1 up to an extension ratio of 5 while it shifts to 1719 cm−1 and does
not change upon drawing in the case of the thermally crystallized sample obtained by
annealing the amorphous material at 200 ◦C for 15 min. The authors suggested a possible
cis to trans conversion.

Molecular orientation of the trans and gauche conformers for a PET film stretched at
85 ◦C was also determined by Duchesne et al. [36] by the analysis of the dichroic behavior
of the bands located at 1340 and 1370 cm−1 but by using the polarization modulation
technique that allows the measurement of small dichroic effects with a high sensitivity. The
second moment of the orientation function, <P2 (cos θ)> is calculated from the observed
dichroic differences, ∆A (∆A = A// − A⊥), according to Equation (8), obtained by rewriting
Equation (7) and making appear the structural absorbance A = (A// + 2A⊥)/3 that decreases
as A0/

√
λ (A0 being the absorbance under isotropic conditions) on account of reduction

in film thickness during uniaxial deformation.

< P2(cos θ) >=
2

(3 cos2 β− 1)
(R− 1)
(R + 2)

=
2

(3 cos2 β− 1)
A// − A⊥
A// + 2A⊥

=
2

(3 cos2 β− 1)
∆A
3A0

√
λ (8)

Figure 5 shows the second moment of the orientation function of trans and gauche
conformers as a function of the extension ratio, for samples stretched up to λ = 2 at 85 ◦C.
In both cases, the increase is linear with the draw ratio but the level of orientation of the
gauche isomers is much smaller than that of the trans conformers but can nevertheless be
evaluated by the polarization modulation infrared linear dichroism.
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3.2. Copolymers

Information on the orientation of specific parts of a polymer chain can be obtained
by deuterium labeling to produce block copolymers, for example, with hydrogenated and
deuterated blocks. Infrared spectroscopy is able to characterize the orientation of each
species owing to the wavenumber shift on deuteration due to the mass dependence of the
vibrational frequency.

By using deuterium labelled block copolymers—a diblock and a triblock copolymers
[poly(d8-styrene-b styrene) and poly(styrene b-d8 styrene b styrene)—Tassin et al. [38] were
able to extract the orientation of the middle and the chain ends. The dichroic ratios of the
bands at 2273 and 2195 cm−1, respectively assigned to a stretching vibration of the aromatic
C–D group and to the asymmetric stretching mode of the CD2 groups, were measured
for samples uniaxially stretched, at a constant strain rate, at different draw ratios and at
various temperatures above the glass transition temperature. It was shown that the central
block has a higher orientation than the end portions and the difference between the two
levels of orientation increases with temperature.

The molecular orientation of poly(styrene-block-butadiene-block-styrene) triblock
copolymer (SBS) with uniaxial strain has been shown to depend on the morphology of the un-
drawn films obtained by changing the casting solvent [39]. Polystyrene (PS)–polybutadiene
(PB) alternating lamellar, PB-cylindrical and PS–PB bicontinuous microdomain structures
were obtained by using toluene, methyl ethyl ketone (MEK), and heptane, respectively. The
dichroic functions, determined from the dichroic ratios of the bands at 1493 and 966 cm−1

for PS and PB, respectively, display negative values with strain indicating that the corre-
sponding transitions moments are perpendicular to the local chain axis. For all strains and
all morphologies, the absolute values of the dichroic functions of PS are smaller than those
of PB. For each specimen, the strain dependence of the orientation of the PS and PB chains
is discussed in relation to the stress–strain behavior.

Orientation in deformed elastomeric networks has been the subject of considerable
attention because the new experimental developments in the evaluation of segmental
orientation yielding precise measurements of the dichroic effects, have allowed the test of
theoretical predictions [40]. The second moment of the orientation function is related to the
extension ratio, λ, by a series expansion [41] whose first term is:

<P2 (cos θ)> = D0 (λ2 − λ−1) (9)

The prefactor D0 (called the “configurational factor”), which takes into account the
structural features of the network chains, is inversely proportional to the average molecular
weight between crosslinks, Mc [42]. The second term, (λ2 − λ−1), that relates the orientation
to the macroscopic deformation, is called the strain function. Equation (9) is related to a
network where chains are assumed to deform affinely with the macroscopic deformation.

