
994 |     CPT Pharmacometrics Syst Pharmacol. 2021;10:994–1005.www.psp-journal.com

Received: 4 March 2021 | Revised: 12 April 2021 | Accepted: 10 May 2021

DOI: 10.1002/psp4.12670  

A R T I C L E

Network module- based drug repositioning for pulmonary arterial 
hypertension

Rui- Sheng Wang  |   Joseph Loscalzo

This is an open access article under the terms of the Creat ive Commo ns Attri butio n- NonCo mmerc ial- NoDerivs License, which permits use and distribution in any medium, 
provided the original work is properly cited, the use is non- commercial and no modifications or adaptations are made.
© 2021 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and 
Therapeutics

Department of Medicine, Cardiovascular 
Division, Brigham and Women’s 
Hospital, Harvard Medical School, 
Boston, Massachusetts, USA

Correspondence
Joseph Loscalzo, Department of 
Medicine, Brigham and Women's 
Hospital, 75 Francis Street, Boston, MA 
02115, USA.
Email: jloscalzo@rics.bwh.harvard.edu

Funding information
This work is supported in part by 
NIH Grants HL119145, HL155107, 
HL155096, HG007690, and GM107618; 
and American Heart Association Grants 
D700382, and CV- 19.

Abstract
Pulmonary arterial hypertension (PAH) is a progressive disorder characterized by 
pulmonary vascular remodeling leading to increased pulmonary vascular resistance 
and pulmonary arterial pressure. PAH is a highly morbid cardiopulmonary disease 
adversely affecting lifespan and quality of life. Despite increased awareness and 
advances of medical therapies in recent decades, long- term prognosis and survival 
remain poor for patients with PAH. Novel therapies that can target the underlying 
pathobiology of PAH and reverse pulmonary vascular remodeling are clearly needed. 
In this study, we develop a network module- based framework to examine potential 
drug repositioning for PAH. The rationale for this approach is that in order to have 
therapeutic effects, the targets of potential drugs must be significantly proximate to 
the disease module of interest in the human protein- protein interactome. Based on 
15 existing drugs for treating PAH, our framework integrates drug- drug interactions, 
drug- drug chemical similarity, drug targets, and PAH disease proteins into the human 
interactome, and prioritizes candidate drugs for PAH. We identified 53 drugs that 
could potentially be repurposed for PAH. Many of these candidates have strong litera-
ture support. Compared to black- box- like machine learning models, network module- 
based drug repositioning can provide mechanistic insights into how repositioned 
drugs can target the underlying pathobiological mechanisms of PAH.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Pulmonary arterial hypertension (PAH) is a highly morbid cardiopulmonary disease. 
Despite increased awareness and advances of medical therapies in recent decades, 
long- term prognosis and survival remain poor.
WHAT QUESTION DID THIS STUDY ADDRESS?
We developed a network module- based framework, which integrates drug- drug inter-
actions, drug- drug chemical similarity, drug targets, and PAH disease proteins as a 
means to examine drug repositioning for PAH, and identify potential novel therapies 
that can target the underlying pathobiology of PAH.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
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INTRODUCTION

Pulmonary arterial hypertension (PAH) is a progressive dis-
ease characterized by an obliterative vasculopathy involving 
distal pulmonary arteries and arterioles that ultimately leads 
to right heart failure and premature death.1 The exact cause of 
PAH is unknown, with no known cure for the disease. Even 
in the contemporary era, PAH is a leading cause of mortality 
and morbidity and adversely affects lifespan and quality of 
life in children and adults. In the past 2 decades, substantial 
advances have been made in medical therapies for patients 
with PAH, with more than 10 drugs developed and approved 
for the treatment of the disease.2,3 These drugs largely serve 
to improve vascular and endothelial dysfunction and can help 
lessen symptoms and improve quality of life; however, long- 
term prognosis and survival remain poor, with mortality rates 
of 25– 60% over 5 years.4 Novel therapies that can target the 
underlying pathobiology of PAH and reverse pulmonary vas-
cular remodeling are clearly needed.

