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Abstract
We propose a minimal mathematical model for the physical basis of membrane protein pat-

terning in the immunological synapse (IS), which encompass membrane mechanics, pro-

tein binding kinetics and motion, and fluid flow in the synaptic cleft. Our theory leads to

simple predictions for the spatial and temporal scales of protein cluster formation, growth

and arrest as a function of membrane stiffness, rigidity and kinetics of the adhesive proteins,

and the fluid flow in the synaptic cleft. Numerical simulations complement these scaling

laws by quantifying the nucleation, growth and stabilization of proteins domains on the size

of the cell. Direct comparison with experiment shows that passive elastohydrodynamics

and kinetics of protein binding in the synaptic cleft can describe the short-time formation

and organization of protein clusters, without evoking any active processes in the cytoskele-

ton. Despite the apparent complexity of the process, our analysis shows that just two dimen-

sionless parameters characterize the spatial and temporal evolution of the protein pattern: a

ratio of membrane elasticity to protein stiffness, and the ratio of a hydrodynamic time scale

for fluid flow relative to the protein binding rate. A simple phase diagram encompasses the

variety of patterns that can arise.

Author Summary

The cellular basis for the adaptive immune response during antigen recognition relies on a
specialized protein interface known as the immunological synapse (IS). Understanding the
biophysical basis for protein patterning by deciphering the quantitative rules for their for-
mation and motion is an important aspect of characterizing immune cell recognition and
thence the rules for immune system activation. We propose a minimal mathematical
model for the physical basis of dynamic membrane protein patterning in the IS, which
encompass membrane mechanics, protein binding kinetics and motion, and fluid flow in
the synaptic cleft. In particular we quantify the nucleation, growth and stabilization of pro-
teins domains. We describe a phase diagram of possible protein patterns by two dimen-
sionless parameters; a ratio of membrane elasticity to protein stiffness, and the ratio of a
hydrodynamic time scale for fluid flow relative to the protein binding rate. Direct
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comparison with experiment suggests that passive processes i.e. viscous fluid flow, elastic
membrane bending and protein binding kinetics, can describe the short-time formation
and transport of protein clusters, while active cytoskeletal processes enable long-time sta-
bilization of the IS.

Introduction
Recognition of self or non-self is essential for an effective and functional adaptive immune
response. The main players in this process are immune cells (T-lymphocyte cells (T-cells) [1–
3], B-cells, natural killer (NK) cells [4] and phagocytes [5, 6] that are constantly on the move
scanning surfaces for antigenic peptides on Antigen Presenting Cells (APC). Receptors on the
membrane of the immune cells are responsible for sensing and translating information from
the extracellular matrix into the cell. Upon antigen recognition the immune cell orchestrates a
spatio-temporal organization of its membrane bound proteins into the Immunological Synapse
(IS) [7]. Intercellular signaling in a functional IS relates to the formation of large protein
domains [2, 3], whereas their formation and the cluster-to-cluster interaction plays an impor-
tant role in determining the overall cell signaling mechanism. [8].

In the widely studied T-cells, the compartmentalization of membrane-bound protein pat-
terns into different protein domains on the cellular scale leads to the formation of Supra Molec-
ular Activation Clusters (SMACs) [2, 3]. In particular, T-Cell Receptors (TCR) form bonds
with the peptide Molecular HistoComplex (pMHC) on the APC, while Leukocyte-Function-
Associated antigen-1 (LFA)-integrin on the T-cell bind with Intercellular Adhesion Molecules
(ICAM) [3]. Soon (O(1 s)) [9] after membrane-to-membrane contact sub micron protein clus-
ters are formed that start to translocate (O(1min)) [3]. This is followed by long range transport
and a concomitant coarsening to form large-scale protein domains at longer times (O(40min))
[3, 13]. Observations of the T-cell IS show a central accumulation of TCR-pMHC, surrounded
by a donut-shaped preferential protein domain of LFA-ICAM [2, 11] where protein clusters
nucleate and act as signaling entities [12–14].

Understanding the biophysical basis for protein patterning by deciphering the quantitative
rules for their formation and motion [14] is a first step in characterizing recognition and com-
munication in the immune system. A particularly interesting question in this regard is the role
of passive physicochemical processes relative to active motor-driven processes in generating
these patterns [15]. Recent experiments suggest that early on during the process, active pro-
cesses may not be important, and it is only later that the protein pattern in the T-cell mem-
brane is subject to cytoskeletally generated centripetal transport [16–23]. The question of
characterizing the mechanics of the IS patterns has led to a range of mathematical models that
take one of two forms: those that treat the system as a collection of discrete units [25–29] or as
a continuum [30, 32, 33]. While these models are capable of explaining the spatial patterning
seen in the IS, they all neglect the fluid flow in the synaptic cleft and thus rely on ad-hoc
assumptions for the characteristic time scales over which the patterns form, and use
approaches based on gradient descent [30, 32–34] or stochastic variations of energy minimiza-
tion of the membrane coupled to protein kinetics [25–28].

