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Electrocardiogram (ECG) and photoplethysmogram (PPG) are commonly used

to determine the vital signs of heart rate, respiratory rate, and oxygen saturation

in patient monitoring. In addition to simple observation of those summarized

indexes, waveform signals can be analyzed to provide deeper insights into

disease pathophysiology and support clinical decisions. Such data, generated

from continuous patient monitoring from both conventional bedside and low-

cost wearable monitors, are increasingly accessible. However, the recorded

waveforms suffer from considerable noise and artifacts and, hence, are not

necessarily used prior to certain quality control (QC) measures, especially by

those with limited programming experience. Various signal quality indices

(SQIs) have been proposed to indicate signal quality. To facilitate and

harmonize a wider usage of SQIs in practice, we present a Python package,

named vital_sqi, which provides a unified interface to the state-of-the-art SQIs

for ECG and PPG signals. The vital_sqi package provides with seven different

peak detectors and access to more than 70 SQIs by using different settings. The

vital_sqi package is designed with pipelines and graphical user interfaces to

enable users of various programming fluency to use the package. Multiple SQI

extraction pipelines can take the PPG and ECG waveforms and generate a

bespoke SQI table. As these SQI scores represent the signal features, they can

be input in any quality classifier. The package provides functions to build simple

rule-based decision systems for signal segment quality classification using user-

defined SQI thresholds. An experiment with a carefully annotated PPG dataset

suggests thresholds for relevant PPG SQIs.
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1 Introduction

Continuous monitoring in ambulatory (Sana et al., 2020) and

limited-resourced settings (Nantume et al., 2021) with medical-

grade wearables is becoming increasingly widespread as

increasing numbers of low-cost devices are available to

provide continuously streamed data for long periods of time.

Conventionally, physiological signals are recorded continuously

for hours, but only the numerals, i.e., the summarized numbers,

are reported and used in most analyses. Although powerful

insights into disease processes and prognosis have been gained

from such methodology, deeper understanding could also be

learnt from the signal waveforms themselves as they contain

significantly greater information concerning the underlying

cardiovascular physiology. Machine-learning and deep-

learning technologies now provide us with the ability to

analyze these complex waveform data and, hence, the

potential to use the electrocardiogram (ECG) and

photoplethysmogram (PPG) waveforms to provide

pathophysiological insights (Becker, 2006; Elgendi, 2012;

Pereira et al., 2020), predict disease progression (Tadesse

et al., 2020; Akbilgic et al., 2021; Raghunath et al., 2020), or

detect abnormality (Badawi et al., 2021). Analysis of data from

low-cost wearable devices, especially in ambulatory patients, can

be limited by poor signal quality and noise. Simple-to-use tools to

evaluate quality and select appropriate data for analysis are

required in order to optimize the potential for devices in

improving patient outcomes.

The ECG represents the heart’s electrical activity,

transmitted through the body and recorded by electrodes

placed on the skin of the torso and limbs. The resulting

pattern consists of a baseline and waves, i.e., positive and

negative deflections from the baseline depending on

depolarization and repolarization activity in the heart.

These deflections are named as the P wave, QRS complex

(Q wave, R wave, and S wave), and T wave. The PPG records

the changes in peripheral blood volume, also in the waveform

pattern, by measuring the light intensity (through or

reflected) using a sensor placed on the skin of various

body parts such as the ear or fingertip. The PPG waveform

contains a pulsatile (“AC”) component attributed to change

of blood volume with each heartbeat and a baseline

component (“DC”) varying at low frequency attributed to

autonomic nervous system activity. Both ECG and PPG,

recorded by either bedside monitors or low-cost wearable

devices, are prone to noise and artifacts. The main causes can

be categorized as physiological, (e.g., skin movement or

muscle contraction) and non-physiological (e.g., ongoing

electrical stimuli, device displacement or signal loss due to

Bluetooth disconnection) (Nagai et al., 2017; Lee et al., 2020;

Pollreisz, 2022; Seok et al., 2021). In our experience using

both finger tip oximeter and patch ECG monitor, loose sensor

contact and Bluetooth disconnection, are among the most

frequent causes. The timely identification of noisy segments

is essential for both monitoring and downstream analyses.