Despite remarkable advances in understanding basic dis-
ease mechanisms in the modern genomic era, clinical transla-
tion of these findings has been far slower than expected.5 The 
cost and length of time required for new drug development 
are escalating, and the number of new drug approvals annu-
ally remains limited, which increases the need for innova-
tive approaches for drug discovery. Drug repositioning (also 
called drug repurposing) is a strategy for identifying new 
uses for existing drugs to treat a disease or condition outside 
of the scope of the original medical indication and regulatory 
approval.6 One of the great benefits of drug repositioning is 
that the pharmacokinetics and safety of known drugs do not 
need to be reassessed, provided that doses remain in the ap-
proved range. A variety of methods have been developed for 
drug repositioning. Straightforward, unbiased computational 
strategies, for example, can predict new therapeutic indica-
tions for existing US Food and Drug Administration (FDA)- 
approved drugs that can then rapidly enter clinical trials.

Network- based approaches offer important insights into 
the relationships between drugs and diseases, including 
network- based drug repositioning.7 Previous studies have 
shown that the genes (gene products) associated with a dis-
ease tend to be clustered in the same network neighborhood 

of the human protein- protein interactome, denoted a disease 
module.8 For a drug to be therapeutic for a disease, it must 
target proteins in the vicinity of the corresponding disease 
module.9,10 With a deeper understanding of the pathobiology 
of PAH, many associated disease genes have been discov-
ered,11 which provides a good opportunity to examine the 
possibility of repositioning some existing drugs for the treat-
ment of the disease. In this study, we developed a network 
module- based drug repositioning framework for PAH. Based 
on 15 existing drugs for PAH, we integrate drug- drug in-
teractions, drug- drug chemical similarity, drug targets, and 
PAH disease proteins into the human interactome, and pri-
oritize candidate drugs for PAH. We identified 53 drugs that 
could potentially be repurposed for PAH. Such a network 
module- based drug repositioning framework enables deeper 
molecular- level understanding of drug activity for PAH and 
offers the promise of improved therapies that can be rapidly 
tested.

METHODS

Approved drugs for the treatment of PAH

We searched drugs.com, drug databases in the FDA and 
European Medicines Agency (EMA), DrugBank, Therapeutic 
Target Database (TTD), PharmGKB, and the literature, and 
found 15 approved drugs as targeted therapies for PAH 
(Table 1).

These drugs are classified into six categories: endothelin 
receptor antagonists (ambrisentan, bosentan, and maciten-
tan), phosphodiesterase 5 inhibitors (tadalafil and silde-
nafil), parenteral prostanoids (epoprostenol, iloprost, and 
treprostinil), soluble guanylyl cyclase stimulators (riocig-
uat), prostacyclin receptor agonist (selexipag), and calcium 
channel blockers and vasodilators. Among many calcium 
channel blockers and vasodilators,12 we only included five 
that are widely used. We did not include supportive ther-
apies, such as oxygen, diuretics, digoxin, and warfarin, 
as we focused on the network relationships between spe-
cific drug targets and PAH disease proteins. For a robust-
ness examination, we also repeated the drug repositioning 

We found 53 drugs that could potentially be repurposed for PAH. Many, but not all, 
of these candidates have strong literature support.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/
OR THERAPEUTICS?
This drug repositioning framework might save time and reduce the cost of the drug 
discovery process (for PAH) by prioritizing potential drug candidates that have been 
approved for other purposes, and, thus, are very likely to be safe.
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analysis after removing the five calcium channel blockers 
and vasodilators.

To select candidate drugs to reposition for PAH, we first 
focused on the drugs that interact with PAH drugs. Drug- 
drug interactions were retrieved from DrugBank. According 
to DrugBank, these drug- drug interactions are defined based 
on molecular mechanisms, including drug- target, drug- 
enzyme, and drug- transporter associations.13 There are 
8199 drug interactions involving 15 PAH drugs and 1329 
non- PAH drugs. To reduce the number of drug- drug inter-
actions and candidate drugs for repositioning, we first down-
loaded the compound structures of drugs as an SDF file from 
DrugBank and calculated extended connectivity fingerprints 
for each compound using the Morgan/circular method.14 We 
next computed all pairwise chemical/structural similarities of 
drugs using the Dice similarity coefficient.15 Using 0.3 as 
the cutoff for chemical similarity according to the distribu-
tion of similarity of all drug- interacting pairs (Figure S1), we 
identified 1820 drug interactions (646 drugs). This filtering 
is based on the assumption that drugs with similar structures 
tend to have similar therapeutic effects. We next focused on 
approved non- PAH drugs and removed those experimental 
and investigational drugs. After this filtering, we were left 

with 491 approved non- PAH drugs that interact with PAH 
drugs and were also found to be chemically similar to them 
(i.e., PAH- interacting drugs). These drugs are candidates for 
drug repositioning for PAH.

