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Herbarium collections remain essential in
the age of community science

Isaac Eckert 1,2 , Anne Bruneau 2,3, Deborah A. Metsger4, Simon Joly 3,5,
T. A. Dickinson 4,6 & Laura J. Pollock 1,2

The past decade has yielded more biodiversity observations from community
science than the past century of traditional scientific collection. This rapid
influx of data is promising for overcoming critical biodiversity data shortfalls,
but we also have vast untapped resources held in undigitized natural history
collections. Yet, the ability of these undigitized collections to fill data gaps,
especially compared against the constant accumulation of community science
data, remains unclear. Here, we compare how well community science (iNa-
turalist) observations and digitized herbarium specimens represent the
diversity, distributions, and modeling needs of vascular plants in Canada. We
find that, despite having only a third as many records, herbarium specimens
capture more taxonomic, phylogenetic, and functional diversity and more
efficiently capture species’ environmental niches. As such, the digitization of
Canada’s 7.3M remaining specimens has the potential to more than quintuple
our ability to model biodiversity. In contrast, it would require over 27M more
iNaturalist observations to produce similar benefits. Our findings indicate that
digitizing Earth’s remaining herbarium specimens is likely an efficient, feasible,
and potentially critical investment when it comes to improving our ability to
predict and protect biodiversity into the future.

Whatwas once the purviewof trained scientists, collecting biodiversity
data is rapidly becoming an endeavor of community (citizen) scientists
logging species sightings into their phones rather than collecting
physical specimens (Fig. 1). The Global Biodiversity Information Facil-
ity (GBIF) now has over 2.3 billion occurrence records, 50% of which
were collected by community scientists since 20101. But despite this
data windfall, existing information on biodiversity remains biased and
largely incomplete2, limiting our ability to consider all aspects of bio-
diversity in conservation planning3. Overcoming these critical data
shortfalls will rely on obtaining additional biodiversity data that cap-
tures the diversity and distribution of life on Earth. To that end, the
digitization of Earth’s remaining natural history collections is a
potentially feasible and efficient option.

Natural history collections like herbaria might be less prone to
some of the biases that pervade community science observations.
While community science platforms like iNaturalist favor common and
larger species and urban areas4,5, herbarium collections, despite shar-
ing some biases6,7, better represent rare species and rural areas8 and
contain a wealth of irreplaceable data9. For example, recent work by
Daru & Rodriguez showed that natural history collections like herbaria
outperform community science records in terms of spatial and taxo-
nomic bias and better match expected biodiversity patterns8. How-
ever, the sheer rate at which we are accumulating community science
observationsmay eventually negate its biases and so it remains unclear
whether the digitization of Earth’s remaining 314M herbarium speci-
mens is needed to overcome existing data shortfalls10,11.
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Alongside data coverage, it is also important to understand
whether we have enough data to build reliable models, which are
often essential for converting biodiversity data into a form useable
for conservation needs. The recent Kunming-Montreal Global Bio-
diversity Framework reinvigorated humanity’s effort to protect
Earth’s biodiversity over the next few decades12, but to inform con-
servation policy amid climate change, nations around the world
need a basic understanding of current and future species
distributions13–15. Species distribution models (SDMs), which predict
species occurrence across geographic space and time based on
abiotic and biotic predictors, are increasingly used for this purpose.
But SDM performance is limited by incomplete and biased biodi-
versity data that poorly capture the full extent of species’ environ-
mental niches16–18. The ability of herbarium specimens versus
community science observations to represent species’ niches is
untested and so it remains unclear how the accumulation of addi-
tional iNaturalist observations versus the digitization of existing
herbarium specimens might improve our ability to describe, quan-
tify, and model biodiversity. To fill this gap, we assess the ability of
both data types to capture the taxonomic, phylogenetic, and func-
tional diversity and environmental niches of Canada’s vascular
plants. Additionally, we leverage the coordinated network of her-
baria and detailed information on the extent of undigitized her-
barium collections in Canada to predict the potential gains in
biodiversity knowledge and ability to model species distributions
that could be accrue from digitizing remaining specimens.

We report that, compared to iNaturalist observations, herbarium
records exhibit less bias and more efficiently represent both the
diversity and distributions of Canadian plants. Moving forward, we
estimate that the digitization of Canada’s remaining herbarium speci-
mens could greatly benefit our knowledge of plant biodiversity,
potentially quintupling our ability to model species’ spatial distribu-
tions. Finally, despite the growing rate at which we are accumulating
new observations, it is unlikely that community science alone can
match the benefits of herbarium digitization in the near future,
pointing to the likely critical importance of herbaria and their collec-
tions for informing conservation planning to reach our 2030goals and
beyond.

Results
For all of Canada’s 4392 vascular plant species, we downloaded
observation data fromGBIF for Canada and the United States from the
year 1900 to present (January 2024), which resulted in a total of
12,293,856 records across 3968 species. After removing those with
high spatial uncertainty (n = 4,774,596) we were left with 7,519,260
records, of which 23%were identified as herbarium specimens and 72%
were identified as iNaturalist observations.

Biases
Wefind that herbarium records are less temporally and spatially biased
than iNaturalist observations. Herbarium data exhibit a more even
temporal coverage over the past twelve decades compared to iNa-
turalist data which were largely gathered in the past five years (Fig. 2a).
Spatially, iNaturalist observations are more clustered compared to
herbarium records (Fig. 2b, Table S1) and their distribution is strongly
dependent on human population density (Fig. 2c, Tables S2 and S3).
That said, the distribution of both herbarium and iNaturalist data
across space is highly uneven (Fig. 3a) and of the pixels (25 km by
25 km) with at least 1 record of either data type, 55% contain more
iNaturalist records, 44% containmore herbarium records, and roughly
1% have an equal number of records (Fig. 3b). Across Canada and the
US, around37%of land areadoes not have a single recordof either data
type, the vast majority of which is in northern Canada.