Here, we provide a description of the passive responses in the IS which includes the
mechanical forces due to stretching and bending of the cell membrane which are driven by pro-
tein attachment and fluid flow, which itself causes flow of the trans-membrane proteins. This
requires that we integrate cell membrane bending and tension, viscous flow in the synaptic
cleft and protein attachment-detachment kinetics, and allows us to capture the essential
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spatiotemporal protein dynamics (nucleation, translation and coalescence of protein clusters)
during the formation of SMACs. Furthermore, we show that our description of the passive
dynamics in the IS implies that the slow dynamics of fluid flow can limit the rate of protein pat-
terning, without evoking any active cytoskeletal processes.

Methods

Membrane mechanics
In Fig 1 we illustrate the interaction between a T-cell and an antigen seeded bilayer, which
mimics the most commonly used experimental setup [3, 20, 21, 23], and describes the compo-
nents in the mathematical model described below. Once the T-cell is close to the bilayer (Fig 1)
the membrane-bound receptors form adhesive bonds with their ligand counterparts in the
bilayer, which pull the membranes together and squeezing the fluid out of the cleft.

When these two types of receptors form bonds with ligands, they get compressed or

stretched. We assume that their spring stiffnesses ki ¼ l1
li
k are inversely proportional to the pro-

tein length li that may vary among different protein types [31]. The subscript i = 1 corresponds
to the TCR-pMHC complex and i = 2 corresponds to the LFA-ICAM complex. Ci = Ci(x, y, t) is
the number of attached proteins per surface area (associated with at the total equilibrium recep-
tor density C0), their deformation creates a local pressure* κiCi(x, y, t)(li − h). This pressure
deforms the cell membrane, approximated here as a bilayer with a bending stiffness

Bm ¼ Eb3

12ð1�n2Þ, with E the Young’s modulus, b the membrane thickness and ν the Poisson ratio

(see S1 Text), and a mechanical response quantified by

pðx; y; tÞ ¼ Bmr4hþ kC1ðh� l1Þ þ k
2l1
l2

C2ðh� l2Þ ð1Þ

where p = p(x, y, t) is the pressure along the membrane, and h = h(x, y, t) is the height of the
fluid-filled synaptic cleft. We focus here on the limit when membrane bending dominates, but
we show in the S3 Fig that the influence of membrane tension smooths some of the small scale
pattern features. Active cytoskeletal forces would appear as additional source terms in p, but has
been neglected below as we focus on the passive dynamics.

Hydrodynamics
Any membrane deformation initiates fluid motion and give rise to hydrodynamic forces in the
synaptic cleft, which consequently affects the membrane dynamics. In typical experiments, the
synaptic pattern has a lateral size L comparable to the cell size (� 10 μm), while the cleft has a
height comparable to size of the longest protein bond (l2 = 45 nm). Thus the aspect ratio of the
IS is small l2/L� 1. When combined with the fact that at these small length scales, the flow in
the synaptic cleft is viscously dominated, we may use lubrication theory [36] to simplify the
equations governing fluid flow. Under the assumption of local Poiseuille flow [36] we can
derive a single non-linear scalar partial differential equation for the thin film height h(x, y, t)
[37] similar to that seen in other elastohydrodynamic phenomena [38–40]

@h
@t

¼ r � h3

12m
rp

� �
; i:e:

@h
@t

¼ r � h3

12m
r Bmr4hþ kC1ðh� l1Þ þ k

l1
l2
C2ðh� l2Þ

� �� �
;

ð2Þ

where Eq 2 follows by using Eq 1 for pressure (p), where μ is the fluid viscosity. We note that

Immunological Synapse Dynamics

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004481 December 23, 2015 3 / 16



the presence of proteins and other polymers in the membrane gap can lead to the formation of
a porous structure that impedes flow and leads to a Darcy-like regime rather than a Poiseuille-

like regime. In this situation, we expect the flow to be determined by the relation u � Kp
m rp,

where Kp is the effective hydraulic permeability in the gap; when Kp = h2 we recover the Poi-
seuille relationship used in Eq 2. Here, we limit ourselves to the Poiseuille-form, noting that
many qualitative features of our results will carry over to the Darcy regime as well. Here, we
have also neglected the effects of fluid permeation across the membrane in the absence of

