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Abstract: Synonymous single nucleotide variants (sSNVs) are often considered functionally silent,
but a few cases of cancer-causing sSNVs have been reported. From available databases, we collected
four categories of sSNVs: germline, somatic in normal tissues, somatic in cancerous tissues, and
putative cancer drivers. We found that screening sSNVs for recurrence among patients, conservation
of the affected genomic position, and synVep prediction (synVep is a machine learning-based sSNV
effect predictor) recovers cancer driver variants (termed proposed drivers) and previously unknown
putative cancer genes. Of the 2.9 million somatic sSNVs found in the COSMIC database, we identified
2111 proposed cancer driver sSNVs. Of these, 326 sSNVs could be further tagged for possible RNA
splicing effects, RNA structural changes, and affected RBP motifs. This list of proposed cancer driver
sSNVs provides computational guidance in prioritizing the experimental evaluation of synonymous
mutations found in cancers. Furthermore, our list of novel potential cancer genes, galvanized by
synonymous mutations, may highlight yet unexplored cancer mechanisms.
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1. Introduction

Despite many years of concerted research efforts, cancer remains a major public
health challenge with 19.3 million new cases and 10 million deaths worldwide in 2020
alone [1]. On the molecular level, cancer is caused by genetic variation, whether inherited
or acquired via chance mutation, infection, or environmental exposure to toxins or ionizing
radiation [2–4]. These changes result in aberrant and uncontrolled cell growth–a cancer
hallmark [5].

Genetic mutations found in cancerous tissues can be designated as drivers or pas-
sengers [6]. Driver mutations are selectively advantageous to cancer development and
growth (carcinogenesis), whereas passenger mutations are “by-products” of the carcino-
genesis process. It is estimated that each tumor contains four or five driver mutations [7],
while the vast majority of the remaining variants are passengers [8]. Differentiating driver
mutations from passenger mutations remains an unsolved problem in cancer biology [9].
Identification of drivers typically involves multiple steps: identifying variants recurrent in
different cancer samples, predicting the functional impact of these variants, and inspecting
the variants’ underlying pathways and interaction networks–all in addition to experimental
validation [10].

Cancer drivers range in size and effect from SNVs and small InDels (insertion or
deletion of a few nucleotides) to genome rearrangement and copy number variation [11].
According to the International Cancer Genome Consortium (ICGC) data portal (https:
//dcc.icgc.org/ (accessed on 2 March 2022)) [12], the vast majority (>91%) of mutations
found in cancer tumor samples are SNVs. OncoVar (ONCOgenic driver VARiants, https:
//oncovar.org/ (accessed on 2 March 2022)) is a recently developed database containing
20,162 cancer driver (missense, stop-gain, and stop-loss) mutations spanning 814 genes
and 33 cancer types [13]. Note that SNVs located in the protein coding region may have
different consequences: mutation that change the corresponding protein sequence are
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known as missense (or non-synonymous—nsSNV) variants, while those that, due to codon
degeneracy, do not affect the protein sequence are synonymous (sSNV). The role of sSNVs
in cancer is often overlooked [14] as for OncoVar and other databases (e.g., ICGC data
portal [12]). However, sSNVs can have a variety of functional impacts on biological
functionality (e.g., transcription, splicing, cotranslational folding) [15] and thus may also
be cancer drivers. Supek et al. estimated that synonymous variants account for 6–8% of
all SNV driver mutations in oncogenes [16]. In fact, multiple sSNVs in various genes and
cancer types have been recognized as drivers, e.g., variants in BCL2L12/melanoma [17],
VHL/hemangioblastoma [18], and BAP1/clear-cell renal cell carcinoma [19].

Here, we evaluated the effects of sSNVs from four categories: germline mutations,
somatic mutations found in normal tissues, cancer somatic mutations, and putative cancer
driver mutations. Based on the comparisons of variant effect predictions in these four
categories of sSNVs, we demonstrated the utility of synVep [20], a machine learning-
based method for sSNV effect prediction, in prioritizing putative cancer drivers. We then
identified a list of putative cancer driver sSNVs and filtered this list via functional analysis
to select 72 sSNVs, which are highly likely drivers in multiple cancer types, such as skin,
large intestine, and liver, and should be among the priority candidates for experimental
evaluation.