When it comes to representing plant diversity, we find that her-
barium records are less taxonomically, phylogenetically, and func-
tionally biased. On average, while a single plant species is represented
by more iNaturalist observations (µ = 1234) compared to herbarium
records (µ = 396), the variance is 4.8 times higher for iNaturalist data
(F = 4.776, df = 4391, p <0.001), which leads to half of all iNaturalist
observations (2.7M) representing only 4% (178) of plant species. As a
result, 47% of Canadian plants are better represented by herbarium
records despite there being considerably fewer compared to iNatur-
alist observations (Fig. 4a). Pagel’s λ, which measures the strength of
signal in thedistributionof a trait at the tips of a phylogenetic tree or of
a functional dendrogram, is higher for iNaturalist observations com-
pared to herbarium records, indicating stronger phylogenetic and
functional bias (Fig. 4b, c).

Fig. 1 | Herbarium specimens and community science observations differ in terms of how they are collected andwhat biodiversity data they record.Definitions (a)
and examples (b, c) of community science observations, herbarium specimens, and the digitization process.
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Taxonomic, phylogenetic, and functional coverage
Despite only having a third as many records in GBIF, herbarium spe-
cimens better capture the taxonomic, phylogenetic, and functional
diversity of Canadian plants (Fig. 5a–c). Of the 4392 terrestrial vascular
plant species in Canada, digitized herbarium specimens represent
3662 (83.4%) compared to the 3504 (79.8%) represented by iNaturalist
observations. Species at risk are also better represented, with Her-
barium records capturing 93.2% compared to 88.7% for iNaturalist
data. Surprisingly, 714 (16.3%) species were unrepresented by either
data type. When it comes to phylogenetic and functional coverage,
herbarium records capture 3.4% more phylogenetic diversity and 1.8%
more functional diversity. Based on the rate at which iNaturalist data
accumulate taxonomic, phylogenetic, and functional diversity, we
estimate it would take over 4.2M additional iNaturalist observation to
capture the diversity currently represented by digitized herbarium
specimens.

Capturing species’ environmental niches
Using species range maps and current climate normals, we report that
the environmental niches of Canadian plants are surprisingly poorly
captured by both herbarium and iNaturalist data. Together, both data

types capture an average 9.2% of species’ environmental niches.
Separately, iNaturalist observations capture an average 5.7% of species
environmental niches while herbarium records capture around 5.1%.
However, when adjusted for the fact that there are over three times as
many iNaturalist records, herbarium records captured an average 1.8
times more environmental niche space per record. This difference is
reflected in accumulation curves (Fig. 6a), where herbarium records
accumulate environmental niche coverage 9% quicker than iNaturalist
data for the average plant species. Interestingly, the proportion of
species’ niches captured by both data types was on average very small
(1.6%) indicating that the different data types usually capture very
different areas within a species’ geographic range.

Benefits of digitizing Canada’s remaining herbarium specimens
An estimated 7.3M specimens remain undigitized in herbaria across
Canada19. Assuming that these remaining specimens canbe adequately
georeferenced and that the taxonomic representation remains like
that of digitized specimens, we estimate that the digitization of the
remaining records could capture around 156 additional species (3.6%),
5.3% more phylogenetic diversity, and 2.3% more functional diversity.
In contrast, it would take an estimated 42M, 41M, and 74M additional

Fig. 2 | Herbarium records exhibit less temporal and spatial bias than iNatur-
alist observations. Temporal bias (a) is illustrated as the accumulation of new
records over time. Spatial bias (b) is quantified using nearest neighbor index (NNI)
which is a measure of spatial autocorrelation. When log transformed, a negative
NNI indicates clustering, a positive NNI indicates dispersion, with an NNI of 0
indicating points are randomly distributed in space. NNI was calculated at the
species level and only significant (p <0.05) estimates of NNI were retained for this
visualization (n = 2823).Herbarium records exhibitedamean logNNI of −0.88while

the mean for iNaturalist records was significantly (p =0.006) lower at −0.93
(Table S1). Boxes show the quantiles (Q1-3) with the horizontal line representing the
median and the whiskers representing the minima and maxima (calculated as 1.5
times the difference betweenQ1-3). We also tested for spatial bias (c) by estimating
the relationship between density of records and human population density using
negative binomial generalized linear models for which we report R2

(Kullback–Leibler) and p values (Tables S2-S3).
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iNaturalist records, to capture the same amount of taxonomic, phy-
logenetic, and functional diversity, respectively.

Based on our analysis of how well herbarium specimens capture
species’ environmental niches, we estimate that digitizing Canada’s
remaining specimens could almost quadruple existing coverage.While
the existing 1.74M herbarium records capture an average 5.1% of spe-
cies environmental niches, an additional 7.3M records could increase
this coverage to 19.8%, which when added to the coverage conferred
by existing iNaturalist data, equates to an average niche coverage of
around 23.8% across all Canadian vascular plants (Fig. 6b).

