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Abstract. The lateral distribution of plastocyanin in 
the thylakoid lumen of spinach and pea chloroplasts 
was studied by combining immunocytochemical local- 
ization and kinetic measurements of P700 ÷ reduction 
at high time resolution. In dark-adapted chloroplasts, 
the concentration of plastocyanin in the photosystem I 
containing stroma membranes exceeds that in pho- 
tosystem II containing grana membranes by a factor of 
about two. Under these conditions, the reduction of 
P700 ÷ with a halftime of 12/zs after a laser flash of 
saturating intensity indicates that to >95 % of total 
photosystem I a plastocyanin molecule is bound. An 
analysis of the labeling densities, the length of the 
different lumenal regions, and the total amounts of 

plastocyanin and P700 shows that most of the remain- 
ing presumable mobile plastocyanin is found in the 
granal lumen. This distribution of plastocyanin is con- 
sistent with a more negative surface charge density in 
the stromal than in the granal lumen. During illumina- 
tion the concentration of plastocyanin in grana in- 
creases at the expense of that in stroma lamellae, indi- 
cating a light-driven diffusion from stroma to grana 
regions. Our observations provide evidence that a high 
concentration of plastocyanin in grana in the light 
favors the lateral electron transport from cytochrome 
b6/f complexes in appressed grana across the long 
distance to photosystem I in nonappressed stroma 
membranes. 

T 
hE membrane protein complexes involved in photo- 
synthetic electron transport are heterogeneously dis- 
tributed in higher plant chloroplasts with photosystem 

(PS) t II in appressed and PS I in nonappressed thylakoid 
membranes (5, 6) in contrast to the cytochrome (cyt) b6/f 
complex, which is uniformly distributed throughout these 
thylakoid membrane regions (2, 4, 11). This organization of 
the complexes is probably a strategy to regulate the energy 
transfer to the photosystems, but requires a long-range elec- 
tron transport from PS II to PSI  that is not fully understood 
(for review, see reference 15). In addition to plastoquinol, the 
hydrophilic protein plastocyanin may be sufficiently mobile 
to shuttle fast enough across the long distances. Plastocyanin 
functions between cyt bdf and P S I  in the lumen (17), a 
continuous space inside the thylakoid membrane system. 
The average distance between P S I  and cyt b6/f in nonap- 
pressed and cyt bdf in appressed membranes is '~20 and 
200 nm, respectively. The longer distance from cyt bdf in 
appressed membranes may result in a considerably slower 
turnover of these complexes, as compared with that of cyt 
b6/f in nonappressed membranes at a given shuttle speed of 
plastocyanin, and provides a problem in our understanding 
of photosynthetic electron transport. Therefore, a localiza- 
tion of plastocyanin in the lumen of appressed grana and its 
fast diffusion would be essential for an efficient function of 

1. Abbreviations used in this paper: cyt, cytochrome; PS, photosystem. 

these cyt bdf complexes in linear or cyclic electron trans- 
port. However, experimental results seem not to be consis- 
tent with this concept. 

The kinetics of cyt f oxidation at partial inhibition of 
plastocyanin indicate a limited mobility of plastocyanin (16), 
which may be expected from the lumenal distance of 2-4 nm 
between thylakoid membranes in the light (29), which is not 
greater than the molecular dimensions of plastocyanin (10). 
Plastocyanin has also been shown to form a complex with PS 
I (18, 8). An inhomogeneous distribution may be expected 
from the lateral differences in the membrane composition 
and surface charges in stroma, grana, and exposed grana 
regions of the lumen. Digitonin fragmentation of thylakoids 
suggested a preferential location of plastocyanin in stroma 
lamellae (34). 