PAH disease genes

With a deeper understanding of the genetics and genom-
ics of PAH, many disease genes associated with PAH have 
been discovered through genomewide association studies or 
other experiments. We first retrieved 131 disease genes di-
rectly implicated in the development of PAH from our previ-
ous work,11 which were curated from the literature. We also 
collected 150 PAH disease genes from Phenopedia in the 
HuGE Navigator.16 Other PAH genes were compiled from 
the Human Gene Mutation Database (HGMD),17 Online 
Mendelian Inheritance in Man (OMIM),18 and human pheno-
type ontology (HPO)19 databases. Altogether, 328 PAH dis-
ease genes were obtained by integrating these resources. We 
next mapped them to the human interactome and denoted the 
subnetwork formed by the PAH disease proteins as a PAH 
disease module.

T A B L E  1  Approved drugs for the treatment of PAH

Drug ID Drug name ATC code Source

Endothelin receptor antagonists

DB06403 Ambrisentan C02KX02 Literature,2 FDA, EMA

DB00559 Bosentan C02KX01 Literature,2 FDA, EMA

DB08932 Macitentan C02KX04 Literature,2 FDA, EMA

Phosphodiesterase 5 inhibitors

DB00820 Tadalafil G04BE08 DrugBank, literature,2 FDA

DB00203 Sildenafil G04BE03; G01AE10 Literature,2 FDA, EMA

Parenteral prostanoids

DB01240 Epoprostenol B01AC09 DrugBank, literature,2 FDA

DB01088 Iloprost B01AC11 Literature,2 FDA, EMA

DB00374 Treprostinil B01AC21 Literature,2 FDA

Soluble guanylyl cyclase stimulators

DB08931 Riociguat C02KX05 DrugBank; FDA, EMA

Prostacyclin (IP) receptor agonist

DB11362 Selexipag B01AC27 Literature,2 FDA, EMA

Calcium channel blockers and other vasodilators

DB00797 Tolazoline C04AB02; M02AX02 TTD, DrugBank

DB00343 Diltiazem C05AE03; C08DB01 DrugBank12

DB00622 Nicardipine C08CA04 DrugBank

DB01115 Nifedipine C08CA05, C08CA55, C08GA01 DrugBank12

DB00381 Amlodipine C09DB05, C09DX01, C09DB01 DrugBank

Abbreviations: ATC, Anatomic Therapeutic Chemical classification system; EMA, European Medicines Agency; FDA, US Food and Drug Administration; PAH, 
pulmonary arterial hypertension; TTD, Therapeutic Target Database.
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Consolidated human protein- protein 
interactome

To build a comprehensive human interactome, we compiled 
human physical, macromolecular interaction data from dif-
ferent sources, including protein- protein interactions, protein 
complexes, kinase- substrate interactions, and signaling path-
ways. High- quality protein- protein interactions from several 
high- throughput yeast- two- hybrid studies as well as the lit-
erature were compiled from CCSB Human Interactome.20– 24 
Binary protein- protein interactions from other laborato-
ries were incorporated, as well.25,26 A protein complex is a 
group of two or more associated polypeptide chains linked 
by noncovalent protein- protein interactions. Protein- protein 
co- complex interactions were compiled from different high- 
profile publications.27– 33 In addition, we also incorporated 
experimental signaling interactions and kinase- substrate in-
teractions, as well as high- quality literature- based signaling 
interactions.34– 37 The signaling interactions between proteins 
are derived from two sources.34,35 In ref. 34, signaling in-
teractions were generated by experimentally searching the 
protein interaction partners of signaling- related proteins by 
means of automated yeast two- hybrid interaction mating. 
Another resource is OmniPath, which is a comprehensive 
literature- curated human signaling pathway compendium.35 
We added the edges between proteins in the signaling path-
ways into our human interactome and collectively referred 
to them as physical protein- protein interactions. The latest 
large- scale binary protein- protein interactions were retrieved 
from HuRI.38 This version of the consolidated human inter-
actome has 16,470 proteins and 233,957 interactions, and 
displays a scale- free topology (Figure S2).