Although many signal quality indices (SQIs) and

methodologies have been reported for both PPG and ECG

(refer to Table 1), an open-source unified access to a wide

range of SQIs does not exist yet. In addition, a powerful

toolbox such as the Cardiovascular Signal Toolbox published

in PhysioNet is only released in MATLAB. Furthermore, the

Toolbox’s scope does not concentrate on deriving the SQI scores

but extracting features for analysis.

Thus these challenges have provided the motivation for the

development of a SQI package that allows multiple options for

practioners, especially in Python. The package we have

developed concentrates on the assessment of signal quality.

Consequently our work increases the available tools for

computing SQI. In addition, the SQI is well-categorized into

specific groups. We also design a simple user interface for non-

expert practitioners to select their preferred settings. In this

study, we focus on the ECG and PPG waveforms derived from

wearable devices, where noise and artifact are likely to be

highest.

For automated signal quality control, we implemented the

74 state-of-the-art SQIs in a lightweight open-source Python

package called vital_sqi. The package is used to help researchers

obtain signals suitable for analysis of HRV and training of

machine-learning models. The package also provides pipelines

to execute end-to-end SQI extraction and classification and

graphical user interfaces (GUIs) for users of different

programming fluency.

2 The vital_sqi package

2.1 Installation and requirements

The package is built for Python 3.7 and 3.8, which is released

through PyPi, and it is can to be installed through Python

Package Manager PIP. The requirements include a number of

popular Python packages such as NumPy, Pandas, and SciPy for

signal processing; pyEDFlib and WFDB for reading/writing

waveform formats such as “EDF” and “MIT (Physio.net).” We

also inherit R-peak detection and heart rate variability (HRV)

computation from py-ecg-detectors, HRV analysis (Champseix

et al., 2018), and HeartPy (van Gent et al., 2019). Further

installation instruction and requirements can be found in the

source at GitHub and the documentation at Read the Docs.

2.2 Structure and modules

The package is structured as a combination of modules for

different functionalities as shown in Figure 1. The main workflow

contains three steps: data preprocessing, SQI computation, and
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rule-based decision of signal quality. The modules are designed

corresponding to these steps. At any step, the users can introduce

results from external computation to use within vital_sqi. To

further facilitate flexible use, we provide access to these modules

individually and complete pipelines from raw waveform to either

1) SQI table or 2) signal quality classification. All parameters of

SQI extraction functions and those ofthe rule-based classification

are configurable through SQI and rule dictionaries in the JSON

format, allowing clear organization when running quality control

experiments.

At the core of the package is the SQI module, in which the 74

selected SQIs are divided into four groups (details in Section 2.3):

• Statistical SQIs such as kurtosis, skewness, and entropy.

• Heart rate variability (HRV)-based SQIs such as SDNN,

SDSD, and RMSSD.

• RR interval-based SQIs such as ectopic, correlogram,

and MSQ.

• Waveform-based SQIs such as DTW, qrs_energy, and

qrs_a.

FIGURE 1
All core SQI functions are implemented in the SQI module. The pipeline module includes functions to load data, preprocess data, and define
rules as shown in their respective modules. The pipeline module builds on top of the package to provide general flow from rawwaveform to the final
result.
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The usage is built around three classes in data and rule

modules.

• Signal SQI object has attributes for the raw signal, SQI

table, and rule-based classification setup. The object is

initialized by reading waveforms and is updated at

each step.

• Rule object is constructed for each SQI with user-defined

thresholds to classify a signal segment as ‘accept’ or ‘reject.’

A number of rule objects are initialized by reading in SQI

dictionary from a JSON file.

• Ruleset is a group of rule objects to be executed in order on

the extracted SQI table. It is a lightweight, yet efficient,

approach to signal quality classification (shown in our

experiments in 3.5). The ruleset object is also initialized

from a JSON file. Templates of these JSON configuration

files, with our recommended thresholds, are provided in

the resource module.

The two modules of Preprocess and Common feature share

supporting functions to prepare the signal for SQI extraction

such as filtering, trimming, or R-peak detection. Last, we

provide a web-based GUI, which can easily be used to

construct rule and ruleset and execute them on an input SQI

table. Coupled with the provided pipelines in the Pipeline

module for SQI extraction, this Application module allows

users to quickly obtain quality indices and separate accepted

and rejected signal segments.