Immunogold labeling has successfully been used to local- 
ize all integral complexes of thylakoids (2, 27, 30, 41). Here 
we have used this technique to investigate the distribution of 
the soluble plastocyanin in the thylakoid lumen. Plastocyanin 
is visualized directly in embedded, thin-sectioned chloro- 
plasts of spinach and pea leaves in the dark and in the light 
by using monospecific polyclonal rabbit IgG directed against 
spinach plastocyanin followed by incubation with gold- 
conjugated protein A. The labeling pattern indicates that 
plastocyanin is preferentially located in the stromal lumen in 
the dark and moves laterally from stroma to grana regions 
in the light. 
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Materials and Methods 

Chloroplasts and Antibodies 
Spinach (Spinacia oleracea) was grown in hydrocultures and peas (Pisum 
sativum) were grown on vermiculite. Intact chloroplasts were isolated on a 
discontinuous Percoll (Pharmacia Fine Chemicals, Piscataway, NJ) gradient 
(22). Spinach plastocyanin was isolated from chloroplasts as described (36). 
Oxidized plastocyanin had an absorbance ratio A27s nm/A597 nm of 1.2. Anti- 
bodies were raised in rabbits by an intradermal primary injection of 1 mg 
spinach plastocyanin in 1 ml PBS (137 mM NaCI, 1.5 mM KH2PO4, 7.9 
mM Na2HPO4, 12.7 KCI, pH 7.3) homogenized with 1 ml CFA (Calbio- 
chem-Behring Corp., La Jolla, CA). After 5 wk, 1 mg plastocyanin in 1 ml 
150 mM sterile NaCI was intravenously injected. The whole serum was pre- 
pared by allowing the blood to clot at room temperature for 2.5 h followed 
by centrifugation of the supernatant for 20 min at 4,000 g. The IgG fraction 
of the preimmune serum and the antisera were isolated similar as described 
(28) on protein A-Sepharose CIAB (Sigma Chemical Co., St. Louis, MO). 
The IgG fractions identified by monitoring the absorbance at 280 nm during 
elution with 0.1 M glycine-HCl, pH 3.0, were passed through a gel filtration 
column (PD10; Pharmacia Fine Chemicals) equilibrated with 0.1 M potas- 
sium phosphate buffer, pH 7, and concentrated by centrifugation for 60 min 
at 7,000 g through an ultrafiltration membrane (Centricon C10; Amicon 
Corp., Danvers, MA) to the initial volume of the whole serum. The serum 
showed a good cross-reaction with pea plastocyanin, analyzed as described 
by Ouchterlony (31). 

Gel electrophoresis was carried out in the presence of SDS on a poly- 
acrylamide gradient from 10.2 to 15.4% (SDS-PAGE) using the Laemmli 
buffer system (23), except that 2 mM EDTA was present. The gels were 
stained with Coomassie Brilliant Blue R250 (Serva Fine Biochemicals Inc., 
Garden City Park, NY). Electroblotting (40) on nitrocellulose (BA85, 
Schleicher & Schnell, Keene, NH) of the gels was with an improved elec- 
trode arrangement (13). Free areas of the nitrocellulose were blocked by in- 
cubation with a solution of 2% (wt/vol) BSA in PBS-buffer, pH 7.4, for 30 
min followed by staining of the antibodies with gold particles bound to pro- 
tein A (Sigma Chemical Co.) as described (39). The monodisperse gold 
particles were prepared by reduction of tetrachlorogold with trisodium ci- 
trate after the given procedure for 15 nm gold (12). 

Determination of Total Plastocyanin 
The amount of plastocyanin in spinach chloroplasts and thylakoids was de- 
termined by quantitative rocket electroimmunodiffusion according to the 
method of Laurell (25) in agarose gels on microscope slides as described 
(17) except that the gels contained 0.83% (wt/vol) agarose, 0.2 M 
NaH2PO4, 0.2 M Na2HPO4, 3% (wt/vol) polyethylene glycol 20,000, 5 mM 
EDTA, and 2.8% antiserum. Chloroplasts were dissolved in 1.6% (wt/vol) 
Triton X-100 at a chlorophyll concentration of 0.4 mg/ml. 