2. Materials and Methods

sSNV collection. We consider four categories of sSNVs: germline sSNVs (denoted
as germline), somatic sSNVs in normal tissue (somatic normal), somatic sSNVs in cancer-
ous tissues (somatic cancer), and putative cancer driver sSNVs (putative drivers). Germline,
somatic normal, and somatic cancer variants are obtained from the gnomAD project [21],
SomaMutDB [22], and COSMIC [23] databases, respectively. gnomAD (Genome Aggre-
gation Database, https://gnomad.broadinstitute.org/ (accessed on 9 November 2021))
houses data from large-scale sequencing efforts, identifying genomic variants from 16,708
genomes and 125,748 exomes; for the purposed of this paper, we only considered gno-
mAD exomes data, curated as described in our previous work [20]. SomaMutDB [22]
(https://vijglab.einsteinmed.org/SomaMutDB/ (accessed on 7 December 2021)) contains
2.42 million SNVs and 0.12 million INDELs (insertions or deletions) identified from 19 nor-
mal human tissue samples or cell line types (e.g., brain, blood, breast, heart, lung, liver, skin)
of 374 individuals. The Catalogue of Somatic Mutations In Cancer (COSMIC) [23] houses a
collection of somatic mutations found in cancerous tissues. The latest release of COSMIC
(v95) includes 41 million confirmed somatic coding point mutations (SNVs—single nu-
cleotide polymorphisms) from genome wide screenings of 1.4 million cancer tissue samples
from 37 cancer primary sites. To be consistent with somatic cancer sSNVs, we only selected
tissues, but not cell lines, from SomaMutDB to create the somatic normal set of sSNVs.
To compile somatic cancer sSNVs, we downloaded the “CosmicGenomeScreensMutantEx-
port.tsv.gz” file from COSMIC (GRCh37, https://cancer.sanger.ac.uk/cosmic/download
(accessed on 9 November 2021)) and filtered the data to be “Confirmed somatic variant”
and “Substitution–coding silent”. We mapped the genomic positions of COSMIC and
SomaMutDB variants to all possible human transcript-based positions of sSNVs from the
synVep database [20].

The putative drivers were sSNVs selected from the SynMICdb database (Synonymous
Mutations in Cancer database, http://synmicdb.dkfz.de/rsynmicdb/ (accessed on 7 De-
cember 2021)) [24]. SynMICdb houses 659,194 somatic sSNVs from COSMIC annotating
their multiple aspects: whether the variant is in a cancer gene; variant frequency among
healthy populations and in tumor samples; conservation of the affected genomic position
(PhastCons [25]); pathogenicity/deleteriousness of the variant predicted by FATHMM-
MKL [26] and CADD [27]; and the associated mRNA structural change predicted by
remuRNA [28]. SynMICdb also provides SynMICdb scores, which are a heuristic combi-
nation of these annotations and are informative of the functional impact of sSNVs found
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in cancer; we selected variants with SynMICdb scores in or above the 95th percentile of
all scores.

Gene-set enrichment analysis. We conducted gene-set enrichment analysis (GSEA)
for gene ontology (GO) terms [29,30] on germline, somatic normal, somatic cancer, and putative
driver sSNVs using clusterProfile [31] R package. The GSEA was performed for the top
10% of the genes with the highest normalized sSNV rate, i.e., the number of sSNVs in a
gene divided by the coding length of that gene. Note that, to reduce GO term redundancy,
we used the GO terms semantic similarity analysis [32] of the top identified GO terms
removing lower-ranked terms that were >0.5 similar to higher ranked ones.

Cancer-associated genes. We downloaded 576 Cancer Gene Census [33] tier 1 genes
from the COSMIC database (https://cancer.sanger.ac.uk/census (accessed on 7 December
2021)); tier 2, according to COSMIC, lacks extensive evidence and is thus not included. We
extracted 51 cancer pathways from KEGG [34] (https://www.genome.jp/pathway/hsa0
5200 (accessed on 7 December 2021)) and identified 2210 corresponding genes using the
clusterProfile [31] R package. We also obtained 217 disease ontology (DO) cancer terms
from the supplementary data of Wu et al. [35] and identified 2895 corresponding genes
using clusterProfile [31] R package. We term this collection of genes cancer-associated. In
addition, we obtained from the literature [36] a set of 54 known oncogenes and 71 tumor
suppressor genes.