Network module identification and 
proximity measure

Drug targets interact with disease proteins, which form a 
large network consisting of only drug targets and disease 
proteins as well as all the direct protein- protein interactions 
between them. We assume that the action of a drug is either 
generated by directly targeting a disease protein or by tar-
geting a direct neighbor that physically interacts with the 
disease protein. To dissect the network into relatively in-
dependent submodules based on its topology, we used the 
module detection method implemented in the Python pack-
age NetworkX.39 The submodules contain only drug targets, 
PAH disease proteins, and the interactions between them, 
excluding other nodes in the interactome. We then attached 
the drugs to the submodules according to their binding re-
lationships and denoted the resulting submodules as drug- 
target- disease submodules.

For drugs in the drug- target- disease submodules, we 
also characterized their proximity to the PAH disease mod-
ule using a network proximity measure.40 Each drug target 
can reach multiple disease proteins through shortest paths of 
different lengths in the human interactome. Among all the 
shortest path lengths, the minimum one is used in calculating 
network proximity (Figure 1c). If a drug has multiple targets, 
the minimum shortest path lengths were taken on average. In 
other words, network proximity from a drug to the PAH dis-
ease module is defined as the average minimum shortest path 
length (minimum signaling steps) in the interactome from its 
targets to the disease proteins: 

where ps is the minimum shortest path length in the human in-
teractome from drug target s to the associated disease proteins 
of PAH. Network proximity is calculated based on all the tar-
gets of a particular drug, all the PAH disease proteins, and the 
entire interactome.

The significance of the overlap between the drug targets 
and the PAH disease proteins was calculated using the hyper-
geometric test. The significance of the proximity between the 
targets of a drug and the PAH disease module was evaluated 
by creating 1000 random modules of the same size and com-
paring the observed proximity value with the null model (ran-
dom control) through fitting normal distributions; p values 
were adjusted by the Bonferroni procedure where applicable. 
All source codes and related data files have been deposited 
in a publicly available folder at github (https://github.com/
bwh78 4/PAHdrugs).

RESULTS

Closeness between drug targets and PAH 
disease proteins

We mapped PAH disease genes (gene products), PAH drug 
targets, and the target proteins of PAH- interacting drugs 
to the human interactome and examined the closeness re-
lationships between drug targets and PAH disease genes. 
According to DrugBank, 48 target proteins are associated 
with the 15 existing PAH drugs, and 44 can be found in the 
consolidated human interactome; 473 target proteins are as-
sociated with PAH- interacting drugs, and 449 can be found 
in our interactome. Among 328 PAH disease genes, 276 of 
their gene products can be found in the interactome. Forty of 
44 PAH drug targets significantly overlap with the targets 
of PAH- interacting drugs (p < 5.7E- 59; Figure 2a), and the 
targets of PAH and PAH- interacting drugs have significant 
overlap with PAH disease proteins, as well (p < 9.6E- 31), 

P = ⟨ps ⟩ and ps = mind(Lsd ),

https://github.com/bwh784/PAHdrugs
https://github.com/bwh784/PAHdrugs
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suggesting the appropriateness of our candidate drug selec-
tion process for repositioning.

We next examined the closeness relationships between 
drug targets and PAH disease proteins at the network level. 
We found 32 direct interactions between PAH drug targets 
and PAH disease proteins, which is significant compared to 
two random protein sets of the same sizes (p = 0.045). There 
are 1002 direct interactions between the targets of PAH and 
PAH- interacting drugs and PAH disease proteins, further in-
dicating that the targets of PAH- interacting drugs are close to 
PAH disease proteins and can be considered for reposition-
ing. We also analyzed the overlap and interactions between 
drug targets and PAH disease proteins when we focused 
on the 10 approved drugs, and summarized the results in 
Figure S3. These key findings remain: the targets of PAH and 

PAH- interacting drugs have significant overlap with PAH 
disease proteins (p < 3.9E- 20), and the number of interac-
tions between the targets of PAH and PAH- interacting drugs 
and PAH disease proteins is significant compared to two ran-
dom protein sets of the same sizes (p < 1.0E- 16).