Elastomeric networks with random styrene–butadiene copolymers exhibiting a similar
styrene content but varying butadiene microstructure (cis, trans, vinyl configurations)
were investigated [43,44]. The dichroic behavior of the bands located at 1640, 1493, and
4477 cm−1 respectively ascribed to the C=C stretching vibration of the vinyl unit, a benzene
ring vibration, and to a combination of a stretching and a bending mode of the vinyl
group was investigated. D0 is determined from the slopes of the curves representing the
orientation of the transition moment vector, <P2 (cos γ)> = (R − 1)/(R + 2), versus the
strain function, (λ2 − λ−1). The three bands exhibit a negative orientation (negative D0
or <P2 (cos γ)>) with strain, thus showing that their corresponding transition moment is
perpendicular to the local chain axis. As shown in Figure 6, a linear relation is observed
between the configurational factor, D0 and 1/Mc which is in good agreement with the
theory stating that infrared dichroism is controlled by the molecular weight between
crosslinks determined from stress–strain curves or equilibrium swelling experiments.
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Figure 6. Configurational factor of styrene–butadiene copolymers against the reciprocal molecular
weight between the crosslinks, Mc.

3.3. Polymer Blends

Determination of the orientation of the two components of polymer blends can
bring a better understanding of the mechanisms of deformation and relaxations of these
components [45].

The high sensitivity of the polarization modulation technique in measuring infrared
linear dichroism allows a detailed analysis of the dynamics of orientation of polymer
blends. Real-time dichroic difference spectra were recorded during the relaxation period of
a stretched films of polystyrene (PS) and poly(vinyl methyl ether) (PVME) blend [46]. The
small dichroic effect observed for the shoulder at 1109 cm−1 due to the C–O–C asymmetric
stretching mode of the methoxy side chain of PVME indicates that the chains of PVME
remain practically unoriented. On the other hand, the dichroic difference of the bands
decreases with time due to the relaxation of the chains to their isotropic state (Figure 7).
For each PS–PVME blend, the second moment of the orientation function of PS increases
linearly with the draw ratio and with the PVME content.
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Rheo-optical Fourier transform infrared spectroscopy, which combines mechanical
measurements and linear infrared dichroism, has been used to analyze the orientation
and relaxation in uniaxially drawn films of semicrystalline partial miscible blends of
poly(butylene terephthalate) (PBT) with polycarbonate (PC) containing 10, 30, and 50 wt%
PC [47]. The second moment of the orientation function of pure PBT determined from the
dichroic behavior of the bands at 1473 cm−1 (CH2 deformation in crystalline region) and
1578 cm−1 (symmetric stretching vibration of the phenylene ring in the amorphous region)
is much larger for the crystalline segments compared to the amorphous ones (Figure 8a).
PBT in the blend exhibits a lower degree of crystalline orientation (Figure 8b) compared to
the pure polymer thus showing that the incorporation of PC hinders the crystallization of
PBT in the blends. For all the blend compositions, the orientation of the amorphous PBT
component is lower than that of the pure amorphous PBT. On the other hand, the overall
lower orientation of the PC chains in the blends, determined from the band at 1364 cm−1

assigned to the in phase symmetrical bending vibration of the two methyl groups, is
explained by the stretching temperature which is much lower than the Tg of PC (145 ◦C).
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4. Orientation of Polymer Composites

Inorganic particles such as carbon black or silica have been widely used to prepare poly-
mer composites with greatly improved properties compared to the pristine polymer [48–53].
The extent of property improvement depends on the morphology of the particles, their
state of dispersion in the host medium, and essentially on the polymer–filler interfacial
interactions. Nanoscale fillers with isotropic or anisotropic sheet-like or needle-like mor-
phologies, bring much improved properties when introduced in the host matrix at a very
low content on account of their nanoscale dimensions that create a very large polymer–
particle interfacial region. This interfacial region has a major importance in nanocomposite
properties and analyzing its characteristics and its role on the macroscopic properties of
the material allows the design of composites with specific applications.