2.3 Signal quality indices

Aiming to separate usable from unusable signal segments,

the SQIs implemented in this work have been selected to allow

flexible usage, suitable for classification of signals both before

and after preprocessing. Therefore, the first step is signal

segmentation either by signal duration or by beat, i.e., each

segment is equivalent to a cycle (PPG) or QRS complex

(ECG). The package features seven peak detectors as

shown in Table 2.3.1. The available SQIs are divided into

four categories, corresponding to four modules as explained

later.

2.3.1 Peak detectors
A total of seven different peak detectors are available for

selection when processing data using the vital_sqi package. These

are briefly summarized in the table as follows:

Users are encouraged to experiment with different peak

detectors when working with a particularly noisy datasets. The

performance of each detector is influenced by the type and extent

of prior preprocessing of the dataset.

2.3.2 Statistical SQIs
Statistical SQIs analyze the signal trends within the segment,

providing features of the underlying probability distribution. The

implemented SQIs were built on the previous work of Elgendi (2016).

The utilization of statistical SQIs to determine PPG signal quality has

been significantly researched in the last decade, showing promising

performance when distinguishing between the acceptable and unfit

signal segments (Selvaraj et al., 2011; Krishnan et al., 2010; Elgendi,

2016). Combining the statistical SQIs with other SQIs provided in

this package further improves their cited performance and allows

researchers to fine-tune their signal quality selection criteria. For the

full list of available statistics-based SQIs, refer to Table 1.

2.3.3 Heart rate variability-based and RR
interval-based SQIs

In other modes of operation, the accuracy to identify serial R

waves (for ECG) or systolic peaks (PPG) within the signal is

examined. RR interval-based SQIs obtain consensus between

different methods of detecting RR peaks.

Beyond pure SQI calculation, the HRV indices are calculated

from the RR signal, which can allow inference regarding the

functionality and control of the heart and nervous system. Using

the package, HRV is derived by a sequence of processes: filtering,

resampling, peak detection, removing false peaks, and extracting

features. These steps are necessary as poor signal quality can lead

to inaccurate labeling of R waves and inaccurate HRV indices.

Specifically, HRV features in the frequency domain and time

domain are distinguishable between normal and ill patient and

non-observable in human, which refers to bad quality.

2.3.4 Waveform-based SQIs
In computing these indices, the signal patterns are compared

with the standard ECG and PPG patterns. The dynamic time

wrapping method uses the distance cost as a similarity score

between a single period of the ECG/PPG signal and the

generated period Orphanidou et al. (2014). The package also

implements other SQIs which evaluate the power energy on the

Algorithm
ID

Peak detector
name

Input
parameter

Source

1 Adaptive threshold Shin et al. (2009)

2 Count origin Schäfer and
Kratky (2008)

3 Clustering

4 Slope sum Zong et al. (2003)

5 Moving average Elgendi et al.
(2013)

6 Default SciPy Virtanen et al.
(2020)

7 Billauer algorithm Billauer (2009)
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bands of the QRS complex Marco et al. (2012). Other SQIs

mentioned in this section evaluate the peak-to-nadir amplitude

in the ECG and the systolic-diastolic amplitude ratio in the PPG.

2.4 Decision ruleset

As vital signals can be collected from different devices with

different modes of operation, a winner-take-it-all method is

unfeasible in making signal quality decisions. In practice, the

statistical SQIs are appropriate to the longer segments of the

signal but highly sensitive to noise and artifacts, which makes

selection of the optimal length important. On the other hand,

morphology-based SQIs are useful for observing the shorter

segments, but the results can be misleading if the underlying

waveform is not well-segmented. Our package is advantageous in

that it allows flexibility in creating a ruleset by combining various

SQIs scores and, thus, can be adapted for multiple scenarios.

User-defined rules are set as a chain of SQIs scores using a

simple-to-use graphical interface.

3 Recommended workflow and
experiments

In this section, we present a step-by-step demonstration of

the package. This workflow is already designed in the “high-level”

module. Users can either get the SQIs list immediately by

importing this module or design their own flow using the

other modules. The vital-sqi package is composed of the

following steps: preprocessing, segmentation, sqi computation,

and rule definition. Both ECG and PPG data are used for this

demonstration.