Proposing a novel list of cancer driver sSNVs. We applied the following criteria to all
somatic cancer variants to propose a novel list of potential cancer driver sSNVs (denoted
as proposed driver): (1) synVep score > 0.81, i.e., the median of synVep predictions for
putative driver set; (2) GERP++ score [37] (from http://mendel.stanford.edu/SidowLab/
downloads/gerp/ (accessed on 7 December 2021)) > 2.31, i.e., the median of GERP++
scores for the putative driver set; (3) located in a cancer-associated gene as defined above; (4)
recurrent among cancer patients; here, we adopted the Sharma et al.’s approach [24] to
define recurrence, i.e., mutations occurring more than once among different patients.

Functional impact prediction for annotation of proposed driver variants. We used
the CADD online server (https://cadd.gs.washington.edu/score (accessed on 3 March
2022)) annotations for GRCh37-v1.6 to retrieve CADD-splice (CADD v1.6) and spliceAI
predictions for the proposed driver variants. For CADD-splice predictions, we considered
sSNVs scoring > 15 to be splicing-disruptive (recommended cutoff at https://cadd.gs.
washington.edu/info (accessed on 3 March 2022)). For spliceAI, we considered an sSNV to
be splicing-disruptive if one of the four predictions generated (acceptor gain, acceptor loss,
donor gain, and donor loss) was greater than 0.5.

We used the RNAsnp [38] package for the prediction of changes to sSNV-affected
RNA structures. As per the instructions (https://rth.dk/resources/rnasnp/software.php
(accessed on 3 March 2022)), mode 1 was used for transcripts less than 200 nucleotides long,
and mode 2 otherwise. Other parameters were set as default.

We further predicted all putative RBP motifs in all human protein coding transcripts
(extracted from Ensembl BioMart assembly GRCh37 [39], https://figshare.com/articles/
dataset/transcript_sequences_zip/19407530 (accessed on 3 March 2022)) using the online
interface of the FIMO (Find Individual Motif Occurrences) [40] method from the MEME
(Multiple Em for Motif Elicitation) suite [41] (https://meme-suite.org/meme/tools/fimo
(accessed on 3 March 2022); all parameters set as default).

The human RBP motifs file (“Ray2013_rbp_Homo_sapiens.dna_encoded.meme” [42])
was obtained from the MEME motif database (https://meme-suite.org/meme/doc/download.
html (accessed on 3 March 2022)). We then examined whether these extracted motifs over-
lapped with our proposed driver sSNV locations.

We also mapped sSNVs to potential transcription factor binding sites (TFBS) via the
SNP2TFBS [43] web server (https://ccg.epfl.ch/snp2tfbs/snpselect.php (accessed on 3
March 2022)).

Statistical analysis. Kruskal–Wallis test [44] was used as a non-parametric alternative
to ANOVA to test whether the mean ranks of multiple groups are the same; post hoc
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pairwise comparison was performed with Dunn test [45] using FSA package [46] (https:
//cran.r-project.org/web/packages/FSA/index.html (accessed on 10 March 2022)) in
R [47] (https://www.r-project.org/ (accessed on 10 March 2018)).

3. Results and Discussion
3.1. sSNV-Affected Molecular Functions Differ by Variant Class

We evaluated the per-gene sSNV burden, i.e., the number of sSNVs per gene normal-
ized by the length of the corresponding coding region (Methods), for all genes of all cancer
patients in the COSMIC database. We found that sSNV burden of oncogenes and tumor
suppressor genes (from [36]) does not differ significantly. However, both oncogenes and tu-
mor suppressors have lower sSNV burden than either the Cancer Gene Census (CGC) [33]
cancer genes or non-cancer genes (Supplementary Figure S1). This unexpected observation
may be due to the necessity of maintaining the specific (high or low) levels of functional-
ity of oncogenes and TSGs in cancer development, while no such limitations/selections
pressures are imposed on other genes.

We also evaluated gene mutability overall by evaluating occurrence of other genetic
variants. The numbers of nsSNVs per gene highly correlated with numbers of sSNVs
(Pearson correlation = 0.86). However, the per gene nsSNV/sSNV ratio was also somewhat
indicative of oncogenes. That is, the top 100 genes with highest nsSNV/sSNV ratio had
more cancer genes (18%; oncogenes, tumor suppressors, and CGC) compared to the 100
genes with the lowest nsSNV/sSNV ratio (2%). The per gene nsSNV/sSNV derived from
COSMIC database can be found in Supplementary Table S2.