Immunocytochemistry 
Dark adapted pieces of spinach or pea leaves (1 × 1 nun) were incubated 
for 30 rain at room temperature with a mixture of 1% (wt/vol) glutaralde- 
hyde and 4 % formaldehyde either in the dark or during continuous illumina- 
tion. The inactivation of antigenic sites of isolated plastocyanin by increas- 
ing concentrations of glutaraldehyde and formaldehyde was tested by dot 
blots on nitrocellulose (7). The rather high concentration of 1% glutaralde- 
hyde showed no considerable decrease in antibody binding and ensured op- 
timal cross-linking of proteins (24). After fixation, specimens were washed 
twice in 0.1 M cacodylate buffer, pH 7.4, and PBS, pH 7.4, dehydrated in 
an ascending series of dimethylformamide and embedded in Lowicryl K4M 
(42). Ultrathin sections were cut with a diamond knife and mounted on 200- 
mesh copper grids. Immunocytochemical labeling was performed by float- 
ing grids serially, section side down, on 10-/xl droplets placed on wax sheets 
containing the following solutions: 

(a) 0.2% glycine in PBS, pH 7.4, and/or 1% BSA, pH 7.4 to block 
nonspecific binding sites and to quench aldehydes present at the section sur- 
face. Treatment was carried out for 15 min followed by two 5-min washes 
in PBS. 

(b) After this pretreatment, the grids were placed on drops with an appro- 
priate dilution of the primary antibodies (0.1 /zg/ml) in PBS, pH 7.4, con- 
mining 1% BSA followed by three 5-min washes in PBS. 

(c) After removing unbound antibodies by proper washings, the grids 
were floated on drops containing gold-labeled protein A and then given three 
5-min washes in PBS (pH 7.4) and two 5-min rinses in distilled water. 

Monodisperse gold sols were prepared by reduction of HAuCI4 with triso- 
dium citrate as reducing agent (12). Protein A was linked to gold particles 
following the protocol of Roth (37). The gold sols could be stored at 4°C 
in PBS/1% BSA/0.02 % azide for up to 4 wk with no loss of immunoreac- 
tivity. Before use, the conjugates were briefly centrifuged to remove ag- 
gregated gold particles and were routinely examined by negative staining. 

(d) Labeled grids were dried, stained with aqueous uranyl acetate and 
lead citrate before examination with a Philips electron microscope 209 at 
60 kV. 

(e) The specificity ofimmunostaining was controlled by omitting the anti- 
body or using preimmune IgG instead. In control experiments the number 
of gold particles was negligible and comparable to that observed outside 
the cross sections of chloroplasts with immunolabeled specimens (Figs. 
2 and 3). 

Quantification of the Electron Microscopic 
Observations 
Electron micrographs with cross-sections of chloroplasts with clearly re- 
solved grana and stroma membranes were analyzed independently on two 
sets of glossy prints at a magnification of ,,~100,000. The length of the lumen 
in grana stacks, exposed grana, and stroma lamellae (see Fig. 4) was mea- 
sured. Each gold granule and its attribution to one of the regions, near (i.e., 
at a distance less than the diameter of a granule) or on top of stroma mem- 
branes (Ns), near but outside a grana stack (No), with its center on top of 
the first (NI), the second (N2), and the third or higher numbered grana 
thylakoid (N3) was individually marked to minimize possible errors. The 
numbering was started at each of the two exposed grana thylakoids of a 
grana stack. In Table I, No + Nt and N2 + N3 are given as granules at ex- 
posed grana and grana, respectively. The distances for histograms (Figs. 5 
and 7) were estimated at a magnification of 630,000 with a resolution of • 2 
nm. Assuming a Poisson distribution of labeled and unlabeled plastocyanin, 
the best estimate of the labeling density with the lowest variance is obtained 
by summarizing the counts in a given region of all chloroplasts analyzed 
and dividing this sum by the sum of the lumenal length of that region. The 
significance of differences was tested at an error level of 1%. 

Flash Photometric Experiments 
Intact chloroplasts were suspended at a concentration of 20 #g chlo- 
rophyll/ml in 0.2 M sorbitol, 5 mM MgCI2, 10 mM NaCI and 15 mM 
Hepes buffer, pH 7.5. The dark-adapted sample was excited by pulses of 
saturating intensity from a frequency-doubled Nd-YAG laser of 534 nm 
light, 10 ns duration (full width at half maximum) and an energy of 10 mJ. 
The measuring light was provided by a flash lamp passed through an inter- 
ference filter of 703 nm. During the plateau of nearly constant light inten- 
sity, the absorbance changes were monitored with a silicon photodiode for 
50 #s. Changes in the intensity of the monitoring flash were subtracted. The 
signals were digitized with a transient recorder (model 6200; Biomation, 
Cupertino, CA) at a dwell time of 50 ns and averaged in a signal processor 
model TN1500; (Tracor, Inc., Instrument Group, Austin, TX). 