Construction of a drug- target- disease network 
for PAH

With evidence that the target proteins of PAH drugs and 
PAH- interacting drugs are significantly close to PAH dis-
ease proteins at the network level, we constructed a network 
consisting of direct interactions between drug targets and 
disease proteins in order to obtain mechanistic insights on 

F I G U R E  1  The framework for network module- based drug repositioning. (a) We first selected drugs that interact with pulmonary arterial 
hypertension (PAH) drugs and then filtered out those drug pairs that were not chemically similar. We mapped the drug targets and PAH disease 
genes into the human interactome and obtained a drug- target- disease network, which was then decomposed into individual submodules. Module 
drugs that were significantly proximate to the disease proteins comprised the list of drug repositioning predictions. (b) Illustration of the PAH 
disease module and drug- target- disease submodule. (c) Network proximity from drug targets to disease proteins
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drug action. We assumed that the action of a drug is either 
generated by directly targeting a disease protein or by tar-
geting a direct neighbor that physically interacts with the 
disease protein. Therefore, only drug targets, PAH disease 
proteins, and the direct interactions between them are re-
tained in this network, with all other nodes in the human 
interactome excluded. This network has 399 proteins and 
1002 interactions (Figure S3).

To obtain a higher resolution of the network, we decom-
posed it into individual, densely connected submodules 
using a module detection method.39 The submodules con-
tain only drug targets, PAH disease proteins, and the direct 
interactions among them. We then attached the drugs to the 
submodules according to their binding relationships and 
obtained 11 drug- target- disease submodules (Figure  S4). 
These submodules now consist of drugs, drug targets, and 
PAH disease proteins, and provide a detailed view of how 
the drugs act on target proteins, the pathways they may 

affect, and their neighborhoods. Figure  3 illustrates two 
drug- target- disease modules. Although some of these drugs 
have well- known targets that can affect vascular function 
(e.g., ACE inhibitors), which are not necessarily effective 
in PAH, others represent novel target pathways with novel 
therapeutic potential (e.g., tasosartan and doxycycline). 
Imatinib is a tyrosine kinase inhibitor used to treat cer-
tain cancers. Six of the targets of imatinib lie in module 
3 (KIT, CSF1R, PDGFRA, DDR1, ABL1, and PDGFRB; 
Figure  4a). PDGFRA and PDGFRB are disease proteins 
associated with PAH, and their mRNA expression was 
increased in pulmonary arteries from patients with idio-
pathic PAH.41 Imatinib can inhibit platelet- derived growth 
factor receptor (PDGFR) downstream signaling pathways, 
suggesting that it may have therapeutic potential for PAH. 
Indeed, some clinical trials and experimental studies have 
tested the use of imatinib for PAH,42 although the outcomes 
have been mixed.

F I G U R E  2  The closeness between targets of pulmonary arterial hypertension (PAH) drugs/interacting drugs and PAH disease proteins at the 
network level. (a) Overlap between PAH drug targets and the targets of PAH interacting drugs. (b) Overlap of the targets of PAH, PAH- interacting 
drugs, and PAH disease proteins. (c) Number of interactions between PAH drug targets and PAH disease proteins. (d) Number of interactions 
between the targets of PAH, PAH- interacting drugs, and PAH disease genes
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F I G U R E  3  Two drug- target- disease submodules. The nodes without geometric shapes represent drugs. The hexagonal nodes are drug 
targets and the oval nodes are pulmonary arterial hypertension (PAH) disease proteins. Disease proteins that are also drug targets are indicated by 
hexagonal nodes with orange centers. The drugs with blue labels are PAH drugs, and the targets with blue labels represent PAH drug targets
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Network proximity and literature search