Fig 1. (a) Sketch of the interaction between a T-lymphocyte cell (T-cell) and a supported antigen-seeded bilayer. The two membranes are separated
by transmembrane receptors bound to ligands in the bilayer. (b) Close-up schematic view of the synaptic cleft formed between the T-cell membrane and the
glass supported bilayer. The cell membrane has a thickness b� 8 nm and the membrane gap height is given by h = h(x, y, t). The trans-membrane receptors
form bonds with the ligands in the bilayer with lengths and concentrations, TCR − pMHC� 15 nm, C1(x, y, t), and LFA − ICAM� 45 nm, C2(x, y, t). During
protein bond formation and depletion, the cell membrane deforms generating a viscous flow u(x, y, z) in the membrane gap. The flow generates a viscous
frictional force Fμ parallel with the glass supported bilayer that acts on the cell membrane and the transmembrane proteins and thus affects their motion. Any
deformation of the membrane generates a restoring elastic bending force FB, while the deformation of the TCR-pMHC and LFA-ICAM bonds generates a
spring force Fκ.

doi:10.1371/journal.pcbi.1004481.g001
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experimental evidence for this. Finally we have neglected thermal fluctuations of the membrane
since these will be strongly damped by enthalpic protein binding.

Protein kinetics
We only follow the dynamics of the membrane-bound proteins that can bind and unbind from
their complementary ligands, which is equivalent to stating that the number of these proteins
involved in the binding kinetics is large compared to the free proteins in the cytoplasm. In the
membrane we assume that the total number of membrane-bound proteins per unit area is con-
stant and given by Ci,0, where i = 1 corresponds to TCR and i = 2 corresponds to LFA. Of these,
the number density of bound receptors is denoted by Ci(x, y, t). Their dynamics can be
described mathematically by a reaction-convection-diffusion equation, which accounts for
their diffusion and transport in addition to the binding and detachment, and in dimensional
form reads

@Ci

@t
¼ hli

m
rP � rCi þr � DirCi þ

kbTDi

m
ðCirhðh� liÞÞ

� �
þ ðCi;0 � CiÞKonðliÞ � CiK

off ðliÞ: ð3Þ

The first term on the right side is an advective term due to the fluid flow in the synaptic cleft
driven by local pressure gradients associated with membrane deformation. The second term is
a membrane protein flux due to molecular diffusion DirCi, where the diffusion coefficient Di

= (l1/li)D is assumed to be inversely proportional to the protein length following the Stokes-
Einstein equation. Alternatively, the membrane diffusivity can be influenced by the membrane
anchors, but our results are fairly insensitive to the molecular diffusion term (see SI) and we
ignore them here. The third term on the right side is a drift in response to membrane deforma-

tion at a rate kBTDi
m rðCirhðh� liÞ [30, 34], where KBT is the thermal energy. The last two terms

correspond to receptor binding at a rate (Ci,0 − Ci)K
on(li) and unbinding at a rate Ci K

off(li).
The kinetic rates Kon(li) and K

off(li) are described in terms of the mean first passage time over
an energy barrier [41, 42], with a distribution centered around the natural protein length (li)
and being a function of li/l2 − h, given by

Bondformation : KonðliÞ ¼
1

tk
exp �

li
l2
� h
l2

sonli
l2

0
BB@

1
CCA

2
0
BBB@

1
CCCA

Bonddepletion : Koff ðliÞ ¼
1

3tk
exp �

li
l2
� h
l2

soff li
l2

0
BBB@

1
CCCA

20
BBB@

1
CCCA;

ð4Þ

where τk is the kinetic time. To favor protein binding for h* li, we assume that proteins lose
their bonds three times slower (3τk) [27] than the rate at which they form. Alternatively, if we
assume that the off-rate increases with spring tension, so that proteins would unbind as h� li
and h� li and in its simplest form given by a constant off-rate (σoff =1) in Eq 4 that produce
similar results (see SI). Although the exact form of these rates are not known, experiments
show that the the different protein pairs form non-overlapping patterns [2, 3, 20], which we
mimic via the choice of the width of the kinetic distributions σon = 0.2 and σoff = 0.6 [35]. Nar-
rowing the distributions generates wider protein free areas that separate TCR-pMHC and
LFA-ICAM rich regions. In contrast, increasing the distribution widths make the different pro-
tein species overlap, which is unrealistic. All together, our model focuses on protein transport
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due to physicochemical processes driven by protein binding, fluid flow and membrane defor-
mation and neglects the role of active cytoskeleton dynamics in the cell e.g. polarized release of
T-cell-receptor-enriched microvesicles [24], endocytosis and exocytosis of proteins [5].

Dimensional parameters
The material properties of the cell, the fluid and the proteins that are relevant to the IS and
needed as input into Eqs 1–4 are summarized in Table 1 as reported in previous work in the
literature.

