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Recent imaging studies in cerebral palsy (CP) have described several brain structural changes, functional alterations, and
neuroplastic processes that take place after brain injury during early development. These changes affect motor pathways as well
as sensorimotor networks. Several of these changes correlate with behavioral measures of motor and sensory disability. It is now
widely acknowledged thatmanagement of sensory deficits is relevant for rehabilitation inCP. Playing amusical instrument demands
the coordination of hand movements with integrated auditory, visual, and tactile feedback, in a process that recruits multiple brain
regions. These multiple demands during instrument playing, together with the entertaining character of music, have led to the
development and investigation ofmusic-supported therapies, especially for rehabilitationwithmotor disorders resulting frombrain
damage.We review scientific evidence that supports the use of musical instrument playing for rehabilitation in CP.We propose that
active musical instrument playing may be an efficient means for triggering neuroplastic processes necessary for the development of
sensorimotor skills in patients with early brain damage. We encourage experimental research on neuroplasticity and on its impact
on the physical and personal development of individuals with CP.

1. Introduction

The central nervous system (CNS) has the ability to reorga-
nize throughout life.This allows theCNS to adapt to changing
environmental demands and to recover from injury [1]. This
ability to adapt has spurred the search for new therapeutic
approaches, especially in medical conditions resulting from
damage to the CNS [2–4]. Also, advances inmedical imaging,
coupled with advances in basic neuroscience research, have
stimulated the exploration of brain plasticity correlates of
therapy/rehabilitation efficacy (e.g., [5, 6]). Whilst the poten-
tial for brain plasticity is widely acknowledged, the way in
which structural and functional changes in the brain are
optimally triggered towards rehabilitation of motor, cogni-
tive, and/or executive functions, as well as the mechanisms
through which neuroplasticity operates, remains unclear.

One of the medical conditions that may profit from this
research is cerebral palsy (CP). In the foreground of this

condition are disorders of motor function and posture result-
ing from injury to the CNS during development [7]. Patients
may, however, also present sensory, cognitive, and attention
deficits, as well as epilepsy. Despite this multisymptomatol-
ogy, therapeutic programs in CP have concentrated mostly
on orthopedic surgery and physical therapy to alleviatemotor
impairment and dysfunction [8]. Whilst this aims at giving
the patients the tools to cope with demands in daily living,
taking the other impairments into account in rehabilitation
programs may increase the efficacy of rehabilitation training
[9].

In recent years, increasing attention has been directed
to the potential of music as driving vehicle for neuronal
plasticity in general [10] but also in the context of neurological
rehabilitation. This can be seen, for example, in the recent
organization of the special research topic of “music, brain,
and rehabilitation” [11]. Music has long played an important
role in the therapy of children and teenagers with CP. The
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inclusion ofmusic as therapy has been inmany cases intended
to increase patient’s motivation or relaxation or, for example,
as auditory feedback of movement [12] (passive/receptive
use of music). The rhythmic properties of music have been
also explored to tackle impaired gait patterns (e.g., [13, 14])
through rhythmic auditory stimulation. Despite the potential
of music in CP, neuroscience-based evidence of the effect of
music on the rehabilitation of these patients remains scarce.
Furthermore, exploration of musical instrument training for
the rehabilitation of upper limb motor function is almost
nonexistent and in most cases assessed only from the point
of view of psychological benefits (e.g., self-confidence) and
the integration benefits it brings. The current review aims at
collecting and summarizing scientific evidence that supports
the potential benefit that music instrument training can have
not only in the improvement of motor function in patients
with CP but also with regard to their personal development.

We start by summarizing the main clinical characteristics
of CP and alterations at the neuronal level that have been
associated with specific deficits in CP. Next, we highlight
the contribution of music and instrumental music to clinical
rehabilitation in general with particular focus on motor
disorders, selecting those that have implications for rehabili-
tation in CP. Finally, we review work investigating the effects
of music and musical instrument training in CP. Recent
reviews have covered the research on the effects of music in
rehabilitation settings and on the hypothetical mechanisms
underlying those effects. Our description is focused on the
implications for rehabilitation in CP.