Benefits of digitization for modeling the distribution of
Canadian flora
Thepower andusefulness of SDMs to predict species ranges today and
into the future under climate change depends on how well the biodi-
versity observations we use to fit models represent species’ niches.
Based on SDMs for Canadian vascular plants, we found a strong posi-
tive relationship between niche coverage (the amount of environ-
mental niche space captured in biodiversity data) and our ability to
predict the extent of species geographic ranges (range filling score)
(Fig. 6c, Table S4). Currently, when using both data types to model
Canadian flora, we are only able to predict the occurrence of species
across 20.8% of their Canadian range on average, which means we are
likelyunderestimating the true distribution of plant biodiversity across

Canada. However, we predict that by digitizing Canada’s remaining
herbarium collections, we could increase our ability to model Cana-
dian plant distributions by over 5 times per species on average. Fur-
thermore, our results show that the relationship between increasing
the ability of our data to capture species’ niches and the resulting
increase in SDM power is likely non-linear, indicating that small
improvements in niche coverage translate to disproportionate
increases in our ability to model species distributions (Fig. 6d,
Table S5).

In contrast, we estimate it would take an additional 27.3M iNa-
turalist observations tomatch these benefits of digitization. Toput this
in perspective, despite the rapid increase in the amount of community
science data over the past 5 years, GBIF only contains 78M iNaturalist
observations across the entire tree of life (as of January 2024). As such,
accumulating this many additional iNaturalist observations for Cana-
dian plants would likely take decades.

Discussion
Our ability to protect biodiversity today and into the future under
climate change is underpinned by our ability to predict species dis-
tributions, which depends on the availability, amount, and coverage of
biodiversity data. Over the past decade, the rise of community science
platforms like iNaturalist have changed the way humans interact with
nature and provided a windfall of biodiversity observations. But large
data gaps persist8, and the extent to which community science has
helpedovercome theWallacean shortfall (lack of knowledge of species
distributions20) is unclear.Here,we report that iNaturalist observations
have significantly increased the diversity and distribution of species
captured in online inventories like GBIF. However, in line with past
work8, we find that despite having over three times the number of
records, iNaturalist data exhibitmore bias and capture less taxonomic,
phylogenetic, and functional diversity than digitized herbarium spe-
cimens. Record-to-record, herbarium specimens also more efficiently
describe both plant biodiversity at large as well as the environmental
niches of individual species. As such, the digitization of Earth’s
remaining natural history collections has the potential to substantially
improve both our knowledge of biodiversity as well as our ability to
build SDMs that better predict biodiversity today and into the future.

As nations around the world embark on their path to protecting
30% of land by 203012, our ability to integrate climate change planning
into the expansion of protected areas may determine the future of
Earth’s biodiversity13–15. Given the value of already digitized herbarium
specimens, our results suggest that the digitization of remaining col-
lections would likely greatly improve our ability to model biodiversity
today and into a climatically uncertain future. Moreover, alongside
offering valuable (andmore scientifically reliable21) species occurrence
data, the physical specimen behind the digital record holds a wealth of
additional information. In fact, the concept of digitization has recently
been extended beyond simple digital images to include layers of
additional morphological and genetic data22 that have been used to
estimate evolutionary lineages, sample historical genomes, quantify
changes in functional traits, uncover new taxa, and re-evaluatewhatwe
thought were extinct species23–29. In the context of global change,
herbaria, and their collections are increasingly relied on to understand
biodiversity trends in the Anthropocene and provide critical baseline
data for future assessments of climate change30–34. This has sparked
calls for an open-access global metaherbarium to facilitate the use of
herbarium data and realize the immense scientific potential of fully
digitized collections25. Sowhy then have only ~21% of Earth’smore than
396M herbarium specimens been digitized10,11?

It is not because herbaria lack the methodological knowledge to
do so. Around the world, herbaria are undertaking mass-digitization
projects that have resulted in millions of specimens now being
digitally available to researchers35–37. In Canada, many of the 88 cur-
rently active herbaria have digitization experience, and standardized

Fig. 3 | The spatial distribution of herbarium and iNaturalist records is highly
uneven and varies across jurisdictions. To visualize the spatial distribution, we
producedmaps of the logdensity of herbariumand iNaturalist records (a) at 25 km2

resolution for Canadian vascular plants across Canada and the United States. These
maps were combined to generate a map of sampling imbalance (b) where orange
pixels indicate more herbarium records and green pixels indicate more iNaturalist
records. The distribution of sampling imbalance is visualized next to the legend.
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and reproducible digitization workflows are publicly available38,39.
Attempts since 2007 to aggregate data under the Canadensys40 net-
work have contributed to the digitization of over 900,000 specimens
and have produced a trove of digitization knowledge, resources, and
technology. Unfortunately, in Canada and around the world, funding
remains a major hurdle to the digitization of remaining specimens10.
We estimate that the digitization of Canada’s remaining 7.3M speci-
mens would cost around $22M (~$3 per specimen using traditional
workflows35,41,42), which is relatively low when viewed against the

biodiversity benefits. For context, in 2023, $22M represented only
0.14% of Canada’s annual spending on science and technology43.