Dimensionless numbers
It is natural to scale the horizontal length scales using the cell size, i.e. [x, y]* L, the height of
the synaptic cleft using the typical protein length i.e. h* l2, the pressure by the local receptor
force/area, i.e. p* C0 κl2 � p0, and time by a viscous time, i.e. tm ¼ m

C0kl2
.

In Eqs 1–4, the use of the scaled variables p(x, y, t) = p�(x, y, t)p0 = p�(x, y, t)C0 κl2, h(x, y, t) =
h(x, y, t)�l2, x = x�L, y = y�L, t = t�τμ, Ci(x, y, t) = Ci(x, y, t)�C0 yields six non-dimensional num-

bers that govern the dynamics of protein patterning, as shown in Table 2: B ¼ Bm
kC0L4

is the ratio

of pressure generated by membrane bending and the protein spring pressure, l1/l2 is the ratio
between the natural length of the proteins which is approximately 1/3, l2/L is the aspect ratio of

the membrane gap, Pe ¼ L2C0kl2
Dm is the ratio between advection and diffusion,M ¼ Dm

kbTC0 l2
is the

ratio between protein diffusion and protein sliding mobility, t ¼ tm
tk
¼ m

tkC0kl2
is the ratio between

Table 1. Description of the material parameters that appear in Eqs 1–4.

Description Notation Reference

Fluid viscosity μ = 4 × 10−2 Pa � s
Cell membrane Young’s modulus E = (0.08 − 80) × 106 Pa

Membrane thickness b = 8 × 109 m

Poisson ratio ν = 0.5 [52]

Bending modulus Bm ¼ Eb3

12ð1�n2Þ ¼ 4:5	 ð10�21 � 10�19Þ J [30, 32]

[52]

Protein stiffness (Hookean spring) κ = 1.2 × 10−6 N/m [29, 30]

[34]

Equilibrium number density TCR C1,0 = C0 = 2 × 1014 m−2 [3]

Equilibrium number density LFA C2,0 = 2 × C0 = 4 × 1014 m−2 [3]

Natural TCR-pMHC length l1 = 15 nm [21]

Natural LFA-ICAM length l2 = 45 nm [21]

Membrane protein diffusion coefficient D = 5 × 10−13 m/s2 [50, 51]

Kinetic on-rate τk = τ1 = τ2 = 1.1 × (10−5 − 10−1)s

Kinetic off-rate tcoff ¼ tgoff ¼ tk=3 s [27]

Cell diameter L = 10 μm [3]

Hydrodynamic time scale tm ¼ m
C0kl2

¼ 3:7	 10�3 s

Thermal energy kB T = 4.34 × 10−21 J

Distribution width on-rate σon = 0.2

Distribution width off-rate σoff = 0.6

Pressure scaling p0 = C0κl2 = 10.8 Pa

doi:10.1371/journal.pcbi.1004481.t001
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the local hydrodynamic time τμ and the kinetic time τk (Table 1). As we will show, our results
are insensitive to variations in Pe,M and initial conditions (see SI), and only the dimensionless
numbers B and τ control the qualitative aspects of our phase space of patterns.

The variations in two important dimensionless numbers B and τ can be used to capture the
potential variations in the membrane properties and/or the protein biochemistry across differ-
ent experiments. In particular, the membrane properties depends on its composition, where the
presence of inclusions e.g. cholesterol, peptides, proteins, can alter its stiffness. τ depends on the
fluid in the synaptic cleft and the biochemistry of protein binding. In particular, if τ> 1 bonds
form rapidly relative to the time for fluid flow in the cleft which is then rate limiting, and con-
versely when τ< 1, fluid flow is fast relative to bond formation which is then rate limiting.

Scaling laws—length
Two characteristic lengths are observed in the IS, the micro-cluster scale lc and the large domain
scale L. From Eq 1 we derive a scaling law for the cluster size, by balancing the spring pressure

and bending pressure Bml2=lc
4 � C0l2 that leads to

lc � ð Bm

C0k
Þ14: ð5Þ

For the simulated Bm (SI) lc � ð Bm
C0k1

Þ14 ¼ 70� 200 nm i.e. in dimensionless units l�c ¼ B
1
4 �

0:02� 0:06 for B 2 [10−9, 10−7], qualitatively consistent with experimental observations [20, 21].