Results 

The specificity of antibodies raised against spinach plasto- 
cyanin was examined in immunoblotting experiments. Fig. 1 
shows in lane 3 and 4 the polypeptide pattern after SDS- 
PAGE of spinach and pea thylakoids, respectively. In the im- 
munoblots of these lanes (lanes I and 2, respectively) the an- 
tibody to spinach plastocyanin reacted with a single band in 
both plants showing that it is monospecific and that it cross- 
reacts efficiently with pea plastocyanin. The position of the 
single bands at '~14 kD is higher than the actual molecular 
mass of 10.5 kD of plastocyanin but agrees with the position 
of the bands of the isolated plastocyanins. The total amount 
of plastocyanin in spinach chloroplasts was determined by 
rocket immunoelectrophoresis using spinach plastocyanin 
for calibration at concentrations between 0.6 and 5.0 #M. We 
found 2.16 + 0.22/xM (n = 6) in the samples containing 0.4 
mg chlorophyll/ml which is equal to a molar ratio of chlo- 
rophyll to plastocyanin of 205 + 20. 
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Figure 1. Characterization of antibodies raised against spinach 
plastocyanin. Lanes 3 and 4, electrophoretogram of spinach (S) and 
pea (P) thylakoid membranes, respectively, stained with Coomas- 
sie Brilliant Blue (10-15% SDS-PAGE). Lane 5, marker proteins. 
Lanes 1 and 2, immunoblot analysis of the plastocyanin antibody 
as revealed by protein A-gold binding after transfer of the spinach 
(S) and pea (P) thylakoid proteins, respectively, to nitrocellulose. 

We studied the distribution of plastocyanin in pieces of 
leaves from spinach and from pea both in the dark and in the 
light. Immunolabeling of thin sections of spinach and pea 
leaves is shown in Figs. 2 and 3, respectively. Gold granules 
are found almost exclusively at the thylakoid membranes. 
The electron micrograph of the dark adapted spinach chlo- 
roplast in Fig. 2 a shows considerably less granules in the 
grana stacks than the illuminated one in Fig. 2 b. A similar 
distribution is found in Fig. 3, a and b for pea. However, a 
conclusion about light-induced changes of the distribution of 
plastocyanin needs a detailed analysis and consideration of 
the following aspects: (a) three lumenal regions differ from 
each other in the adjacent membranes, grana, exposed 
grana, and stroma; (b) the length of the antibody-protein 
A-gold granule complex limits the resolution; and (c) evalua- 
tion of statistics of the distribution and significance of differ- 
ences. 

Fig. 4 illustrates the three lumenal regions included in our 
analysis, the grana region with appressed membranes on ei- 
ther side, the exposed grana region with an appressed mem- 
brane on one and the nonappressed end membrane on the 
other side, and the stroma region with nonappressed stroma 
lamellae on both sides. The tightly curved margins of the 
grana membranes do not contribute significantly to the 
length of the lumen and are not included hut may contain 
some PS I (43). 

The distance between the site of a plastocyanin molecule 
and the attached gold granule has to be known to judge the 
accuracy of an assignment of a granule either to the lumen 
of exposed grana or to a neighboring grana. The histogram 
of the distance between the middle of the thylakoid lumen 
and the center of a gold granule is shown in Fig. 5 for stroma 
thylakoids where the attribution of a granule is unambigu- 
ous. It indicates a maximal distance of 17 nm in illuminated 
and dark samples. We have also determined the distance be- 
tween grana (including two membranes and the lumen) and 
found 13.9 + 1.9 (25 grana stacks) and 15.5 + 1.9 nm (34 
grana stacks) in the light and the dark, respectively, in agree- 
ment with previous results (29). These values indicate that 
a gold granule bound to plastocyanin localized in a granum 
may be found not further than at the lumen of a neighboring 
granum. In a first approximation, the number of gold gran- 
ules found at a grana thylakoid but bound to plastocyanin of 
a neighboring one may assumed to be equal for all grana 
thylakoids and cancel each other. Therefore, the granules 
were attributed in our analysis directly to the grana lamellae 
where they are observed in the micrographs except that gran- 
ules in the stroma near end membranes were added to the 
number at exposed grana to give the total number of plasto- 
cyanin in the lumen of exposed grana. 