3.1 Preprocessing

The main objective of this step is to transform the raw data to

match with a standard template of ECG/PPG. First, the signal is

checked to remove any missing data or invalid data when reading a

given file format. Noise removal is performed by applying the

bandpass filter with the appropriate methodology. The Butterworth

is the default approach as it provides a good baseline performance and

significantly enhances the complex. Figure 2 shows the output using

the bandpass method from the package on both ECG and PPG.

In addition to the bandpass filter function, the preprocessing

module also implements other techniques to sharpen and expose the

signal further such as tapering and resampling. This recommended

workflow only filters the signal and removes the missing data. Other

preprocessing functions will only be employed later in the SQI

computation steps. At the end of the preprocessing process, the

package marks chunks of certainly invalid signals. The package

considers any available values, unchanged sequences, and zero-unit

values as invalid signals. Only chunks of valid signals are used for

computation of SQI scores.

3.2 Segmentation

Once clean data are obtained, the signal is split into chunks of

shorter intervals. Depending on user preference, the segmentation

length can be defined in minutes or seconds. Based on our sample

TABLE 1 List of well-known SQIs available in the vital_sqi Python package.

SQI name Type Signal Equation or
brief description

Per
segment

Per
beat

Introduced as
SQI in

Perfusion Stats PPG PSQI � (ymax−ymin)
|�x| × 100 Y N

Kurtosis Stats PPG KSQI � 1
N∑

N
i�1[xi−μxσ ]4 Y Y Selvaraj et al. (2011)

Skewness Stats PPG SSQI � 1
N∑

N
i�1[xi−μxσ ]3 Y Y Krishnan et al.

(2010)

Entropy Stats PPG ESQI � −∑N
i�1x(n)2loge(x(n)2) Y Y Selvaraj et al. (2011)

SNR Stats PPG
and ECG

NSQI � σ2signal
σ2noise

Y N Elgendi (2016)

Relative power Stats PPG
and ECG RSQI � ∑

2.25

f�1PSD

∑
8

f�0PSD

Y N Elgendi (2016)

Mean crossing Stats PPG Number of mean crossings within the signal segment Y N

Zero crossing Stats PPG
and ECG

Number of zero crossings within the signal segment Y N Elgendi (2016)

MSQ Morph PPG Degree of agreement between two distinct peak detector algorithms Y N Elgendi (2016)

Correlogram Stats PPG
and ECG

Location and prominence of peaks of the signal segment correlogram Y N Pradhan et al. (2017)

Dynamic time
warping

Morph PPG
and ECG

Template matching of a single period with a mathematically
described ideal period

N Y Li and Clifford
(2012)
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data, we recommend a segment length of 30 s as long enough to

compute HRV features while maintaining the SQI scores less

vulnerable to noise and artefacts compared to long segments. In

addition, using shorter signal chunks improves the accuracy of the

subsequent peak detection algorithms.

From this point, users can manipulate the signal further with

preprocessing methods such as resampling to enhance the single

waveforms. Alternatively, peak detection can be performed in advance

to get the local minima, which maps to the troughs of the signal and

can serve as splitting points. However, it is not recommended at this

stage because of the heavy computational load and ineffectiveness

when processing long data sequences. Furthermore, peak detection

will be employed later for SQI computation.

3.3 SQI computation

As explained in Section 2, the SQI can be computed either using

the entire segment or single beats. This step produces a matrix of SQI

scores of each segment by applying all possible SQI computations. The

SQI module implements all of the reviewed methods and categorizes

them into hrv_sqi, standard_sqi, and rpeaks_sqi submodules. Since

computing all of the available SQIs is time-consuming, users can select

a smaller subset of indices. However, we strongly encourage using at

least two SQI techniques from each of these subpackages and at least

two that use single beats to preserve the accuracy.