Scaling laws—time
Protein patterning at the micro-cluster (lc) size occurs on short time scales (τc), while pattern-
ing at the cell scale (L) occurs on long time scales (τL). Fluid continuity and force balance
embodied in Eq 2 yields a short time scale τc corresponding to drainage on the micro-cluster
scale lc, given by

tc ¼ 12ðlc
l2
Þ2tm ¼ 12ð Bm

C0kl42
Þ12 m
C0kl2

: ð6Þ

Substituting in parameter values yields τc� 0.1–1 s i.e. in dimensionless time units t�c ¼
12ðlc

l2
Þ2 � 24� 240 (see SI). Fluid drainage on the cellular scale L yields a long time scale given

Table 2. By substituting the scaled variables in Eqs 1–4; p(x, y, t) = p*(x, y, t)p0 = p*(x, y, t)C0 κl2, h(x, y,
t) = h(x, y, t)*l2, x = x*L, y = y*L, t = t*τμ,Ci(x, y, t) = Ci(x, y, t)*C0 gives the non-dimensional numbers
above. These non-dimensional numbers characterize the relative influence of membrane mechanics, protein
kinetics, geometry and hydrodynamics.

Description Non-dimensional number

Membrane bending/protein stretching B ¼ Eb3

12ð1�n2ÞkC0L4
¼ Bm

kC0L4
¼ 2	 ð10�7 � 10�9Þ

Aspect ratio membrane height/length l2
L ¼ 4:5	 10�3

Protein aspect ratio TCR-pMHC/LFA-ICAM l1
l2
¼ l1

l2
¼ 1

3

Diffusive/advective time scale Pe ¼ L2C0kl2
Dm ¼ 5	 104

Protein sliding mobility/protein diffusion M ¼ kbTC0 l2
Dm ¼ 2:0

Hydrodynamic/kinetic time scale t ¼ tm
tk
¼ m

tkC0kl2
¼ 3	 ð10�3 � 10Þ

doi:10.1371/journal.pcbi.1004481.t002
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by

tL ¼ 12ðL
l2
Þ2tm ¼ 12ðL

l2
Þ2 m
C0kl2

: ð7Þ

Substituting parameter values yields τL � 40min i.e. in dimensionless units t�L � 5	 104.

Computational methodology and boundary conditions
To solve the nonlinear system of Eqs 1–4, we numerically discretize these with a finite element
method (see S1 Text) in two-dimensions, which gives the membrane topography in three-
dimensions. For consistency with experimental observations, the simulations are performed in
a circular domain that capture the central region of the cell-to-cell contact, which is assumed
not to be influenced by the motion of the cell leading edge. At the edge of the IS the membrane
is assumed to be torque free with no bending moment (r2h = 0) and at a constant pressure
(p = 0), which allows fluid flux through the boundary. The membrane is pinned at the edge
(h = 0.5l2) and the equilibrium number of proteins per membrane area at that given height (C1

= C2 = 0.01C0) see [35] and S1 Text and S1 Fig for details. The membrane is initialized with six
small Gaussian shaped bumps of different widths (� 0.1L) and amplitude ((0.075–0.1)l2).
Additional information about the numerical method [48], [49], parameter sensitivity and alter-
native boundary conditions are in the SI.

Results
Within the phase space described by B and τ, we start by considering a cell that has a stiffness
that scales with the thermal energy Bm � kB T and binding rates that are similar to those
reported in experiments [3]� 10−4 Ms, with an association constant� 0.1M−1 giving τk �
10−5 s. We note that the hydrodynamic time scale is larger τμ� 3 × 10−3 s than τk suggesting
that the IS dynamics is rate limited by the fluid flow i.e. τ� 1, which we verify below.

In Fig 2 we show the time evolution of the IS for these parameters (B = 2 × 10−9, τ = 15) and
note that the qualitative behavior of our model is consistent with the observed asymmetric IS
dynamics [3, 11, 14, 20, 43] (see S1 Movie), and recapitulates the protein aggregation of dense
non-overlapping regions of TCR-pMHC and LFA-ICAM, which vary with time. At short
times dispersed micron-sized protein clusters nucleate on the membrane, with a characteristic
cluster size� 1μm (containing� 160 proteins). These protein clusters are transported by the
centripetal fluid flow generated by membrane deformation. At long times, we see the appear-
ance of larger spatial protein domains, with a “donut-shaped” LFA-ICAM structure (peripheral
SMAC) surrounding a dense central domain of TCR-pMHC (central SMAC) (Fig 2). This sim-
ilarity is particularly striking since we did not evoke any active processes. We note that our
results are also in concordance with recent experiments on latrunculin treated cells [13],
wherein disrupting the actin cytoskeleton does not change the early-stage patterns.