Among 491 candidate drugs for repositioning, there are 386 
drugs included in these drug- target- disease modules, and we 
refer to these drugs as module drugs. We focus on module 
drugs, as the targets of other candidate drugs are at least two 
interaction steps away from a PAH disease protein. Some 
module drugs have multiple targets, but only one target has a 

disease protein neighbor; whereas other module drugs have 
multiple targets and all of their targets are disease proteins 
or have disease proteins as neighbors. To narrow down the 
list of drugs to be considered for repositioning for PAH fur-
ther, we use a network proximity measure that we developed 
previously40 to quantify the closeness of the targets of each 
module drug to PAH disease proteins. This step uses all the 
targets of a particular drug, all the PAH disease proteins, and 

F I G U R E  4  Illustration of one drug- target- disease submodule and downstream pathways of drugs. (a) Drug- target- disease submodule 3; (b) 
The downstream proteins of midostaurin and telmisartan. The nodes without geometric shapes represent drugs. The hexagonal nodes are drug 
targets and the oval nodes are pulmonary arterial hypertension (PAH) disease proteins. Disease proteins that are also drug targets are indicated by 
hexagonal nodes with orange centers. “+” (“−”) on the upper right corner of a node means the Z- score of the gene is positive (negative) in the drug 
treatment based on the signatures from Library of Integrated Network- based Cellular Signatures (LINCS)



1002 |   WANG ANd LOSCALZO

the entire interactome to ensure that drugs closely associated 
with the PAH disease module are selected as drug reposition-
ing candidates. The significance of the closeness between 
the targets of a drug and the disease module is evaluated by 
constructing a random disease module of the same size as 
the background. Among 386 module drugs, 105 are signifi-
cantly close to the PAH disease module after the Benjamini- 
Hochberg correction for multiple testing (p  <  0.01). We 
found that among 12 PAH drugs that lie in the drug- target- 
disease modules, three are significantly close to PAH disease 
proteins in the network. The enrichment of PAH drugs in the 
high ranked drug pool is statistically significant compared to 
that of non- PAH drugs (Table 2; p = 0.0043), demonstrat-
ing that PAH drug targets tend to be in the vicinity of the 
PAH disease module. Calcium channel blockers and vaso-
dilators are not specific for PAH, and their targets may not 
necessarily be close to the PAH disease module; after we ex-
cluded them, the enrichment remained significant (Table 2; 
p = 0.002).

Among all module drugs, 305 have more than one target 
and 70 of them are significantly proximate to the PAH disease 
proteins, including seven PAH drugs. The enrichment of PAH 
drugs with more than one target in the high ranked drug pool 
is significant (Table 2; p = 0.0035). Therefore, we focused 
on those module drugs whose targets are significantly close 
to PAH disease proteins and performed a literature search on 
their targets and downstream effectors. Among 63 significant 
drugs that are not PAH drugs, 14 drugs can reverse or attenu-
ate PAH, and 10 may induce PAH according to the literature, 
leading to a list of 53 drugs that have repositioning potential 
for PAH (Table S1). Many drug candidates have strong lit-
erature support for their beneficial effects in reversing pul-
monary vascular remodeling or attenuating the symptoms of 
patients with PAH (Table 3), and others represent drugs with 
novel therapeutic potential for PAH (Table S1).

The five calcium channel blockers in Table 1 are used to 
treat PAH,12 but their efficacy and safety are unproven, and 
only a small percentage of PAH patients benefit from calcium 

T A B L E  2  The contingency table of Fisher’s exact test for the enrichment of PAH drugs in the high ranked drug pool that are significantly 
proximate to PAH disease proteins

PAH 
drugs Non- PAH drugs

PAH drugs with more  
than one target

Non- PAH drugs with more  
than one target

Significant proximity 8 (7) 97 7 63

Insignificant proximity 4 (2) 277 4 231

Column total 12 (9) 374 11 294

Abbreviation: PAH, pulmonary arterial hypertension.
The figures in the brackets are those excluding calcium channel blockers and vasodilators.