Different filler morphologies such as nanospheres, nanotubes, or nanoplatelets, have
been used for polymer reinforcement. Anisotropic fillers of one or two-dimensional nature
are able to orientate during processing or mechanical stretching which has a strong effect
on the reinforcement of the resulting material in the direction of alignment. Infrared
spectroscopy is a powerful tool for the analysis of polymer composites. It can be used
for the identification of chemical groups on the filler surface, the grafting of specific
molecules for modifying the surface reactivity, and the interacting species at the polymer–
filler interface. Orientational measurements of uniaxially stretched composites by infrared
linear dichroism, nicely complement the mechanical data because, as shown below, polymer
chain orientation is sensitive to the interfacial bonding between the two components as
well as to the filler morphology.

In silica-filled systems, hydrogen bonding can take place between the silanols present
on the silica surfaces and the oxygen-containing functional groups of polymers such as
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PDMS, poly(methyl methacrylate), poly(vinyl acetate) or epoxy resins [54–59]. Polymer–
filler interactions can be tuned by treating silica particles with a processing aid in order
to deactivate part of the silanols. The addition of silica in PDMS leads to increases in
the modulus, tensile strength, and elongation at break. Deactivating part of the silanols
decreases the number of reactive groups at the polymer–filler interface resulting in less
improvement of the mechanical properties than with the use of untreated particles. As seen
in Figure 9 the second moment of the orientation function of the PDMS chains, determined
from the dichroic behavior of the band at 2500 cm−1, increases linearly with the strain
function, (λ2 − λ−1) for each sample while at the same extension ratio, λ, it increases
with a more pronounced effect in the case of untreated particles. The increase in chain
orientation upon addition of filler is attributed to polymer–filler interactions by hydrogen
bonding between the silanols on the silica surface and the oxygen atoms of PDMS. These
interfacial interactions that act as additional cross-links in the network structure increase
with the filler content or with the interface area of the polymer–filler system. In the case
of treated silica, the number of additional cross-links has been found to be 0.13 nm−2

(corresponding to a bonding around every 6 nm2 of silica surface) and 0.3 nm−2 for the
treated silica [60]. Therefore, infrared linear dichroism applied to uniaxially stretched
filled elastomers, appears to be an interesting technique for evaluation of the number of
polymer–filler attachments.
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Figure 9. Polymer chain orientation in unfilled and filled poly(dimethylsiloxane) with 40 phr of
untreated and treated silica. “phr” = parts of filler per hundred parts of rubber.

In the case of poor compatibility between the organic and inorganic phases, as
in silica-filled hydrocarbon rubbers, silane coupling agents such as bis(3 triethoxysilyl-
propyl)tetrasulfide (TESPT), commonly abbreviated “Si69”, are used to improve the ad-
hesion between the elastomer chains and the filler surface. These coupling agents are
generally bifunctional molecules able to react with the polymer matrix and the particle
surface. However, on account of the tetrasulfane function of the TESPT which can react
with the polymer during the curing process, it is not clear if TESPT leads to an increase
of in the cross-linking density rather than to an interfacial coupling. It has been shown
that in the absence of the coupling agent, the orientational behavior of polymer chains in
silica-filled styrene–butadiene rubbers is similar to that of the unfilled network while it
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increases with the filler fraction in the presence of Si69 thus reflecting the quality of the
polymer–filler interface [61,62].

Xu et al. [63] analyzed the orientation by infrared dichroism of stretched films of
neat polyaniline (PANI) and its nanocomposites with reduced graphene oxide (rGO) or
multi-walled carbon nanotubes (MWCNTs) in order to obtain an insight into the effect
of molecular orientation on the thermoelectric performance of polymeric materials. The
dichroic ratios of the bands located at 1594, 1313, and 1167 cm−1 increase upon stretching
contrary to that of the band at 833 cm−1 which decreases with uniaxial deformation. The
addition of MWCNTs or rGO reduces the orientation of PANI and the hindrance effect
increases with the filler content and is higher with rGO than with MWCNTs. No mention
is made by the authors on the interfacial interactions between polymer and nanoparticles.