To illustrate how these transport processes are correlated with domain coarsening, we show
the pressure and velocity fields in Fig 3a. At short times (t< 4min) the nucleation and coales-
cence of protein domains at a length scale� lc generates a local flow field, while at long times
(t> 12min) the flow occurs over a global length scale� L wherein the centripetal flow moves
the clusters to the center of the domain and coarsens the protein pattern. In Fig 3b we directly
compare the dynamics of the TCR clusters in the simulation with experiments [3]. With
increasing time, the number of attached TCR rapidly increases upon first contact as micro clus-
ters nucleate. A distinct peak in the number of attached TCR is observed around t� 5min in
Fig 3b, followed by a decay in the number of attached receptors over longer times. The agree-
ment with experiments for t< 20min is striking since no active processes are evoked and
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suggests that the slow dynamics of fluid drainage in the synaptic cleft limits the rate of protein
patterning during the early stages of IS dynamics.

At longer times (t> 20min) the results of the simulation and experiments deviate from
each other, indicating an important role for active processes to stabilize the dynamical synapse.
Over this period (� 60min), a distinctive feature in experiment [3] is the appearance of a stable
dense circular region of TCR-pMHC surrounded by a “donut-shaped” ring of LFA-ICAM.
Compared to the TCR, the attached LFA concentration increases monotonically in time (Fig
3c) and around t� 60min saturates the nearly flat membrane. While a similar time evolution
is also observed in experiments [3], the choice of scaling makes a direct comparison challeng-
ing. This is because one also sees the appearance of a stable circular region of TCR-pMHC sur-
rounded by a donut shaped ring of LFA-ICAM.

Moving beyond direct comparison with experiments, we turn to a qualitative phase-space of
protein patterning characterized by τ, B, Pe,M, initial conditions and boundary conditions.
Our simulations show that the pattern dynamics are insensitive to variations in Pe,M and the
initial conditions (SI), leaving the scaledmembrane stiffness (B) and the ratio of time scales (τ)
as the main players responsible for variations in the patterns. In Fig 4, we show this in terms of
a phase diagram of pattern possibilities illustrated by snapshots of the protein distributions at
t = 40min, a stage corresponding to a mature IS [2, 3, 10, 20].

Two distinct protein patterns may be identified corresponding to either large diffuse domains
or a dispersed micro cluster phase. We can further categorize the latter into two distinct regimes.
For τ< 0.1 the membrane proteins fail to form an IS and their dynamics are primarily

Fig 2. Comparison between an experimental (left) and numerical (right) realization of the TCR-pMHC and LFA-ICAM protein patterning dynamics in
the IS. The simulations are based on Eqs 1–4 allowing fluid flux at the edge of the IS, where the height and number of proteins per membrane area is fixed. In
the experiment a T-cell interacts with an antigen seeded lipid bilayer [20]. The upper row shows the density of bonded TCR-pMHC, the middle row the
bonded LFA-ICAM proteins and the last row their union. The right panel shows the numerical simulation with B = 2 × 10−9 and τ = 15 with non-dimensional
times ðh0L Þ2 	 t ¼ ½1:7; 3:3; 5:7
. All other non-dimensional numbers are reported in Table 2. At short-times, protein clusters nucleate on the membrane, with a
dynamics given by the interplay between membrane mechanics, protein kinetics and fluid flow. At late times protein clusters interact and coalesce into large
spatial patterns that mimic pSMAC and cSMAC structures. A “donut shaped” LFA ring surrounds a dense TCR region at the center of the synapse at late
times.

doi:10.1371/journal.pcbi.1004481.g002
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dominated by diffusive fluxes and the results are insensitive to B. For τ> 0.3 islands of non-
overlapping micro-scale protein clusters form different shapes on the membrane. For 0.3� τ�
3 long-lived LFA clusters form at the center and at the edge of the membrane. In this regime,
kinetic processes and diffusive fluxes make comparable contributions. By further decreasing the

Fig 3. (a)-(c) Simulation of Eqs 1–4 with B = 2 × 10−9 and τ = 15 and the other dimensionless numbers are reported in Table 2. (a) Contour plots of the
time history of the pressure (p), along with the velocity (−h2rp). The second row shows the corresponding protein pattern of TCR-pMHC and LFA-ICAM, see
Fig 3 for color scale. At short times (t < 4min) the nucleation and coalescence of protein domains generates a local flow field. At late times (t� 12min) a
global centripetal flow is generated that “compress” the TCR cluster radially generating a “bulls-eye”-like protein pattern, which becomes unstable at t�
60min. (b-c)The total number of attached receptors of (b) TCR-pMHC and (c) LFA-ICAM. (b-c) Direct comparison between the total number of attached TCR
in the IS in simulation and in experiment [3] shows that the results are in good agreement for t < 20min. This suggests that passive dynamics suffices to
describe the short-time formation and organization of protein domains while the long-time IS dynamics and its stability is likely controlled by active processes.

doi:10.1371/journal.pcbi.1004481.g003
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kinetic rate (τ> 3) the protein dynamics become hydrodynamically limited with a sharper pro-
tein interface. In this regime, a large central domain of TCR with a few internalized LFAmicro-
clusters form on the membrane, which is surrounded by LFA.We emphasize that at very long
times the equilibrium state corresponds to a nearly flat membrane adhesively bound by either
TCR or LFA to the bilayer. However, a change in boundary condition that replaces the constant
pressure along the edge with a vanishing fluid flux, i.e.rp � n = 0 where n is normal vector at
the boundary, leads to an arrested inhomogeneous protein pattern (see S4 Fig and S2 Movie).