The analysis of several sets of electron micrographs is 
shown in Table I. The data indicate in the dark an approxi- 
mately twofold higher labeling density of plastocyanin in the 
stroma than that in grana. In both plants, illumination 
decreases the labeling density of plastocyanin in the stroma 
and increases that in grana. The overall labeling density is 
the same in the dark and light. This indicates that the binding 
between the antibody and plastocyanin is not different in 
grana and stroma and that the labeling density is propor- 
tional to the concentration of plastocyanin. In pea, the label- 
ing density is slightly lower than in spinach as expected for 
IgG raised against spinach plastocyanin. An Ouchterlony 
diffusion in agarose (31) (not shown) indicated at least one 
antigenic site of spinach plastocyanin in addition to those of 
pea plastocyanin. Granules at the margins cannot be attrib- 
uted to lumenal regions. They represent <10% of the total 
counts. The averaged ratio of the length of appressed to non- 
appressed membranes (see Fig. 4) is estimated from the 
lumenal lengths as 58:42 and 52:48 in spinach and pea, 
respectively. 

Plastocyanin Bound to Photosystem I 

It has previously been shown that plastocyanin bound to PS 
I reduces oxidized P700, the reaction center chlorophyll, 
with a half-time of 10-14 /~s (18, 8). If the flash is short 
enough to avoid double excitation of PS I, then the amplitude 
of this kinetic component of P700 + reduction gives the frac- 
tion of total P700 associated with plastocyanin. The kinetics 
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Figure 2. Immunogold localization of plastocyanin on Lowicryl sections of dark adapted spinach leaves. (a) Dark-adapted sample; (b) sam- 
ple illuminated during fixation with formaldehyde/glutaraldehyde. Arrowhead, gold granules near stroma lamellae as used for the analysis 
in Fig. 5. Bar = 1 /~m. 

of the absorbance change of P700 in intact chloroplasts are 
shown in Fig. 6. The immediate decrease of the absorbance 
at 703 nm at the origin of the time axis is due to the oxidation 
of P700 during the laser flash. The subsequent increase of 
absorbance follows a first-order time course and is evidence 
for a reduction of >95 % of total P700 + by bound plastocya- 
nin with a half-time of 11.3 #s. This indicates that in dark- 
adapted chloroplasts at least an amount of reduced plastocya- 
nin equivalent to the amount of total P700 is associated with 
nonappressed membrane regions. A molar ratio of chloro- 
phyll to total P700 of 670:1 can be estimated from the ampli- 
tude in Fig. 6 and a differential absorbance coefficient at 703 
nm of 64 mM-~cm -~. 

Plastocyanin in Exposed Grana 

The labeling densities in Table I are not precise enough to 
indicate if the situation in exposed grana is different from 
that in grana. In an approach that is independent of mem- 
brane length we have analyzed the plastocyanin distribution 
perpendicular to the membranes in grana stacks assembled 
from six or more thylakoids. The histograms are shown in 
Fig. 7. Assuming that the maximal distance between the lu- 
men and a gold granule is the same in exposed grana and 
stroma (Fig. 5) and taking into account the thickness of grana 
in the dark and in illuminated samples we estimate a ratio 
of plastocyanin in exposed grana (No + NO to the average 
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Figure 3. Immunogold localization of plastocyanin on Lowicryl sections of pea leaves. (a) Dark-adapted sample; (b) sample illuminated 
during fixation with formaldehyde/glutaraldehyde. Bar = 1 ttm. 

in grana thylakoids (N2 + N3)/2 of 0.98 and 0.84 in the 
dark and light, respectively. At variance with the definition 
given above N~ represents the number of granules only at 
the third grana thylakoid. The values are in good agreement 
with the respective ratios of the labeling densities in Table 
I of 1.07 and 0.9. Statistically the difference is not significant. 