Incorporation of a fibrous clay such as sepiolite in natural rubber (NR) has been shown
to strongly affect the mechanical and orientational properties of the final material [64,65].
Sepiolite is a hydrous magnesium silicate with a crystal structure formed by two sheets of
tetrahedral silia units to a central sheet of magnesium atoms. The sepiolite (Pangel B20)
used as a filler for NR is an organophilic fibrous clay, obtained from the pristine sepiolite
by physico-chemical purification, micronization, and chemical modification processes
developed and patented by Tolsa. In particular, the surface treatment of sepiolite by
surfactants makes the nanofibers of sepiolite more compatible with low polarity polymers.

Mechanical data of pure NR and for NR filled with two different fillers—silica particles
generated in situ by the sol-gel process and sepiolite—are shown in Figure 10a. They are
treated in the Mooney–Rivlin representation by calculating the reduced stress, [σ*], defined
by the quantity: [σ*] = σn/(λ – λ−2), where σn is the nominal stress and λ the extension
ratio [66,67]. This way of plotting the mechanical data gives a better visualization of
specific features of the stress–strain curve in particular the upturn in the modulus observed
at high deformations and ascribed to the strain-induced crystallization of NR. In the
presence of filler particles, the upturn starts at a lower deformation than in the unfilled
sample. Moreover, the upturn occurs at a lower strain with sepiolite than with silica. Strain
amplification effects due to the inclusion of non-deformable particles cause overstraining
of the polymer chains making them become more oriented and then able to crystallize at a
lower applied extension ratio.
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orientational measurements for the same materials (b). Source: Reprinted with permission from
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The orientation of the transition moment associated with the band located at 4291 cm−1

that exhibits a perpendicular dichroism (R < 1) is displayed in Figure 10b for pure NR
and the two composites. It is clearly shown that, at a given deformation, a higher level of
orientation is obtained for the composite filled with nanofibers of sepiolite. The orientation
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of the sepiolite particles in the stretching direction is expected to induce an orientation of the
polymer chains along the fiber axis. Additionally, interfacial bonding between the sepiolite
and polymer chains was evidenced through the equilibrium swelling behavior of the
composite that exhibits a restricted solvent swelling compared to the unfilled sample [64,65].
An excellent compatibility between natural rubber and the organophilic sepiolite was also
observed by Satyanarayana et al. [68]

Other studies have used sepiolite fibers as filler in various polymeric matrices on
account of their intrinsically anisotropic character and their orienting capability upon
uniaxial drawing [69–72]. In the work of Hirayama et al. [72] performed on polyvinylidene
fluoride/fluorinated phosphonate-modified sepiolite composites, transmission electron
microscopy imaging of uniaxially drawn films reveals a high degree of orientation of the
needle-shaped nanoparticles along the stretching direction. The mechanical properties of
the composites are seen to be significantly enhanced as a result of the uniaxial orientation
of the dispersed nanofiller. The high anisotropy of carbon nanotubes also explains their
ability to align along the direction of strain as seen in the uniaxially stretched composites of
polystyrene (PS) filled with 1 wt% of multiwall carbon nanotubes (MWCNTs) (Figure 11).
The unfilled and filled PS films were drawn in the melt state of the polymer at a draw ratio
of 4. Then the temperature was rapidly decreased below the glass transition temperature
of PS to freeze the state of orientation [73]. Infrared dichroic measurements carried out
on PS absorption bands located at 2848, 1028, and 906 cm−1 are quite similar in the pure
polymer and in the composite. This reflects the poor interfacial interactions between the
PS and carbon nanotubes. Functionalization of the filler surface can be used in this case to
enhance the interfacial adhesion and to improve the particle dispersion [74].