The other major hurdle tomass digitization is the time it takes for
specimens to undergo full digitizationworkflows.While estimates vary
greatly, a single herbarium worker can digitize anywhere between 6
and 500 specimens per hour depending on the workflow, complexity
of specimen data, level of automation, and capacity of
herbarium35,44–47. Fortunately, the rise of computer vision, artificial
intelligence, and high-throughput workflows has the potential to

Fig. 4 | Herbarium records exhibit less taxonomic, phylogenetic, and func-
tional bias than iNaturalist observations. Taxonomic bias (a) is represented as
the ratio of herbarium to iNaturalist records for each species of plant, accompanied
by bar plots above and below which correspond to the number of herbarium and
iNaturalist records for each species respectively. Phylogenetic (b) and functional (c)
bias is represented as the number of herbarium and iNaturalist records per plant
arranged around the phylogenetic tree or functional dendrogram. To enhance

visualization, we took the square root of the number of records. Finally, we tested
for bias in the distribution of the number of records per species at the tips of both
the phylogenetic tree and functional dendrogram using Pagel’s λ, which varies
between0 and 1 with 0 indicating no bias (number of records per sample randomly
distributed across the tree) signal and 1 indicating high bias (number of records per
sample are highly correlated with the phylogenetic or functional structures). We
assessed significance using likelihood ratio tests and reported p-values.

Fig. 5 | Herbarium records capture more taxonomic, phylogenetic, and func-
tional diversity compared to iNaturalist observations. Based on 1000 rando-
mizations, we show that despite only having one-third asmany records, herbarium

specimens accumulate more taxonomic (a), phylogenetic (b), and functional (c)
diversity than iNaturalist observations.
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greatly reduce both the cost and time it takes to digitize, while also
increasing data standards44,46,48–50. For example, the Smithsonian’s US
National Herbarium, which houses roughly 3.8M specimens, was
recently completely digitized and the use of high-throughput work-
flows reduced the cost of digitization from $3.32 down to $1.85 per
specimen and allowed for the digitization of 3000–4000 specimens
daily35. As technologies continue to advance, the digitization of
remaining records is not only a potentially effective way to generate
valuable biodiversity data but is also increasingly feasible and cost-
efficient.

Alongside the digitization of existing records, targeted collection
of new herbarium specimens combined with modern geolocating
technology, has the potential to rapidly fill gaps in our understanding
of biodiversity. For example, targeting species that have been descri-
bed but are underrepresented in GBIF could help fill Canada’s taxo-
nomic, phylogenetic, and functional data gaps. Likewise, because
iNaturalist data poorly capture species niches due to the high spatial
bias in sampling location and the taxonomic preference towards
common species4,5, targeted collection of rare species in under-
sampled regions could rapidly produce disproportionately valuable
data for modeling species distributions. One example of such a pro-
gram is the Canadian Museum of Nature’s Arctic Flora Biodiversity

Project51 which aims to increase our knowledge of Arctic plant and
lichen biodiversity through systematic collection. The concept of tar-
geted collection can also harness the usefulness of community science
platforms52 and initiatives like British Columbia Parks Biodiversity
Program53 offer a good example of how informed data collection can
leverage public engagement to benefit conservation, research, and
biodiversity.

Fundamentally, while we can try to predict the importance of
undigitized herbarium collections, we ultimately do not know what
hidden value they hold. Until we bring these specimens out of their
cabinets and into the digital light, their significance to our under-
standing of biodiversity will remain unclear30. What is clear is that
community science observations are limited in their ability to capture
the diversity and distribution of plants and the ongoing rapid accu-
mulation of new observations is unlikely to fill existing data gaps—at
least for the next few decades. For this reason, the funding of either
large-scale targeted sampling programs ormass digitization initiatives
is likely necessary to rapidly improve our understanding of plant bio-
diversity. And while targeted programs are almost certainly more
effective54–56, funding Earth’s remaining herbaria offers more than just
georeferenced point data. Herbaria operate as critical bridges between
the scientific community and the public36,57,58, and represent one of the

Fig. 6 | Because herbarium records better capture species’ environmental
niches, the digitization of Canada’s remaining herbarium specimens could
have disproportionate benefits for our ability to describe and model plant
biodiversity. Average niche accumulation curves (a) for herbarium and iNaturalist
data show that herbarium records more efficiently capture species’ environmental
niches compared to iNaturalist observations. Byextrapolating these curves for each
species of plant, we estimated the potential niche coverage (b) achievable by
digitizing Canada’s remaining 7.3M herbarium records. The large points and thick
joining line reflect the existing and potential averages across all species. Using
existing niche coverage, we (c) modeled the relationship with our ability to predict
species ranges using species distributionmodels (SDMs), referred to as range filling
score (e.g., proportion of species Canadian range predicted by SDMs), using an
inflated beta regression (Table S4). Along with the fitted relationship, we also

visualized the95%confidence interval of the curve (darker band) and theprediction
interval of the model (lighter band). The fitted curve was used to predict how each
species range filling score would increase with the potential increase in niche
coverage conferred by digitizing Canada’s remaining herbarium specimens. The
potential increase in environmental niche coverage was plotted against the
increase in range filling score (d) to illustrate that increasing niche coverage dis-
proportionately increases our ability to model species ranges. To illustrate this
further, we fit a simple linear regression (orange line) on the log transformed data
(Table S5) to assess whether the slope was significantly greater than 1 (represented
by the dashed black line). The shaded area around the line is the 95% confidence
interval of the slope based on 2547 degrees of freedom. Points, representing spe-
cies, are colored based on sampling imbalance between data types.
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last refuges for the study of plant taxonomy and systematics25, fields
that have been hemorrhaging funding, positions, and representation
at universities and even museums worldwide59. As such, empowering
our remaining herbaria would not only preserve irreplaceable knowl-
edge, skills, and specimens but might also hold the key to producing
the critical biodiversity data we need to predict and protect Earth’s
biodiversity now and into the future.