We further collected 4,221,244 germline, 54,368 somatic normal, 2,894,289 somatic cancer,
and 27,878 putative driver sSNVs (Methods). For each of the sSNV categories, we calculated
the normalized sSNV burden (highest ranked genes in Supplementary Table S1). As
expected, genes containing the putative cancer drivers were heavily enriched in cancer
association (61 of 100 were cancer genes). Cancer-associated genes were also found among
germline and somatic cancer variant-enriched genes (3 of 100 genes each), but not in the
somatic normal set. Curiously, the gene overlap among the four categories was minimal,
indicating that somatic sSNVs affect different genes than germline sSNVs, as well as that
mutation and selection mechanisms in cancer and normal tissues are also different.

To compare the sSNVs across the four categories, we performed gene-set enrichment
analyses (GSEA) for gene ontology (GO) [29,30] terms of the genes most-enriched in
germline, somatic normal, somatic cancer, and putative driver sSNVs. Nine of the top ten
putative driver-gene GO terms were unique to this set of variants, i.e., they were not in the
top ten GO terms of germline, somatic normal, or somatic cancer genes (Figure 1), indicating
that the biological functions of the putative driver-enriched genes are different from those
of genes enriched in the other three categories of sSNVs. To evaluate the consistency of
this observation, we conducted additional analyses with varying number of input genes
(top 10%, 20%, and 30% genes with highest sSNV density), as well as varying number of
GO terms (top 10, 20, and 30). The GO terms’ overlaps between putative driver and other
groups were consistently low, ranging from 0 (e.g., overlap with germline, top 30% genes,
top 10 GO terms) to 0.1 (e.g., overlap with somatic normal, top 20% genes, top 20 GO terms).
Curiously, we also note that germline GO terms were very different from somatic ones, while
somatic cancer and normal-enriched terms were somewhat similar.
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resulting from gene-set enrichment analysis (GSEA) are shown for (A) germline, (B) somatic normal, 
(C) somatic cancer, and (D) putative driver sSNVs. The X-axis (gene ratio) is the percentage of the 
input genes that are associated with the specific GO term. The bars are colored by GO term groups, 
i.e., BP: biological processes in blue, CC: cellular component in green, MF: molecular function in 
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to the putative driver category are shown in red boxes in panel (D). 

3.2. SynVep Variant Effect Scores Are Higher for Putative Drivers 
Putative driver sSNVs are usually not observed in the general population, as was re-

flected by gnomAD, (Figure 2A). Furthermore, they were often localized to more con-
served regions than the other three categories of sSNVs (Figure 2B). While reassuring, we 
note that this observation is trivial as mutation population frequency and conservation 
(PhastCons [25]) are included in the calculation of SynMICdb scores, which define puta-
tive driver variants.  

Figure 1. Genes enriched for different categories of sSNVs differ in GO terms. (GO) terms from
resulting from gene-set enrichment analysis (GSEA) are shown for (A) germline, (B) somatic normal,
(C) somatic cancer, and (D) putative driver sSNVs. The X-axis (gene ratio) is the percentage of the
input genes that are associated with the specific GO term. The bars are colored by GO term groups,
i.e., BP: biological processes in blue, CC: cellular component in green, MF: molecular function in red.
Only the top 10 GO terms are shown for each category of sSNVs. The GO terms that are specific to
the putative driver category are shown in red boxes in panel (D).