Discussion 

Heterogeneous Distribution of Plastocyanin 
This study shows that plastocyanin is heterogeneously dis- 
tributed in the dark in spinach and pea thylakoids with an al- 
most twofold concentration in the stromal lumen as corn- 

pared with the granal one. The overall labeling density of this 
soluble protein is comparable to that reported for the integral 
cyt bdf complex (1) and PS I (41). The distribution of 
plastocyanin in the dark seems to be unfavorable for a turn- 
over of cyt bdf complexes in appressed grana separated by 
long distances from PS I. The low concentration in grana 
could limit the turnover of cyt b6/f in appressed as com- 
pared with the turnover in non-appressed membrane regions 
at low light intensities, and cyt bdf complexes in close 
proximity to PS II could have a function which is different 
from that of cyt bdf complexes near P S I  as discussed (3). 
However, the fast reduction kinetics of P700 + measured in 
dark-adapted chloroplasts permit a more detailed analysis. 
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Figure 4. Scheme of thylakoids with three 
different regions of the lumen as included in 
the analysis for Table I. 

Localization o f  Bound and Mobile Plastocyanin 

The kinetics in Fig. 6 indicate that a reduced plastocyanin 
molecule is bound to almost every PS I. Therefore in the 
lumen of both stroma and exposed grana a fraction of plas- 
tocyanin proportional to the amount of PS I  is immobilized 
by the complex, whereas the remainder should be more 
mobile. The relative amount of PSI (and of bound plastocya- 
nin) is approximated by the fraction of total nonappressed 
membranes in these regions. The total length of nonap- 
pressed membranes is the sum of the lumenal length of ex- 
posed grana plus twice that of stroma (see Fig. 4). The values 
for dark adapted spinach chloroplasts in Table I give relative 
to total P700 0.74 and 0.26 for PS I in stroma and in end 
membranes, respectively. The amount of plastocyanin is 
proportional to the number of gold granules, Ng, Ne, and N~ 
in the lumen of grana, exposed grana, and stroma, respec- 
tively, 

Ng.f = PCg' (l) 
Ne.f = PCe' + PCD (2) 
N,.f = PC~' + PC, b (3) 

where PC? and PCe b are the fraction of total plastocyanin 
bound to PS I in stroma and end membranes, respectively, 
and PCg', PC/, and PC~' are the fraction of total plastocyanin 
in grana, exposed grana, and stroma, respectively, that is not 

bound to PS I. Dividing Eqs. 1 and 2 by Eq. 3 eliminates 
the constant, f. To estimate the individual fractions of plas- 
tocyanin, two more relations are needed. One is the amount of 
bound plastocyanin relative to P700, which is found (Fig. 6) 
to be near one (PCo b + PC? = 1). The other is the amount 
of total plastocyanin in thylakoids relative to P700. A molar 
ratio of plastocyanin to P700 of 3.27 for spinach chloroplasts 
is given by the ratio of chlorophyll to plastocyanin and chlo- 
rophyll to P700 of 205 and 670, respectively. The value is 
in agreement with the previous determinations of two (14) 
and four (35). Table II summarizes the estimations based on 
our data. 

At the ratio of plastocyanin to P700 of 3.27 the concentra- 
tion of potentially mobile plastocyanin in grana exceeds that 
in stroma lamellae almost by a factor of two and the electron 
transfer from cyt b6/f in grana to PS I does not seem as un- 
favorable as discussed above. At a ratio of two (14), the mini- 
mal value consistent with the data in Table I, almost all 
plastocyanin not bound to PS I would be located in the granal 
lumen. 