T A B L E  3  A list of drugs with strong literature support that have biologically plausible repositioning potential for PAH

Module drugs No. of targets Proximity to PAH disease proteins p value Literature evidence and clinical trial ID

Nintedanib 10 0.60 2.4E−7 Ref.45

Sorafenib 10 0.70 3.5E−5 NCT00452218, Ref. 46

Sunitinib 8 0.63 3.5E−5 Ref. 47

Imatinib 7 0.71 2.9E−4 NCT00902174, Ref. 42

Tamoxifen 16 1.13 0.002 NCT03528902

Telmisartan 2 0.00 5.0E−4 NCT02242344

Carvedilol 16 1.13 0.001 NCT01586156

Fluoxetine 4 0.75 0.006 NCT00942708

Fenofibrate 4 0.75 0.005 Ref.48

Acetylsalicylic acid 18 1.17 0.001 NCT00384865

Rosiglitazone 7 1.00 0.006 Ref. 49

Pioglitazone 4 0.75 0.006 Refs.49,50

Paclitaxel 6 1.00 0.009 Ref. 49

Docetaxel 6 1.00 0.007 Ref. 51

Atorvastatin 3 0.67 0.006 NCT00615823

Abbreviation: PAH, pulmonary arterial hypertension.
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channel blockers long term. As a robustness test, we con-
ducted an additional drug repositioning analysis based on the 
10 approved drugs. Specifically, we removed the five calcium 
channel blockers, retrieved the drug- drug interactions of the 
10 approved drugs, and determined PAH interacting drugs 
using drug- drug chemical similarity. Thereafter, we obtained 
360 drug candidates and examined the network proximity be-
tween these drugs and the PAH disease module. We found 
that among 53 drugs in Table S1, 37 drugs remain on the list 
of significant drugs even after we removed the five calcium 
channel blockers. We highlighted the remaining drugs in 
Table S1.

Network- based drug repositioning can provide pharmaco-
logical mechanisms for the mode of action of drugs. We illus-
trate the targets and downstream effectors of some of these 
drugs as drug- centered subnetworks shown in Figures  4b 
and S6. Considering upregulation or downregulation of 
drug targets and gene products allows us to decipher better 
the mechanistically signal transduction from drug targets to 
downstream proteins. This requires induced gene expression 
profiles in pulmonary arterial cells treated by the candidate 
drugs, which are currently not available for inclusion in this 
study. The Library of Integrated Network- based Cellular 
Signatures (LINCS) project profiled gene expression changes 
following pharmacologic or genetic perturbation of cell lines 
in high- throughput assays.43 However, its core set of cell lines 
does not include pulmonary arterial cells. Nevertheless, we 
examined the gene signatures of some drugs using the lung 
cancer cell lines (A549) and added upregulation and down-
regulation of genes in the downstream pathways of these 
drugs (Figure S6).

DISCUSSION

In this study, we integrated the targets of PAH drugs, interact-
ing PAH drugs, and PAH disease genes using the human in-
teractome. We evaluated potential drug repositioning for PAH 
based on network module and network proximity analyses 
and prioritized 53 drugs that potentially can be repurposed for 
PAH. This drug repositioning framework offers an unbiased 
way to screen and narrow down a drug candidate list compu-
tationally for PAH, which could save time and reduce the cost 
of the drug discovery process for PAH. The efficacy of these 
high- ranked candidates is subject to subsequent experimental 
validation in an animal model or clinical trial. Here, we used 
the published literature as evidence to demonstrate the power 
of our network- based computational approach.

A potential limitation of this study is that we cannot dis-
tinguish the direction of the effect of the non- PAH drugs, 
as the interactome used is not directed. Although many can-
didate drugs have strong literature support for their bene-
ficial and therapeutic effects for PAH, some drugs that are 

significantly close to PAH modules may not be therapeutic; 
rather, they may have side effects or may, in fact, induce 
pulmonary arterial hypertension. These adverse effects are 
not predicted a priori because of the undirected nature of the 
interactome. For example, dasatinib is an oral dual Bcr/Abl 
and Src family tyrosine kinase inhibitor approved for use in 
patients with chronic myelogenous leukemia. It is signifi-
cantly close to PAH disease proteins, but it may induce rather 
than treat pulmonary arterial hypertension based on previous 
studies.44 As a future direction, we will explore how to in-
corporate more biological or chemical information into the 
analysis to distinguish positive and negative effects of these 
drugs. We will use tissue- specific gene expression data from 
GTEx to create the action pathways of some candidate drugs 
that facilitate experimental validation. These additional fil-
tering processes should provide more refined information 
with which to select drugs for further testing in a clinical 
repositioning program.
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