3.2. SynVep Variant Effect Scores Are Higher for Putative Drivers

Putative driver sSNVs are usually not observed in the general population, as was
reflected by gnomAD, (Figure 2A). Furthermore, they were often localized to more con-
served regions than the other three categories of sSNVs (Figure 2B). While reassuring, we
note that this observation is trivial as mutation population frequency and conservation
(PhastCons [25]) are included in the calculation of SynMICdb scores, which define putative
driver variants.
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purple. Variants differ by (A) population frequency (gnomAD frequencies; sSNVs with 0 frequency 
are set to log (freq) = −5 for display purposes), (B) conservation (GERP++ scores), and (C) effects 
(synVep predictions; scores > 0.5, i.e., above the gray dashed line, indicate effect). For each panel, 
the Kruskal–Wallis test rejected (p-value < 2 × 10−16) the null hypothesis that all groups follow the 
same distribution; as did the Dunn test pairwise comparisons (different letters indicate statistically 
different distributions). 
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product. synVep training relies on observation of sSNVs in human population, with a 
fundamental assumption that the unobserved sSNVs are enriched in functional effects. 
We demonstrated earlier that synVep can identify experimentally validated sSNV effects, 
pathogenic sSNVs, and splicing-disruptive sSNVs [20]. Importantly, synVep does not use 
conservation as a feature, thus providing information orthogonal to that of other func-
tional impact predictors and to the SynMICdb score as a whole. From the synVep func-
tional effect perspective, the germline, somatic normal, and somatic cancer variants may have 
an effect or not, but cancer driver mutations must have an effect. Thus, putative driver 
sSNVs were expected to have higher synVep scores, indicating variants that are more 
likely to have an effect, than variants of the other three categories of sSNVs (Figure 2C). 

We note that higher synVep scores of the putative driver sSNVs may in part be due to 
their absence from the general population (Figure 2A)—a feature of most of the effect var-
iants in synVep's training set. To evaluate the effect of this potential bias, we removed all 
sSNVs labeled as observed in gnomAD from the somatic categories of variants and re-
evaluated the synVep scores for the remaining data. The synVep predictions of putative 
driver sSNVs were still substantially higher than those of both somatic normal and somatic 
cancer sSNVs (Supplementary Figure S2B).  

Curiously, the somatic normal sSNVs, on average, scored higher than the somatic cancer 
sSNVs. This finding is in line with the fact that positive selection rules the likelihood of 
somatic variants [48,49] propagating throughout cells that make up individual tissues 
and, in order to be selected for, the variants need to have a molecular effect. In contrast, 
the vast majority of somatic mutations in cancerous tissues are passengers [8], as opposed 
to very few driver mutations, and are thus selectively neutral [50] having no or weak ef-
fect. 

Figure 2. Variation in population frequency, conservation, and synVep predictions of the germline,
somatic normal, somatic cancer, and putative driver sSNVs. Variant types are indicated by color:
germline is blue, somatic normal is red, somatic cancer is green, and putative driver is purple. Variants
differ by (A) population frequency (gnomAD frequencies; sSNVs with 0 frequency are set to log (freq)
= −5 for display purposes), (B) conservation (GERP++ scores), and (C) effects (synVep predictions;
scores > 0.5, i.e., above the gray dashed line, indicate effect). For each panel, the Kruskal–Wallis test
rejected (p-value < 2 × 10−16) the null hypothesis that all groups follow the same distribution; as did
the Dunn test pairwise comparisons (different letters indicate statistically different distributions).

SynMICdb scores also includes functional prediction by CADD [27] (deleteriousness)
and FATHMM-MKL [26] (pathogenicity). We previously developed synVep (synonymous
Variant effect predictor) [20]—a machine learning-based method for predicting the likeli-
hood of a human sSNV having an effect on the function of the corresponding gene product.
synVep training relies on observation of sSNVs in human population, with a fundamental
assumption that the unobserved sSNVs are enriched in functional effects. We demonstrated
earlier that synVep can identify experimentally validated sSNV effects, pathogenic sSNVs,
and splicing-disruptive sSNVs [20]. Importantly, synVep does not use conservation as a
feature, thus providing information orthogonal to that of other functional impact predictors
and to the SynMICdb score as a whole. From the synVep functional effect perspective,
the germline, somatic normal, and somatic cancer variants may have an effect or not, but
cancer driver mutations must have an effect. Thus, putative driver sSNVs were expected to
have higher synVep scores, indicating variants that are more likely to have an effect, than
variants of the other three categories of sSNVs (Figure 2C).

We note that higher synVep scores of the putative driver sSNVs may in part be due
to their absence from the general population (Figure 2A)—a feature of most of the effect
variants in synVep’s training set. To evaluate the effect of this potential bias, we removed
all sSNVs labeled as observed in gnomAD from the somatic categories of variants and
re-evaluated the synVep scores for the remaining data. The synVep predictions of putative
driver sSNVs were still substantially higher than those of both somatic normal and somatic
cancer sSNVs (Supplementary Figure S2B).