Methods
Ethics and inclusion
The lands thatmanynowcall Canada, are the stolen traditional territories
ofmanydiverse FirstNations,Métis, and Inuit Peoples.We recognize that
the 88 remaining herbaria in Canada (and aspects of herbaria globally60)
are aproduct of the colonization andexploitationof land long stewarded
by Indigenous Peoples. Many of the specimens housed in herbarium
collections were gathered by botanists who used local Indigenous
Knowledge often without appropriate recognition. As a result, despite
their critical influence, Indigenous voices are largely absent from Cana-
dian herbarium collections. However, some herbaria are taking steps to
amplify Indigenous voices, and ongoing initiatives such as Plenty Cana-
da’s Greenbelt Indigenous Botanical Survey61, Canadian Museum of
Nature’s Capture the Collections62, and McGill University Herbarium’s
Recovering Lost Voices63, demonstrate ways that herbaria can work
towards truth and reconciliation in Canada. Moving forward, as herbar-
ium specimens are digitized and made accessible, investigating and
communicating the colonial and Indigenous legacies of these collections
is critical for both their scientific and societal value.

Species lists and occurrence data
Starting with a full list of Canada’s vascular plants64 we downloaded all
theGBIF observations in both Canada and theUnited States from 1900
to present (January 2024) to enable a contemporary comparison of
both iNaturalist and herbarium records65,66. First, GBIF observations
with a coordinate uncertainty of over 25 km were removed. Then data
were divided into two groups representing iNaturalist records (insti-
tution code “iNaturalist”) and herbarium records (basis of record
“PRESERVED_SPECIMEN”). This resulted in 5,423,637 research grade
iNaturalist observations and 1,742,166 Herbarium records.

Temporal bias
To illustrate temporal bias, we simple plotted the accumulation of
herbarium and iNaturalist records annually from 1900 till present
(January 2024).

Spatial bias
To test for spatial biases in each data type we used Nearest Neighbor
Index (NNI) which is a measure of spatial autocorrelation67. When log
transformed, negative NNI indicates that the geographic locations
(latitude, longitude) of records are more clustered than expected and
positive NNI indicates records aremore spread than expected, with an
NNI of 0 indicating points are randomly distributed in space. After
calculating NNI for each point for each data type, we used a two-sided
t-test to test for significant differences between the means. NNI was
calculated using the nni() function in the “spatialEco” package for R68.
To visualize spatial bias in number of records, we mapped the total
number of records per 25 km2 grid cells across Canada and the United
States. To visualize the imbalance between herbarium and iNaturalist
sampling effort per cell, we mapped the difference between the rela-
tive portion of records of each data type. This produced a map that
highlights areas of higher iNaturalist observation density compared to
herbarium record density and vice versa. Finally, because past work
has demonstrated that iNaturalist observations tend to occur in areas
of high human population density, we modeled the relationship
between number of records and population density across North
America for both data types. To do this we used the Gridded

Population of theWorld (v4) raster for the year 202069, downloaded at
2.5 arc-minute resolution (roughly 5 km2). We then resampled this
raster to our 25 km2 grid forNorthAmericausingbilinear resampling in
the terra package for R70. Using the rasterized layers of herbarium and
iNaturalist record counts, we then assembled a data frame for all cells
with at least 1 record of either data type and extracted the corre-
sponding population density value for each cell. Because we are
dealing with integer count data, we fit negative-binomial generalized
linear models using the MASS package for R71. We log-transformed
population density to improve model fit. We report both model
parameters, AIC, and pseudo R2 (Kullback–Leibler) calculated with the
performance package for R72.

To visualize the spatial distribution of herbarium and iNaturalist
records, we rasterized record data at 25 km2 resolution across Canada
and the United States. To view the balance between data types across
space, we took the difference in number of records per pixel. We
overlayed national, provincial, territorial, and state borders73 to aid
visualization.

Taxonomic bias
To quantify taxonomic bias, we assessed whether the variance across
the number of records per species differed between herbarium and
iNaturalist data using an F test. To control for the different number of
total records per data type, we used relative number of records to
perform the F test.