This distribution of mobile plastocyanin is not consistent 
with the negative surface charge density of -0.037 C-m -2 
(26) and -0.02 C.m -2 (21, 36) reported for PS II and the 
oxidizing site of PS I, respectively, which suggests an inverse 
distribution of the negatively charged plastocyanin. How- 
ever, the surface charge density of PSI  is likely to be a local 

Table L Distribution of Gold Granules Labeling Plastocyanin in the Thylakoid Lumen 

Labeling densities 
Chloroplast Total counts~:/ 

Region Total Total length Grana/ total length 
Sample No. of lumen counts of lumen Average* stroma of lumen 

izm counts//zm counts//zm 

Spinach Grana 959 637 1.5 (-I-0.2) 
Dark 13 Exposed grana 444 274 1.6 (+0.4)  0.68 1.7 

Stroma 854 391 2.2 (+0.6)  

Spinach Grana 1,153 572 2.0 (+0.5)  
Light 13 Exposed grana 379 206 1.8 (-I-0.3) 1.25 1.8 

Stroma 649 417 1.6 (+0.5)  

Pea Grana 396 397 1.0 (+0.5)  
Dark 13 Exposed grana 337 255 1.3 (+0.6)  0.45 1.5 

Stroma 815 376 2.2 (+0.5)  

Pea Grana 236 177 1.3 (-I-0.4) 
Light 8 Exposed grana 190 128 1.5 (+0.3)  0.81 1.5 

Stroma 326 207 1.6 (+0.3)  

* Total counts divided by total length of lumen. The mean + SD in parentheses (see Materials and Methods) is given for the number (No.) of chloroplast cross- 
sections analyzed. 
:~ Sum of total counts in the three regions of lumen divided by the sum of the total length of lumen in these regions. 
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Figure 5. Distribution of the 
distance between the lumen of 
stroma lamellae and the center 
of gold granules in dark-adapt- 
ed and illuminated spinach 
leaf sections. Only gold gran- 
ules near clearly separated 
stroma lamellae were consid- 
ered (see arrowheads in Fig. 2). 

one and may be too low as compared with stroma mem- 
branes, presumably due to a positively charged subunit of PS 
I. This subunit is required for an efficient electron transfer 
from plastocyanin to PSI  (36). If the binding site at PSI  is 
occupied by plastocyanin with its eight negative charges (10), 
then the remaining plastocyanin is likely to distribute in the 
lumen preferentially to regions with the lowest negative sur- 
face charge density. Our data suggest that the surface charge 
density at the inner surface of appressed membranes is lower 
than that of nonappressed membranes• 

In the analysis of mobile and bound plastocyanin, the bind- 
ing probability of the antibodies has been assumed to be the 
same for all plastocyanin molecules• But binding of plasto- 
cyanin with negative residues to the subunit of PS I (36) 
would hide a patch of high antigenic potential. Therefore the 
fraction of gold granules attributed to bound plastocyanin 
may be too high and the difference between mobile plastocya- 
nin in grana and stroma lamellae may be smaller than shown 
in Table II, columns 3 and 4. However, the overall labeling 
density remained constant at the light-induced changes of the 
distribution (Table I). This could indicate that either plasto- 
cyanin remains bound to PSI  after its oxidation in the light 
or binding of plastocyanin to P700 has a minor effect on im- 
munolabeling, e.g., due to strong binding to the antibody or 
exposed antigenic determinants when it is bound• 

Light-induced Changes of t  he Plastocyanin 
Distribution 

During illumination, the plastocyanin concentration in grana 

Jo 

20 

z 
~o lo 
w ,,= 

10 

0_10 

20 B No 

A No NI N2 N= 

O 
-10  O 

I I I I I 

0 10 20 30 40 

DISTANCE / am 

N t ht:t N:~ 

' •  LIGHT 

I I I I I 

10 20 30 ¢0 

DISTANCE / ~m 

Figure 7. Distribution of gold 
granules perpendicular to the 
thylakoid plane in grana 
stacks assembled from six or 
more thylakoids in the dark 
(A) and during illumination 
(B). The origin of the abscissa 
is at the stromal surface of the 
exposed thylakoid. The hori- 
zontal bar at the top indicates 
the thickness of thylakoids as 
given in the text. Nt identifies 
the exposed thylakoid, N2 and 
N3 the adjacent stacked thyla- 
koids. For details see text. 

increases at the expense of that in stroma regions (Table I). 
This diffusion may be due to two effects: (a) during illumina- 
tion, the lumenal pH decreases to a value of ,,04.7 (38) and 
negative groups become protonated. The surface charge den- 
sity in grana should decrease to a larger extent than that in 
the stroma region. (b) In strong illumination plastocyanin be- 
comes oxidized by limitation of the electron transport rate at 
the cyt bdf complex. If the binding of the oxidized form is 
not as strong as that of the reduced form, there would be 
more mobile plastocyanin which could distribute between 
the lumenal regions. Bottin and Mathis (9) have shown that 
bound plastocyanin is rapidly replaced after its oxidation by 
reduced plastocyanin. 