In case of a single-beat algorithm, the mean and standard

deviation of all beats within the segment are calculated to

contribute to the matrix scores. In detail, the peak detection

methods on ECG or PPG are applied in each chunk to extract

beats. The extracted beats are transformed by resampling,

tapering, and smoothing window techniques to enhance and

unify the beat baseline. Figure 3 indicates the importance of

enhancing beats before computing SQIs. Particularly, the HRV

SQIs are highly sensitive to the appearance of any abnormal

spikes. By enhancing the signal, critical points are easier to detect

and, hence, increase the accuracy. In addition, the zero crossing

rate, mean crossing rate, and dynamic template indices also

FIGURE 2
vital_sqi filtering signal using different bandpass techniques on ECG upper and PPG lower.
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require unification of the baseline. The computed matrix is then

input to the final decision ruleset.

3.4 Rule definition

The package defines the ruleset in the JSON format with

the key node being the same as the SQI method. Each child

node describes the acceptance threshold, score, and relevant

decision. The sample JSON format in Figure 4 represents the

rule definition using the kurtosis, skewness, and entropy

scores as the decision node. The order of selected SQIs can

be modified through the JSON file accordingly. In this

package, we also provide the recommended threshold for

specific SQI scores. The recommended JSON is located in

the test_data module, and the values given are derived from

our real dataset. When applying numerous SQI scores,

modifying JSON can be time-consuming and impractical,

FIGURE 3
ight-hand side figures illustrate the output of the entire segment when applying the smoothing window with ECG and PPG. The left-hand side
indicates a clearer beat morphology of PPG when applying the tapering technique and smoothing windows.

FIGURE 4
Sample rule definition in the JSON format.
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and therefore, we have developed a GUI for ruleset

modifications.

The GUI is launched as a local web-based application using

the DASH framework and Plotly for visualization. The interface

is designed using three main dashboards. The home page is used

to read the input SQI matrix and the saved ruleset. The uploaded

matrix is displayed on the first dashboard, while the loaded

ruleset is presented on the second.

Based on user preference, some or all SQI scores can be

selected by toggling the rule name button. Each SQI score can

have multiple thresholds, different orders and combinations of

rules. The final decision will be verified in the third dashboard

that will also output the final decision.

3.5 Experiment

The experiment aims to demonstrate how the package could

be used to label the signal. With an in-house curated dataset, we

derived suggestive thresholds for the included SQIs and evaluated

the performance of simple rules in signal quality classification.

3.5.1 Dataset
The learning dataset contains the PPG waveforms collected

from patients with tetanus treated in the Intensive care unit, lying

in a supine position. The device used was the SmartCare

oximeter. The study was approved by the ethics committee of

the Hospital of Tropical Diseases, Ho Chi Minh City, Vietnam.

From 70 long recordings for an an average 20 h, we randomly

selected 383 30-s segments. These were double-annotated by

doctors as accept or reject based on visual appearance of the

waveforms. In the training set, we have a list of criteria to

determine the quality of the data segment. The data are

annotated by a tool as demonstrated in Figure 5. In this tool,

besides the percentage of recognizable peaks, the tool also

requires the doctor to mark if the amplitude, width, and trend

are abnormal. The annotation process was composed of two

rounds. Any uncertain segment in the first round was reserved

for the second round. After the first round, 72% of the segments

were labeled. In the second round, the opposite decision was

made in less than 10% of labeled segments. Most of the changed

segments occurred in the initial segments, when the doctor was

unfamiliar with the dataset. Although the multi-criterion tool

assured high quality annotation, it is time-consuming and also

annotates unused factors.

Consequently, from the list of well-annotated segments, the

waveform-based criteria were simplified to possessing visible

systolic and diastolic peaks and the presence of artifacts as

presented in Figure 6. The resultant dataset included

273 accepted (A) and 114 rejected segments (NG). The

rejected segments were further divided into two groups based

on the percentage of cycles with unrecognizable peaks: more than

50% (NG1, 47 segments) and less than 50% (NG2, 67 segments).

The same simplified format is applied for the test dataset. This

test dataset was composed of 900 accepted segments and

279 rejected segments (210 in NG1 and 69 in NG2).

This training data were then used to determine the thresholds

for each SQI. The threshold is defined by a greedy search process,

in which the step size is 0.1 quantile unit. The experiments

followed the previously described pipeline to obtain the list of

relevant SQI scores. Although users can decide the SQIs based on

their experience, this package introduces an intuitive yet efficient

approach to derive the thresholds. Specifically, the distributions

are examined to mark the potential SQI and the appropriate

threshold.