Phylogenetic and functional bias
To quantify phylogenetic and functional bias we first needed phyloge-
netic and functional data. We built a phylogenetic tree of Canadian
vascular plants using the “rtrees” package forR74. To visualize and assess
bias we built a functional dendrogram to match our phylogenetic tree.
First, we downloaded the following plant functional traits from the TRY
database75: Seed drymass, Plant height vegetative, Leaf area per leaf dry
mass (specific leaf area, SLA or 1/LMA): undefined if petiole is in- or
excluded, Plant lifespan (longevity), Plant nitrogen(N) fixation capacity,
Plant growth form, Leaf photosynthesis pathway, Dispersal syndrome,
Plant reproductive phenology timing, Leaf compoundness, Plant woo-
diness, Leaf type. These traits were selected based on taxonomic cov-
erage and have been used in the past to capture and represent the
functional diversity of Canada’s plants15. Using these traits, we calculated
an average trait value for each species of plant and phylogenetically
imputed missing values using phylogenetic vector regressions in the
“PVR” package for R76 and random forest regression trees in the “mis-
sForest” package for R77. Plants with no functional trait data were
dropped from the analysis since imputing these species would be solely
based on PVR values. This left us with a remaining 4147 (94%) species
with complete functional and phylogenetic data. From there, functional
traits were used to calculate a Gower’s distance matrix using the “FD”
package for R78 which was used to construct a functional dendrogram
using UPGMA clustering achieved with the hclust() function in “stats”
package included in base R79. Once we had both our phylogenetic tree
and functional dendrogram for the remaining 4147 plant species, we
used Pagel’s λ which estimates the degree to which shared branch
lengths influence the distribution of trait values at the tips of a phylo-
genetic tree or functional dendrogram80. Values of Pagel’s λ range
between zero and one, with zero representing phylogenetic indepen-
dence and one representing perfect Brownian motion (strong phyloge-
netic bias). Pagel’s λ has been shown in the past to outperform other
estimates of phylogenetic signal81. We chose to use Pagel’s λ to test for
both phylogenetic and functional bias to standardize our approach and
to allow us to compare the strength in both phylogenetic and functional
bias inour data. In ourdata, bias canbe thought of as the evennessof the
numberof recordsper species across thephylogenetic treeor functional
dendrogram. In this case, a high λ (close to 1) would indicate that the
number of records is highly correlated to the phylogenetic or function
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structure of the tree/dendrogram, meaning that, for example, if one
species is represented by a high number of records, more phylogeneti-
cally related or functionally similar species are more likely to also be
representedbyahighnumberof records compared toadistantly related
species. On theother hand, a λ close to0would suggest that thenumber
of records is randomly distributed across the phylogenetic tree or
functional dendrogram, suggesting that little bias is present in that data
type. Pagel’s λ was calculated using the phylosig() function in the “phy-
tools”package forR82 basedon the log-transformed (to achieve anormal
distribution) number of herbarium and iNaturalist records for each
species of plant. Phylogenetic and functional bias were visualized by
plotting the square root (insteadof log) of these values for each tip in the
phylogenetic and functional trees. This was done to enable better
visualization of the variation in record number across species.

Taxonomic coverage
Once we had assessed bias, we were interested in quantifying the
degree to which herbarium and iNaturalist records captured the full
diversity of Canada’s vascular plants. Starting with taxonomic cover-
age, we first quantified the number and proportion of all Canadian
vascular plants represented in each data type. Then, to understand
how efficiently each data type captures the taxonomic diversity of
Canada’s plants, we built modified species accumulation curves. First,
each species in the VASCAN list was assigned a value representing its
contribution to the total taxonomic diversity. For taxonomic diversity,
this was simply one divided by the number of species. Then, working
with iNaturalist and herbarium records separately, we then randomly
accumulated records, and for each record added, recorded both the
index number (e.g., the 5th record added), the species (e.g., Cypripe-
dium parviflorum), and the proportion of taxonomic diversity repre-
sented by that species (e.g., one divided by the total number of species
in VASCAN). When the added record (e.g., the 5th randomly selected
record) corresponded to a species that was already captured in the
accumulation by an earlier record (e.g., the 3rd randomly selected
record), the proportion of taxonomic diversity represented by that
record was recorded as zero, since that species had already been
accounted for. This process was repeated until all records had been
added, and the entire process was then repeated 1000 times. From
these 1000 runs, we calculated the average proportion of taxonomic
diversity captured for each index position for each data type. Using
these averages and the corresponding index position, we then fit
logarithmic beta regressions83 to these curves to allow us to estimate
the increase in niche coverage with the addition of novel records.
Traditional species accumulation curves are usually used to quantify
sampling completeness or estimate the true number of species in a
study region (usually by identifying the asymptote of the accumulation
curve). In our case, we know the total number of plant species in
Canada (based on the VASCAN list). Because of this, we needed to be
able to fit a curve that reflected the fact that eventually, if we accu-
mulate an infinite number of herbarium or iNaturalist records, we
should be able to reach (at least asymptotically) the total number of
plants in the VASCAN list. Logistic Beta regressions allowed us to do
this and by log-transforming the independent variable (number of
records) we achieved a logarithmic-shaped curve that reaches an
asymptote at 1 as expected under sampling theory. Beta regressions
operate with a response variable distributed between 0 and 1 and in
this study, we used the proportion of all species as the response
instead of the total number of species. The slope of this regression
indicates how quickly different datatypes accumulate taxonomic
diversity. We fit beta regressions using the “betareg” package for R84.

Phylogenetic coverage
We used phylogenetic coverage to assess how well each data type
captures the full phylogeny, representing millions of years of plant
evolution in Canada. Using the phylogenetic tree described earlier, we

used the evol_distinct() command in the “phyloregion” package for R85

to estimate the relative phylogenetic distinctiveness of each species.
Total coverage then, was calculated as the proportion of all phyloge-
netic distinctiveness captured by each data type. We then built accu-
mulation curves but instead of taxonomic diversity, we accumulated
phylogenetic diversity with the addition of new records. To do so we
used the same approach as described above and fit the same beta
regressions.

Functional coverage
Weused functional coverage to assess howwell eachdata type captures
Canadian functional diversity, representing the variation in ecological
roles played by different species of Canadian plants. Starting with the
functional dendrogram described above, we calculated the relative
functional distinctiveness of each species again using the evol_distinct()
command in the “phyloregion” package for R85. To estimate total cov-
erage, we calculated the proportion of all functional distinctiveness
captured by each data type. We then built accumulation curves but
instead of accumulating taxonomic diversity, we accumulated func-
tional diversity with the addition of new records. Again, using the same
approach and beta regressions as described above.