Curiously, the somatic normal sSNVs, on average, scored higher than the somatic cancer
sSNVs. This finding is in line with the fact that positive selection rules the likelihood of
somatic variants [48,49] propagating throughout cells that make up individual tissues and,
in order to be selected for, the variants need to have a molecular effect. In contrast, the vast
majority of somatic mutations in cancerous tissues are passengers [8], as opposed to very
few driver mutations, and are thus selectively neutral [50] having no or weak effect.
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3.3. Screening sSNVs to Recover Cancer-Underlying Genes

Cancer genes are defined as those that can harbor mutations conferring growth ad-
vantage of tumor cells [51]. CGC [33] collects cancer genes with extensive evidence, but
the discovery of all cancer genes is not yet close to completion [48]. For example, CGC
genes only account for 54% and 70% of genes in KEGG cancer pathways [34] and in cancer
ontologies [35], respectively. It is thus possible that mutations in non-CGC genes may be
indirectly involved in causing cancer, by, e.g., contributing to initiation or progression of
cancer or by enhancing the effects of cancer drivers [8,52,53]. With the increase in large-
scale tumor sequencing, more data for analysis has become available and may identify
additional cancer genes. However, different cancer gene identification methods produce
different results and often fail to recover the previously identified cancer genes [54]. In other
words, mutations labeled as non-drivers due to their localization to non-CGC genes may
be incorrectly labeled, i.e., false negative.

Given that most somatic mutations are random, recurrent mutations (same mutation
in different cancer patients) are unlikely to occur by chance and are thus likely carcino-
genic [10]. Evolutionary conservation is informative for prioritizing cancer drivers [55].
Furthermore, synVep, as we demonstrated earlier [20], is precise in differentiating sSNV
molecular effects. Importantly, as conservation is not one of synVep’s feature, these two
sSNV features are orthogonal. Following these observations, we identified four groups
of genes based on whether they harbor certain types of sSNVs (Methods): (1) genes with
non-recurrent sSNVs only, i.e., genes harboring recurrent sSNVs are excluded; (2) genes
with recurrent sSNVs; (3) genes with recurrent sSNVs that are located at conserved po-
sitions; and (4) genes with recurrent sSNVs that are located at conserved positions and
are scored high by synVep. We found that incorporation of recurrence, conservation, and
synVep prediction filters identified genes that are more likely to be involved in cancer
(Figure 3). For example, our most rigorous filtering identified 40% (229) of the 576 CGC
genes in addition to another set of 4819 genes that are possibly cancer associated. In fact,
26% (n = 1329) of our genes were present in CGC, KEGG cancer pathways, or in the DO
cancer gene list.
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Census, (B) KEGG cancer pathway genes, and (C) DO cancer genes. Numbers on top of each bar in
panel A show the number genes of each category.
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We also found that narrowing the lists to genes with more sSNVs that pass the above
filters identifies more likely cancer genes (Figure 4). Note that, since different filters result in
different distributions of variant counts, we use “>x percentile” to represent the top-ranking
genes. For example, if the recurrence filter identifies 10 genes with 1, 1, 2, 2, 3, 3, 3, 3, 8, and
9 sSNVs, respectively, then the “>70-percentile” of the counts would include 8 and 9 sSNVs.
The observation that genes with more sSNVs passing the filter are more likely cancer-
associated is especially true for genes with recurrent variants. However, known cancer
genes tend to have more non-recurrent sSNVs as well (Figure 4). One possible explanation
is that the normal activity of cancer genes may also be disrupted by an accumulation of
variants within the functional domains, whether the variants are recurrent or not [56,57].
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Our results show that a high number of variants per gene that pass the recurrence,
variant position conservation, and synVep filters can much better identify potential cancer
genes than sSNV recurrence alone. There are 417 genes (Supplementary Table S3) containing
> 17 sSNVs (> 90-percentile) that pass all of these filters. Among these genes, 40% (n = 166)
are known to be cancer-associated, according to CGC, KEGG cancer pathways, or cancer
DO. We expect that many of the remaining 251 genes may also be cancer-associated,
although their mechanisms are yet not understood. As an example, consider three with the
most sSNVs: PCDH15, CELF4, and MYBPC1.