It has to be mentioned that transmission measurements of polymers filled with carbon-
based materials can only be carried out at very low filler content. Transmission measure-
ments are difficult for highly loaded carbon-filled polymers due to the absorption and
scattering of infrared radiation by the carbon species [75]. Attenuated total reflectance
spectroscopy (ATR) has been shown to offer an alternative to transmission measurements
essentially for highly carbon-filled rubbers used in industrial applications [76,77] or for
measurement of molecular orientation [78]. Although not considered here, polarized Ra-
man spectroscopy is a powerful tool for the study of molecular orientation distributions
of polymers [15,79] This technique that measures inelastic photon scattering, also yield
information on the vibrational states of molecules. Its advantage over infrared spectroscopy
is to allow the analysis of thick polymer films and black samples. In recent years, this
technique has been subject to considerable interest after the discovery of carbon nanotubes
because carbon-based fillers display strong resonance-enhanced Raman scattering effects
that give rise to strong well-defined bands even if used in very small amounts [52,80]. The
strong intensity enhancement makes possible the evaluation of molecular orientation of
both polymer chains and carbon species [81].

It is of interest to mention that theoretical and simulation work has been carried out to
understand the effect of deformation on the orientation and alignment of polymer chains
and anisotropic nanoparticles and the dynamic properties of polymers at the polymer–
filler interface [82,83]. Zheng et al. [82] used molecular dynamics simulation to study
polymers filled with graphene and carbon nanotubes and studied the effect of a dynamic
periodic shear deformation on the orientation and alignment of the anisotropic particles
and on the resulting mechanical response by changing the shear amplitude, frequency,
interfacial interaction, and volume fraction of filler. Increase in the interaction strength
between the two phases and the orientation of the polymer chains are shown to have a
significant effect on the resulting mechanical performance. The system filled with CNTS
exhibits better mechanical reinforcement than that filled with graphene which has been
attributed to the fact that CNTs induce the alignment of polymer chains more along the
deformation direction. In the work of Azimi et al. [83], molecular dynamics simulations
are conducted on graphene (G) and graphene oxide (GO)-based nanocomposites. One
apolar (polypropylene) and one polar (polyvinyl alcohol) polymer matrices were chosen
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in order to cover a wide range of polymer–filler interactions. Polymer chain orientation
was found more pronounced for the G-based nanocomposites than for the GO ones and it
is assumed to be attributed to the roughness of the GO surface. It is well established that
GO exhibits structural defects induced by the oxidation process resulting in the presence of
oxygen-containing functional groups and sp3 carbon atoms.
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5. Conclusions

This paper describes several applications of infrared linear dichroism for characteriz-
ing molecular orientation in polymers and in polymer composites. Besides conventional
measurements, near-infrared spectroscopy (NIR) or the polarization modulation technique
have broadened the use of infrared spectroscopy for the analysis of chain orientation. NIR
that probes overtones and combinations of fundamental modes, offers a useful way to
study thick polymer films. The polarization modulation technique that uses a photoelastic
modulator can be applied in the mid- and near-infrared range to detect very low dichroic ef-
fects with a high sensitivity at very small film deformations. The ability to detect molecular
orientation in a material is quite important for a better understanding of the mechanisms
involved in polymer deformation in order to correlate the processing conditions with the
properties of the fabricated sample.

The effect of fillers on the orientation of the polymeric material has been investigated.
Orientational measurements of polymer composites can be used to evaluate the degree
of bonding between the polymer and the filler. In strongly interacting systems as in the
case of silica-filled poly(dimethylsiloxane) networks, chain orientation taking place on
uniaxially stretched films yields access to the total network density arising from chemical
junctions and from polymer–filler interactions acting as additional cross-links. No change
in the orientational behavior of polymer chains is observed in the absence of polymer–
filler interactions as in the case of styrene–butadiene elastomeric networks filled with
silica particles, unless using a coupling agent is able to bring some coupling between the
two phases. Fillers with a high aspect ratio such as clay nanofibers, graphene, or carbon
nanotubes, are widely used because they impart to the composites excellent mechanical
properties on account of their ability to align in the direction of the strain. The results
regarding the effect of these anisotropic particles on the molecular orientation of polymer
chains are not clear because they more likely depend on interfacial bonding and on the
filler agglomeration. Concerning the black fillers, their own orientation within the host
matrix as well as that of macromolecular chains can be advantageously investigated by
Raman spectroscopy.
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