Niche coverage
To estimate how herbarium and iNaturalist records represent the
spatial and environmental niches of plants we first had to calculate the
extent of their niche space. To do so we relied on the expertly esti-
mated plant ranges provided as polygons in the BIENdataset, accessed
through the “BIEN” package for R86. Of the 4392 vascular plants in
Canada, only 3269 (74%) have estimated range maps, of which only
3174 also had GBIF records. We acknowledge that areas within species
range polygons do not always indicate species presence. If analyzed at
a fine grain size (e.g., 1 km2), onewould expect there to be cellswithin a
species range that are not occupied by that species due to variation in
suitable habitat across species ranges. To account for this, we chose a
coarse grain size (25 km2) to try and maximize the probability that
suitable habitat occurred in each grid cell. Furthermore, the range
polygons used in our analysis were not simple convex hulls but con-
tained holes to account for regions within the spatial extent of the
range where species are likely not present.

To estimate spatial coverage, we rasterized range maps at the
25 km2 resolution and simply calculated the proportion of raster cells
in the species range that hadherbarium/iNaturalist records in them.To
go from spatial coverage to environmental niche coverage, we needed
to estimate the “proportion” of the species environmental niche pre-
sent in each raster grid cell. Startingwith 5 climate normal layers (Mean
Annual Precipitation, Precipitation as Snow, Humidity, Degree days
above 0°, and Degree days above 18°) downloaded from AdaptWest
Project87 spanning the past 30 years, we first aggregated the climate
layers up to 25 km2 resolution to match the spatial grid of already
rasterized plant ranges. These climate layers were used to match the
climate variables used to construct the SDMs used later in the analysis.
For each species of plant, we extracted the climate values for all cells
within its rasterized range polygon to assemble a cell by climate
matrix. To account for differences in measurement scale, we standar-
dized climate variables using decostand() in the “vegan” package for
R88. From there we computed a Euclidean distance matrix, which was
clustered to form a dendrogram, like our functional dendrogram but
clustering cells by climate similarity instead of by species functional
traits. Using this climatic dendrogram, we calculated the individual
contribution of each cell in said species range to the total climatic
niche of that species using the same evol_distinct() command in the
“phyloregion” package for R85. Finally, these values, representing the
climatic distinctiveness of each 25 km2 cell in a species range were
made relative so that the total across all cells in a species ranges
summed to 1. This process was repeated for all species, recalculating
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the climatic distance matrix and climatic dendrogram each time to
allow for differences between species based on differences between
their realized climatic niches. Another possible approach would have
been to decompose our climate variables into 2-dimensional principal
component space, to identify geographic areas with similar environ-
mental conditions. However, at coarse grain sizes such as the one we
used, we believe it is safe to assume that each geographic pixel
represents a unique combination of environmental variables. As such,
we chose to instead assign a proportion of environmental niche space
to each geographic pixel to give weight to pixels with highly dissimilar
combinations of environmental conditions compared to pixels with
more similar conditions.

Using these estimates of spatial and environmental coverage per
cell, we then built modified accumulation curves tomodel how rapidly
herbarium and iNaturalist records were capturing species niches. First,
we removed all herbarium and iNaturalist records found outside of the
species rasterized range. Then we assigned each record a cell number
corresponding to the 25 km2 grid cell it occurred in. Working with
herbarium and iNaturalist records separately, we then randomly
accumulated records, and for each record added, recorded both the
index number (e.g., the 5th record added), the spatial contribution of
that cell (e.g., 1 divided by the number of cells in that species range),
and the climatic contribution of that cell (e.g., the relative climatic
distinctiveness). When the added record (e.g., the 5th randomly
selected record) corresponded to a cell that was already captured in
the accumulation by an earlier record (e.g., the 3rd randomly selected
record), the spatial and climatic contribution of that record was
recorded as zero, since that cell had already been accounted for. This
process was repeated until all records had been added, and the entire
process was then repeated 1000 times. From these 1000 runs, we
calculated the average spatial and environmental contribution of each
indexed record for each data type. Using these averages and the cor-
responding index position, we then fit logarithmic beta regressions to
these curves to allowus to estimate the increase inniche coveragewith
the addition of novel records. While we used both spatial and envir-
onmental niches in our analysis, the results were virtually identical, so
we chose to report environmental niche results in the main text and
figures.

Beta regression fit
For the 3174 plants for which we attempted to fit beta regressions,
model fit was very good. Goodness of fit (pseudo-R2) ranged from an
average 0.996 (min =0.898, max= 1) for herbarium regressions to an
average 0.991 (min =0.772, max = 1) for iNaturalist regressions.
Because some regressions did not converge and some species were
excluded due to too few data points, we chose to report community
averages instead of individual species results. Regressions that did not
converge were removed from the analysis.

Extrapolating beta regressions
There is an estimated 7.3 million undigitized herbarium specimens
housed in active Canadian herbaria19. While the exact number is
unknown, this estimate is probably on the lower side, since it only
reflects information from herbaria for which metadata are available,
including herbarium specimens that have at least been counted and
catalogued and does not include the potentially millions of other
records that remain hidden away in collections that lack resources to
make even their metadata accessible. As such, our use of this number
to reflect the potential benefits incurredby the digitization ofCanada’s
remaining herbarium specimens is likely conservative.