• PCDH15 encodes protocadherins, a group of calcium-dependent cell–cell adhesion
protein [58]. It has been noted in earlier work as a potential marker for NK (natural
killer)/T cell lymphomas [59]. Mutations in PCDH15 have been identified in a whole-
genome sequencing study [60] and an exome sequencing study [61] of prostate cancer.
Another whole-exome sequencing study revealed that PCDH15 harbored mutations
associated with metastasis in ocular adnexal sebaceous carcinoma [62]. Furthermore,
a genome-wide association study (GWAS) identified multiple loci in PCDH15 to be
significantly associated with acute myeloid leukemia [63].

• CELF4 is one of the CELF proteins (CUGBP, ELAV-like family of proteins), which
are a type of RNA-binding protein (RBP) with various roles in RNA regulation [64].
An earlier study identified an intronic CELF4 germline variant associated with col-
orectal cancer risk [65]. Multiple other analyses found that CELF4 can be used to
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prognose colorectal cancer [66–68]. Additionally, methylation of CELF4 was proposed
as a detection method for endometrial cancer [69].

• MYBPC1 encodes a member of myosin-binding protein C family with a role in muscle
contraction [70]. Significant differential expression of MYBPC1 has been observed
in tongue cancer [71], breast cancer [72,73], and prostate cancer [74]. Additionally,
MYBPC1 expression level was found to positively correlate with NK cell content [73].

Concordance between our findings and literature evidence for the likely involvement
of our top ranked genes in cancer highlights the utility of our prioritization strategy,
suggesting which unknown cancer-associated genes remain to be explored.

3.4. Selecting Novel Potential Cancer Driver sSNVs

As described above, we assume that cancer driver sSNVs can be identified by three
filters: recurrence among cancer patients, affected genome position conservation, and
synVep prediction on the sSNV impact. To identify a list of potential cancer driving sSNVs,
we performed the following filtering: starting from 2,894,289 somatic cancer sSNVs from the
COSMIC database, we applied four filters (recurrent variant, GERP++ score > 2.31, synVep
prediction > 0.81, cancer-associated genes). We thus obtained 2111 (genomic position-based
variants; mapping to 5021 transcript-based) sSNV candidates (Supplementary Table S4).
These were evaluated for functional impact mechanism from three perspectives: mRNA
alternative slicing, mRNA structural changes, as well as localization to RNA-binding
protein (RBP) binding motifs; functional impacts of 326 sSNVs (genomic position-based;
609 transcript-based) were thus identified. A brief flowchart describing these processes is
shown in Supplementary Figure S3. We describe more detailed results of the functional
impact evaluations below:

Splicing changes: After transcription of a gene, splicing removes intronic sequences
from the pre-mRNA molecule and/or joins exonic sequences. A primary transcript can be
spliced into multiple mature mRNAs (known as alternative splicing) corresponding to dif-
ferent protein isoforms with varying functionalities [75]. Mutations can disrupt the splicing
regulatory elements, resulting in aberrant splicing [76]. sSNV-induced aberrant splicing is
common in multiple diseases [77,78], including cancers [16], and has been observed in many
cancer genes, such as BRCA1 [79], BRCA2 [80], APC [81], and BAP1 [19]. CADD-splice [82]
and spliceAI [83] are two state-of-the-art tools to predict splicing disruption induced by
mutations. Of the 2111 proposed driver sSNVs, 136 (genomic coordinate-based; mapping
to 222 transcript-based) sSNVs were predicted to be splicing-disruptive by CADD-splice
or spliceAI (Supplementary Table S5) to be associated with aberrant splicing. In our set of
variants, these putatively splicing-disrupting sSNVs affect multiple cancer types, including
liver, large intestine, ovary, central nervous system, etc.

mRNA structural changes: sSNVs can alter mRNA structure (Figure 5), stability [84–
86], and translational speed [87], potentially causing disease [88–90]. RNAsnp [38] is
a computational tool to predict whether an SNV induces significant mRNA structural
changes. Of our set of 2111 proposed driver sSNVs, 104 (Supplementary Table S6) were
predicted by RNAsnp to cause significant mRNA structural changes. These predicted
mRNA structure-changing sSNVs are found in multiple cancer types in our set, e.g., breast,
skin, urinary tract, and liver.
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Figure 5. An example of RNA structural change due to an sSNV. A transcript (ENST00000371081)
experiences structural change from wildtype (green) to mutant (red) due to a proposed driver sSNV
(C165A). The illustration is generated by RNAsnp [38] web server (https://rth.dk/resources/rnasnp/
(accessed on 12 March 2022)).