3.5.2 Settings
We conducted two experiments, as follows:

1) SQI threshold derivation: For each SQI implemented in the

package, we use two methods to determine a threshold that

differentiates accept and reject segments. First, the threshold

is set as the 95th percentile of the accept histograms. Second,

the threshold is determined by a brute force search (step is

0.05 on the quantile) for the most discriminative of the accept

and reject segments.

2) Rule building: We searched for the combinations of SQIs that

best differentiate the accept and reject segments from the

SQIs with the best performances identified earlier; our aim

being to show that the combination SQIs (even only two), in a

simple rule-based decision approach, result in reasonably

good quality assignment.

3.5.3 Results
Using the recommendation in the aforementioned pipeline,

we conducted the experiments using a single SQI and a

combination of two SQIs. A greedy search was used to verify

the performance of all combinations. The final result of the best

10 combinations is illustrated in the table.

As presented in Figure 7, a list of SQIs which compute both

per beat and per segment are selected. Looking further into the

nominated SQIs, the interpretation is explained as follows:

1) Entropy: This indicates the probability of the appearance of

the signal at certain levels. The normal signal of the heart rate

is distributed in a normal distribution. In case of an invalid

signal, the probability of the appearance of the signal at a

certain level is adjusted. Regions that appear rarely can be

observed, and it reduces the probability of the normal range.

Hence, the information entropy is discriminatory.

2) Mean_nni: This score indicates the mean value of the normal

to normal interval (i.e., successive beats). The nni is computed

from specific ECG or PPG data. Hence, the result will be

extremely vulnerable to any noise and artifacts. In general, the

distribution is a normal distribution, and when there is noise,

the distribution becomes uniform.

Frontiers in Physiology frontiersin.org08

Le et al. 10.3389/fphys.2022.1020458

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1020458


3) MSQ: This SQI computes the consistency of the peak

detection algorithm. The signal is shifted n-seconds

forward and performs the same peak detection. Assuming

the signal is of good quality, the location of the n-second later

peak does not vary significantly. However, noise will cause

multiple spikes, which potentially result in misreading of the

peak and hence inconsistency.

4) Pnn_50: This shows the ratio between NN50 and the total

number of heartbeat intervals. NN50 is the number of

times successive heartbeat intervals exceed 50 ms, and is

believed to be associated with parasympathetic nervous

system activity. A bad quality signal leads to increase of the

score.

5) SDNN: Among many HRV features, SDNN is the most

representative. The score represents the standard deviation

of beat-to-beat intervals. Some medical sources use this as

the main indicator of HRV, and it is defined that the normal

range of HRV is 20–60. As the signal is heavily damaged by

the artifact, the SDNN results in greater scores that exceed

the normal range.

Following the greedy search process, the results were as follows.

According to the distribution, the SQI score differs significantly

between the per-beat and per-segment calculation. In terms of the

rejection rate, the performance of SQIs per segment is more accurate.

Since per-beat analysis mainly depends on beat segmentation, the

longer the sequence is, the less accurate the SQI computes. By

experimenting with different time lengths, the 30-s segment was

observed to be the most appropriate duration. Within this interval,

the sequence is long enough to derivemeaningful clinical features such

as HRV and is also efficient to split by beat.

In summary, using a single SQI as in Table 2, the best

10 combinations using two SQIs compute in per segment, and the

rest computes in HRV (which refers to both per beat and per

segment). The SQIs are ranked by the AUC rather as the package

aims to eliminate as many invalid signals as possible, while retaining a

FIGURE 5
Annotation tool for PPG. The tool indicates multiple factors and the final classification label.

FIGURE 6
ample segment of the accepted and rejected groups (NG1 and NG2). The red dots indicate the peaks, detected by vitalsqi, while the green dots
define the troughs.
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large amount of good-quality signals for later analysis. Generally, all

SQIs are effective at identifying the severely distorted signals

(R2 group) showing accuracy of above 80%, with most of them

(SVSD, SDNN, RMSSD, and SDSD) above 88%. However, the SQIs

differ when validating the quality of the R1 group. Most of the SQIs

performed with only 60–65% accuracy. Only one SQI (CVSD)

reached 70%, while the worst performing SQI (heart rate standard

deviation) has only 50% accuracy. Importantly, however, in terms of

retaining good-quality signals, all SQIs performed well and retain

approximately 90% of valid signals.