To estimate how the digitization of herbarium records would add
taxonomic, phylogenetic, functional, and niche coverage, we used
regression coefficients. Then we used curves fit to iNaturalist data to
estimate howmany additional iNaturalist recordswould be required to
match the added coverage conferred by herbarium digitization. For

niche coverage, since there is taxonomic bias in herbarium repre-
sentation, we first calculated the relative incidence of each species in
existing herbarium records on GBIF. This was used to divide the
undigitized 7.3M records in Canada into an expected number of
undigitized records per species, which was used to estimate the
increase in niche coverage using beta regressions.While this approach
assumes that no additional species will be present in the undigitized
7.3M records, our other results suggest that an additional 156 species
could be found in the undigitized records. However, these species, not
represented in already digitized specimens, are likely rare and repre-
sented by only a few of the remaining 7.3M undigitized records. One
limitation of this approach is that past digitization may have focused
on specific clades (e.g., to understand trait variation in a single genus
across space or time) and so it is possible that the taxonomic repre-
sentation in undigitized collections is different than that of digitized
specimens. To estimate the number of iNaturalist records required to
match potential coverage given digitization, we simply extrapolated
the iNaturalist beta regressions.

Translating current and potential niche coverage into benefits
for species distribution modelling
We relied on SDMs detailed in Eckert et al. (2023). These models were
built usingGBIFdata downloadedon June 5th, 202189,90 for all Canadian
vascular plants. We first thinned observation records down to a single
observation per 1 km grid cell in North America. To further clean data
points unlikely to represent the native distribution, we removed any
points in core urban areas (e.g., areas designated ‘urban or built-up’ in
the land-use/land cover data described below), which often included
clusters of data points in botanical gardens/zoos/sanctuaries.

We used the following set of climatic variables that were biolo-
gically meaningful and had low correlation: mean annual precipitation
(mm), chilling degree days (Degree-days below 0 °C), precipitation as
snow (mm), Hargreave’s climatic moisture index and warming degree-
days above 18 °C. We used current climate models from AdaptWest
Project (2021). Current climate data is based on PRISM andWorldClim
and spans 1991–2020. We also included topographic wetness index
(calculated based on the 1-km) digital elevation model using package
“dynatopmodel” in R91, topographic ruggedness index (from Adapt-
West), and an aggregated land cover layer based onMODIS land cover
data and reprojected to our grid and reclassified to: unvegetated,
hardwood forests, evergreen forest, mixed forests, shrubs, and
grasslands92. Finally, we used three variables to represent soil prop-
erties (topsoil silt fraction, subsoil pH, and topsoil organic C content)
from the Unified North American Soil Map93 (0.25 degree resolution)
that were projected to match the 1-km2 climate raster.

We fit Boosted Regression Trees (BRTs)94–96 with all environ-
mental, topographic, and soil predictors in the “dismo” package for
R97. All presences were used in themodels unless they exceeded 5000,
inwhich case 5000presenceswere randomly drawn alongwith 10,000
absences. BRTswereprojected across all NorthAmerica, althoughonly
the Canadian ranges were used in subsequent analyses. Model outputs
were used to estimate the degree to which our SDMs can “fill” expertly
estimated species range maps from the BIEN package86. To do so, we
first aggregated projections (keeping the maximum value) to 25 km
and thresholded at 0.5 to identify areaswhere presence is highly likely.
While it is unrealistic to expect any single species to occupy the entire
extent of its spatial range, once aggregated to a coarse 25 km2 reso-
lution, we operated under the assumption that within a species range
boundary, there is likely suitable habitat in each 25 km2 subdivision,
which we accounted for by retaining the maximum predicted prob-
ability of occurrence during aggregation. We then calculated the
number of grid cells in the BIEN range that predicted a presence versus
thenumber of grid cells in the entire range to estimate rangefilling. For
example, if a species was predicted to be present in 10 grid cells in its
BIEN range of 100 grid cells, then its range-filling score is 0.1.
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To estimate how increased niche coverage might impact the
ability of our SDMs to fill species ranges, we needed to model the
relationship between current niche coverage and range filling. Since
range-filling scoreswere distributed between0 and 1 (representing the
proportion of the species range filled by our SDMs) we again used a
beta regression. Because some species had either none or all of their
range filled by our models, and traditional beta distributions do not
handle 0 s and 1 s, we used an inflated beta distribution (family=BEINF)
and logit link functions tofit a GeneralizedAdditiveModel for Location
Scale and Shape (GAMLSS) in the “gamlss” package for R98 (Table S4).
To improvemodel fit we used the square root of niche coverage as our
predictor variable.Model estimates are provided inTableS1. Insteadof
using the fitted µ curve to generate a singlemean estimate of potential
gain in predictive power, we used the curve to estimate potential gain
for each species of plant, predicting values using potential niche cov-
erage. The average across all plants (including species represented by
0 or 1) is reported in the main text and visualized in Fig. 6b. Finally, to
understand how increasing the niche coverage translates to increases
in range-filling scores we fit a simple linear regression on log-
transformed data (Table S5).

Estimating the cost of digitization
Toestimate howmuch it costs herbaria to digitize a single specimen,we
consulted the curators ofmajorherbaria inCanada alongwithpastwork
and reports from other herbaria around the world. This estimate of $3
per specimen represents the use of traditional workflows involving
cameras and humans and does not account for new high-throughput
workflows that are largely automated but initially costly to install.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All publicly accessible data is cited and can be downloaded from their
respective repositories. The data used andgenerated in this study have
been deposited in Figshare under accession code https://doi.org/10.
6084/m9.figshare.25180595.v2. This includes all data needed to
reproduce the analysis and figures. Sources of raw data used in this
study are available in Table S6 in the Supplementary Informa-
tion. Source data are provided with this paper.

Code availability
Annotated code to reproduce the analyses and figures is available in
the same Figshare repository (https://doi.org/10.6084/m9.figshare.
25180595.v2).
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