Changes to binding of proteins: RNA Binding Proteins (RBPs) bind to a specific RNA
sequence motif or secondary structure to regulate multiple post-transcriptional events,
including mRNA splicing, polyadenylation, localization, and degradation [91,92]. To date,
over 1500 RBPs have been identified [93], which bind to a motif that is 3–7 nucleotide
long [42]. Oncogenic effects of mutations in RBP-coding genes have been well docu-
mented [92]. Mutations in cancer-associated RBP binding sites can alter RNA expression
and splicing [94]. Notably, Teng et al. experimentally demonstrated that sSNVs can disrupt
the binding between RBP and the transcripts of cancer genes (e.g., DAB2 and PCBP3, ZFHX3
and PTBP1) [95]. Here, we extracted all putative RBP motifs in all human protein coding
sequences using the FIMO (Find Individual Motif Occurrences) [40] and examined whether
these motifs overlap with our proposed driver sSNVs. We identified 107 genomic-based
proposed driver sSNVs that overlap with RBP binding motifs (Supplementary Table S7).

Changes to transcription factor binding: Another possible oncogenic effect of cancer driver
mutations is alteration of transcription factor binding sites (TFBS) [96,97]. We used the
SNP2TFBS tool [43] to find proposed driver sSNVs mapping to TFBS. However, none of our
variants were labeled as TFBS-affecting.

Of the 2111 genomic position-based proposed driver variants, our functional analysis
identified 326 sSNVs of specific impact mechanisms (Figure 6; 136 sSNVs affecting splice
sites, 104 sSNVs inducing RNA structural changes, and 107 sSNVs affecting RBP motifs;
some variants with multiple impacts). These 326 sSNVs (genomic position-based; 609
transcript-based) are primarily found in skin, large intestine, lung, and liver cancers (Sup-
plementary Figure S4) in our set. The functional impacts of other proposed driver sSNVs
require further investigation. Note that our pipeline for putative driver sSNV selection
and evaluation of results are inherently limited by the accuracy of the computational tools
(synVep, RNAsnp, spliceAI, and CADD-splice, and FIMO) used in the analysis. Addition-
ally, some driver mutations may fail to pass our recurrence filters due to low frequency
or high tumor heterogeneity [98]. Finally, it is also possible that the proposed driver sSNVs
do not individually act as cancer driver mutations, but collectively contribute to cancer
progression [8,52,53].

https://rth.dk/resources/rnasnp/
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4. Conclusions

Here, we developed and evaluated a new way to identify sSNV cancer drivers and
proposed a means of tagging cancer genes (for a graphical overview, see Supplementary
Figure S3). To identify drivers, we used variant recurrence in cancer data, together with
synVep functional impact scores and variant position conservation. We showed that our
proposed driver variants selected in this manner are enriched in known cancer genes and
pathways. However, they also identify genes that have not previously been deemed
relevant to cancer. We further found that a higher number of putative drivers per gene is
likely an indication of that gene’s involvement in cancer appearance and/or progression.
Finally, we showed that at least 15% of our putative driver variants likely disrupt cellular
mechanisms known to be cancer associated. Our results highlight the potential importance
of synonymous variants in causing cancer. Our methods may also be used in prioritizing
experimental validation of cancer driver sSNVs and novel cancer genes in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13050778/s1, Figure S1: Gene sSNV burden by gene type;
Figure S2: Variation in conservation and synVep predictions of the somatic normal, somatic cancer, and
putative driver sSNVs; Figure S3: Overview of the analysis and procedures of identifying potential
cancer driving sSNVs; Figure S4: Distribution of proposed driver sSNVs with identified functional
impacts by cancer primary site; Table S1: top_ranking_genes.csv; Table S2: nsSNV_sSNV_ratio.csv;
Table S3: genes_all_filters.csv; Table S4: proposed_drivers.csv; Table S5: splicing_disrupted.csv; Table
S6: RNA_structure_changed.csv; Table S7: RBP_motif_overlapped.csv.
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