Our calculations of the protein patterns show that the formation of IS-like domains only
occurs in the hydrodynamically limited regime for τ> 0.3. In this regime, protein clusters
nucleate at short-time t� 1min forming a patchy pattern, with a characteristic cluster size that

scales as lc � Bm
C0k

� �
(Eq 5). These micro scale protein clusters move centripetally by the self-

generated fluid flow since membrane deformation by protein binding generates flow, which
assists sorting and formation of protein domains. Cluster translocation leads to the formation
of large protein domains at long times t� 30min with the characteristic “donut-shaped” LFA

Fig 4. Phase space that characterizes the different regimes of membrane protein patterns as a
function of B ¼ Eb3

12ð1�n2ÞkC0L
4 and t ¼ tm

tk
¼ m

tk C0kl2
(see Table 2). The simulations are based on Eqs 1–4 and the

patterning is measured at t = 40min where a synaptic pattern is typically formed in experiments [2, 3, 20, 21],
i.e. in dimensionless units (L/l2)

2 t = 16. Two different protein patterns are identified; large diffuse patches and
dispersed kinetic clusters, which are categorized into three regimes. In the diffusional dominated limit (τ < 0.3)
large diffusive patches are predicted that translocate on the membrane. A transition to a dispersed protein
pattern is observed for τ > 0.3. In the intermediate regime (0.3� τ� 3), long-lived LFA clusters form on the
membrane. When the protein dynamics is an active process (τ > 3) micro-scale TCR clusters nucleate and
coalesce as they are transported radially forming a central dense pattern. In the kinetic regime we see that
the cluster size varies as a function of B, similar to our scaling prediction� B1

4. At equilibrium, all simulations
predict a flat membrane with a single protein phase for the case where fluid flux at the edge of the IS is free
and the membrane height and number of proteins per membrane area is fixed.

doi:10.1371/journal.pcbi.1004481.g004
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domain that surrounds a central domain dens in TCR (see Fig 4), similar in structure to what is
often referred to as a peripheral-SMAC and a central-SMAC in experiments [3, 11, 14, 20, 43].

Discussion
To get at an accurate description of the spatiotemporal dynamics of protein patterning in the
IS we have formulated and solved a minimal mathematical model that account for membrane
mechanics, protein binding kinetics and hydrodynamics, while setting the stage for the quanti-
fication of passive and active mechanisms in the IS. Our scaling laws for the size of protein
clusters, as well as short and long time protein patterning dynamics are corroborated by simu-
lations without ad-hoc physical assumptions. In particular we show that slow dynamics of fluid
drainage in the synaptic cleft can account for the time scales of protein patterning. Direct com-
parison of our computations with experiments [3] suggests that at early times passive dynamics
suffices to describe the formation and organization of trans-membrane receptors, and suggests
a natural time scale for when active processes come into play. Our passive model of the
immune-cell synaptic cleft is a simplification, where we have neglected the mechanisms by
which receptor binding generates signaling that triggers internal activity e.g. actomyosin con-
tractility, endo-/exo-cytosis, release of TCR through microvesicles, local recruitment of integ-
rins etc. Since all these effects can influence the patterning dynamics, to challenge our passive
physicochemical theory and to help identify the key biophysical process underlying the forma-
tion of the IS, we now turn to some experimentally testable predictions.

First, a characteristic spatial scale for membrane deformation is predicted by lc ¼ ð Bm
C0k

Þ14,
where Bm is bending stiffness, C0 protein number density and κ protein stiffness. Since lc is
fairly parameter insensitive, modifying cell membrane rigidity (e.g. using wheat germ aggluti-
nin (WGA) [44]), the protein number density (corralling [46]) or protein stiffness (linker
length [45]) would only produce moderate changes in cluster size.