In case of combined SQIs described in Table 3, the rejected

cases were significantly higher. The 10 most successful

combinations detected more than 90% of invalid signals in

the R2 group. With the R1 group, the rejected cases were

increased, and all of the combinations obtained more than

70% accuracy, with one combination obtaining approximately

80% accuracy. However, this increased performance occurred at

the expense of a decrease in accuracy in the good-quality group,

where accuracy decreased from 89% to 83%. It is worth noting

that the discard rate in the second invalid group was higher than

that in the first invalid group, which reflects the fact that signals

in the second group are much more distorted.

Examining the cases of misclassification, the waveform

morphology of PPG signals did not fully match with the

standard PPG since the diastolic peaks were indistinct. It is

worth noting that these still have utility as the heart rate can

FIGURE 7
Distribution of different SQI scores with respect to the normal and invalid groups.

TABLE 2 Performance of each sqi in classifying a good-quality segment.

Rule Good accuracy R1 accuracy R2 accuracy Accuracy Brier Roc Fbeta

CVSD 0.9067 0.7095 0.942 0.8024 0.1264 0.8368 0.8761

SDNN 0.9067 0.6667 0.8986 0.7973 0.1366 0.8153 0.8644

RMSSD 0.9078 0.6571 0.8986 0.7981 0.1374 0.81 23 0.8631

SDSD 0.9156 0.6429 0.8696 0.8007 0.1357 0.8072 0.8632

Entropy STD 0.9356 0.619 0.8406 0.8126 0.1264 0.8047 0.8699

Power 0.8889 0.6571 0.8841 0.782 0.1527 0.8011 0.8505

CVNNI 0.9144 0.6333 0.8116 0.793 0.1416 0.7959 0.8566

LF 0.88 0.6571 0.8261 0.7684 0.1629 0.7895 0.8411

HF 0.8489 0.6619 0.9275 0.7566 0.1798 0.7882 0.8314

Heart rate STD 0.9189 0.5286 0.8696 0.8032 0.1535 0.7659 0.8415
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still be calculated from these as it is still feasible to identify the

start and the end of a cycle. This observation is supported by the

fact that the selected waveform focuses on per segment, which is

not different in this case and resulted in the score of per segment

surpassing the threshold. Finally, the use of a very small cutoff

quantile indicates the superiority of the selected SQI and

feasibility of this package.

In terms of validating the implementation, our package is

limited as the original descriptions validated individual SQIs in

diverse datasets. Consequently, each group of SQIs had a specific

and different approach to validation. As the statistical SQI group is

based on statistics algorithms (eg., skewness and kurtosis), these can

be sufficiently validated by computing the values correctly on

standard distributions. With HRV-based SQIs, were validated by

comparing the values computed from other packages (R-HRV and

HRV analyses). For the case of waveform-based and RR interval-

based SQIs, the validities were evaluated by comparing a sequence of

standard waveforms and the same sequence with additive noise.

4 Conclusion

The vital-sqi package has been carefully designed to assist

health researchers of different backgrounds in carrying out SQI

evaluation. The package provides an end-to-end solution from

preprocessing to estimation of SQI scores and definitions of the

quality of any ECG and PPG segments. This package

concentrates on the estimation of various SQIs; yet, it is also

flexible for users with different aims, enabling derivation of HRV

features, pre-processing of data or detection of peaks.

Our experiment indicates the feasibility of categorizing the valid

signals using the package. Instead of requiring users’ deep domain

knowledge, the package provides a simple-to-use pipeline with pre-

search thresholds for the classification of invalid signals.

Furthermore, this package also allows users to define SQI rules.

The good results described on a real-world dataset indicate the

feasibility of the package as applying for other clinical trial setup.

The future work maintains the package up-to-date with

modern SQIs and enhances the user interface. Although some

SQIs describe the characteristics of the waveform or part of the

segment, later versions of the package do not redirect to any

vital sign analysis. Instead, the package will cooperate with

other well-known libraries such as HeartPy or HRV analysis to

retrieve the user needs.
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