The labeling density in dark-adapted chloroplasts should 
indicate the actual distribution of plastocyanin. However, in 
the light during the incubation with glutaraldehyde for EM, 
the distribution of plastocyanin may change before its fixa- 
tion. Extensive investigations of the effect of glutaraldehyde 
in chloroplasts (for review, see reference 33) have shown that 
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Figure 6. Light - induced  abso rbance  changes  o f  P700  moni tored  at 
703 n m  in spinach chloroplasts .  At t = 0, the sample  was excited 
by a laser  flash o f  saturat ing intensity. 200 signals  induced at dis- 
tances  o f  1.5 s were averaged. T he  durat ion o f  the  moni to r ing  light 
was 0.1 ms.  The  hal f t ime of  the  P700  ÷ reduct ion of  11.3 ps  is indi- 
cated. 

Table II. Distribution of Plastocyanin Bound to 
Photosystem I and of Residual Plastocyanin between 
Different Lumenal Regions of Spinach Chloroplasts 
in the Dark 

Plastocyanin Relative 
Molar ratio* of concentrationll 
plastocyanin/ Region Bound Not bound of "mobile" 
P700 of lumen to PSI* to PS I§ plastocyanin 

3.27 
Grana - 1.39 1.00 
Exposed grana 0.26 0.38 0.64 
Stroma 0.74 0.50 0.59 

Amounts of plastocyanin are given relative to total P700. 
* Estimated from rocket immunoelectrophoresis and the amplitude in Fig. 6. 
* Estimated by multiplying the fraction of total P700 reduced rapidly by bound 
plastocyanin with the fraction of nonappressed membranes in the region of lu- 
men (see text). 
§ Calculated from the total counts in Table 1 and Eqs. I-3. 
II Plastocyanin not bound to PS 1 divided by the lumenal length. 
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thylakoid membranes are immobilized but retain their capac- 
ity to maintain a light-induced proton gradient (32). Except 
for a rapid inactivation of ATP synthase, glutaraldehyde 
stabilizes the function of the integral protein complexes (19) 
but inhibits linear electron transport in intact chloroplasts 
specifically by interaction with plastocyanin (20). These 
effects suggest that the internal proton concentration and the 
oxidized level of plastocyanin generated by the electron 
transport will not decrease before most of the proteins are 
crosslinked. Therefore, the concentration ratio of plastocya- 
nin in grana versus stroma in the light may be slightly lower 
and the extent of the light-induced diffusion of plastocyanin 
from stroma to grana regions may be even greater than our 
experimental value. 

The light-driven diffusion of plastocyanin increases its 
concentration to higher values in grana than estimated in Ta- 
ble II. This will increase the second order reaction rate with 
cyt b6/f in this region and the turnover of these complexes 
in strong light. It is not known how much plastocyanin re- 
mains bound to PS I in the light but it is evident that the frac- 
tion of mobile plastocyanin in grana regions increases at the 
onset of illumination. The problem of the diffusion of plas- 
tocyanin across the long distances from cyt b6/f in grana to 
PS I in stroma would be compensated by a high local concen- 
tration. Although this study cannot provide information on 
the diffusion coefficient, the distribution of plastocyanin is 
that expected for an efficient oxidation of cyt bdf in grana 
in linear electron transport. The electron transfer from cyt 
b6/f in stroma and exposed grana via plastocyanin to PS I 
involves only short distances across the lumen to the opposite 
membrane and in nonappressed membranes also to neigh- 
boring PS I complexes in the same membrane and could be 
rapid even at a decreased concentration of plastocyanin in the 
light. In conclusion the turnover of cyt b6/f in grana and 
that in stroma regions would approach each other in the 
light. Our results provide evidence for the involvement of cyt 
b6/f in grana and the functional organization of linear pho- 
tosynthetic electron transport. 
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