Second, two time scales control the dynamics. At short time protein clusters nucleate

tc � ðlc
L
Þ2 m

C0k
¼ ðlc

l2
Þ2tm and at long time and length scales large protein domains form

tL � ðL
l2
Þ2tm ¼ ðL

l2
Þ2 m

C0kl2
. In contrast to the prediction for lc, both τc and τL are sensitive to

changes in protein number density (C0), protein (κ) and membrane stiffness (Bm), which can
be experimentally changed by corralling, linker-length and WGA and will change these three
parameters. Thus, our theory predicts that the time scales for the IS can be changed without
much variation in the spatial features.

Third, our numerical simulations predict the formation of IS-like protein domains for
τμ< τk, identifying protein kinetics as a critical component in IS formation. This can be tested
by changing the adhesion molecules to vary the kinetic time τk, while τμ can be modified by
changing the protein number density (corralling) or protein stiffness (linker length).

Fourth, the effective boundary condition at the periphery of the synaptic cleft is found to be
a key component in the longevity of the pattern. Simulations allowing fluid flux through the
edge of the IS show that the SMACs become unstable at long times. The formation of a tyrosine
phosphatase network at the synapse periphery generates additional resistance to fluid drainage
and may limit the rate of mass flux. Thus, the proteins at the boundary of the IS may regulate
its stability and the disruption of this protein network should affect its longevity.

Fifth, the fluid motion in the membrane gap has hitherto not been quantified. Such experi-
ments may be feasible with quantum dot tracking techniques [47] and may shed new light on
the fluid pathway during the patterning. Fluid can either become trapped in the synaptic cleft,
internalized by the cell or escape along its edge.
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Sixth, we predict nucleation, translation and sorting of protein clusters in the absence of
active processes. Recent observations by [15] of non-immune cells show protein patterning
and makes an experimental platform ideal to challenge our spatiotemporal predictions.

Our mathematical model is a minimal and general theoretical skeleton for a description of
cell-to-cell interaction, and may be useful more broadly to understand aspects of cell adhesion,
communication and motility.

Supporting Information
S1 Text.
(PDF)

S1 Fig. Time history of the attached proteins and the membrane topography as a function
of τ = [0.03, 0.3, 3.0, 30]. t ¼ tm

tk
¼ tm

tk
¼ m

tkC0kl2
is the ratio of the local viscous time (τμ) and the

kinetic time (τk). B = 2 × 10−8; the other non-dimensional numbers are given in Table 1. The
simulations are based on Eqs 1–4. The color-scale for the density of bonded LFA (green) and
TCR (red) proteins is shown in the upper left corner and the scale bar for the membrane height
(black-white) is shown in the upper right corner. For τ� 1 the dynamics are hydrodynami-
cally limited and no protein clusters are predicted. In contrast, for τ> 0.3 clusters of TCR and
LFA nucleate at short-time and translocate centripetally at long times forming large protein
domains.
(TIF)

S2 Fig. Influence of protein diffusion, sliding and advection and the initial condition on

the predicted numerical results at time t = 23min i.e. in dimensionless units ðl2
L
Þ2t� ¼ 7:0.

(TIF)

S3 Fig. Time history of the attached proteins and the membrane topography as a function
of off-rate σoff =1 (row 2) and membrane tension Γ = [103–105] (row 3–5) for
B = 2 × 10−7, τ = 3.0, Pe = 5 × 104 andM = 2.0. G ¼ g

l2
2
kC0

is the ratio of pressure from the

membrane tension and the protein spring pressure. The color-scale for the density of bonded
LFA (green) and TCR (red) proteins is shown in the upper left corner and the scale bar for the
membrane height (black-white) is shown in the upper right corner. These snapshots in time

correspond to dimensionless times ðl2LÞ2 	 t� ¼ ½14; 28; 71; 142
.
(TIF)

S4 Fig. Influence of boundary conditions on the IS dynamics (τ = 3.0, B = 2 × 10−8) at times

(a) t = 10min (ðl2
L
Þ2t� ¼ 2:8), (b) t = 23min (ðl2

L
Þ2t� ¼ 7:0), (c) t = 47min (ðl2

L
Þ2t� ¼ 17)and

(d) t = 230min (ðl2
L
Þ2t� ¼ 69). At the edge the membrane moves freely so that the torques and

forces vanish along the boundary, with no fluid flow and a no-flux boundary condition for the
TCR-pMHC and LFA-ICAM proteins. In contrast with the case of the pinned membrane (S1
Fig), which allow in- and out-fluid flow, here the protein pattern is arrested at long times.
(TIF)

S1 Movie. The dynamics of protein patterning for the case when the fluid flux at the bound-
ary is free to vary, but the pressure is fixed. This causes the pattern to eventually decay.
(MOV)

S2 Movie. The dynamics of protein patterning for the case when the fluid flux at the bound-
ary vanishes. This causes the pattern to eventually get arrested.
(MOV)
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