2. Characterization of Cerebral Palsy

A consensus definition of CP is as follows: “Cerebral Palsy
describes a group of permanent disorders of the development
of movement and posture, causing activity limitation, that
are attributed to non-progressive disturbances that occurred
in the developing fetal or infant brain. The motor disorders
of CP are often accompanied by disturbances of sensation,
perception, cognition, communication, and behavior, by
epilepsy, and by secondary musculoskeletal problems.” [15].
We now address a few of the aspects of this definition that
are relevant in view of the musical instrument-based training
proposed later on in this paper.More information about these
and other aspects of CP can be found in Rosenbaum and
Rosenbloom [9].

The first aspect refers to limitations in gross motor
function. These are critical for a diagnosis of CP. Rather than
falling into enclosed descriptions, these limitations can vary,
depending on the onset of injury, on the areas and extension
of brain structures affected, and on the factors contributing
to injury [7, 15]. Symptomatology is therefore heterogeneous
among patients with CP. Nevertheless, in all cases, motor
disabilities impact negatively on activities of daily living.

The second relevant aspect refers to the additional distur-
bances that often accompany motor limitations: disorders of
sensation, perception, cognition, communication, behavior,
and/or epilepsy [16–20]. These additional disturbances can
occur primarily as a result of damage to brain structure
and function [21–32] but can also occur in association

with developmental limitations in motor function [9, 33].
Although occurrence of these additional disturbances is not
decisive for the diagnosis of CP, they are often present and
they increase the complexity of the patient’s clinical picture
and consequently of the choice of rehabilitation activities
most effective for the patient. Importantly, however, the
general consensus is that these additional disabilities need
also to be addressed in the clinical management of CP, along
with the motor deficits. Moreover, some deficits, for example,
cognitive ones, further limit the choice of methods able to
deliver effective rehabilitation.

Third, motor and additional disorders in CP result
from damage to brain structures during development, pre-
, peri-, or postnatally, but typically before the acquisition
of skills (motor, sensory, perceptual, and cognitive skills).
Consequently, rehabilitation in CP needs to promote the
development of nonacquired skills. This is different from
the case of disorders of movement that result from brain
injuries occurring in adulthood or aftermotor development is
completed, such as stroke or Parkinson’s. In these cases reha-
bilitation is designed to promote the recovery of previously
acquired skills. The skill-learning experience of patients with
CP is, in comparison, very different and rehabilitation needs
to focus on the learning of “new” skills [9] and needs to take
into account the effect of age on the development of those
motor, sensory, and cognitive skills [34].

Fourth, the “nonprogressive” character of the distur-
bances included in the definition refers to the static character
of the encephalopathy, in that neuronal damage to the
CNS is permanent and does not progress with time [9].
This “nonprogressive” character however does not extend to
developmental changes during childhood and the neuronal,
metabolic, and body changes during adulthood that patients
with CP experience and that cannot be predicted. Hence,
rehabilitation programs building on the plastic potential of
the brain and the continuing adaption throughout life are
likely to bring effective and long-term benefit to patients.

Clinical symptoms in CP are accompanied by abnormal
neuroanatomical features, detected through neuroimaging in
80–90% of the cases [35] (Table 1). Most commonly reported
cases are damage to white matter pathways, especially in
cases of bilateral spastic CP and athetosis [35], and to both
grey andwhitematter structures, more frequently reported in
unilateral CP [36]. Other structural abnormalitiesmentioned
include congenital malformations, atrophy, or enlarged ven-
tricles and cerebrospinal fluid space abnormalities, among
others. Corticospinal tract projections to peripheral muscles
can also be affected in CP [37]. Commonly reported in
functional magnetic resonance imaging and transcranial
magnetic stimulation studies in unilateral CP patients is a
reorganization of central neuronal pathways, with cortico-
motor projections from the ipsilateral (unaffected cortex) or
both motor cortices to the lesioned hand [21, 22, 29, 30, 38–
40] and contralateral projections to the unaffected hand [30].
CP patients present also a reduction in the volume of central
motor structures, in comparison to controls [36, 39], reduced
cortical activation during motor imagery tasks [32], and
altered corticospinal pathway integrity and reduced white
matter connectivity [24, 41, 42]. In addition to structural
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changes, movement-related neurophysiological activity is
also altered in CP: magnetic resonance imaging studies have
reported higher beta event-related desynchronization before
movement initiation and lower gamma synchronization at
the onset of movement [26], as well as lower alpha desyn-
chronization during motor imaging [43] in patients with CP
in comparison to controls.

However, structural alterations are not restricted to cen-
tral motor tracts [21, 38, 40, 44, 47] but have also been
shown to affect also sensorimotor pathways [23, 30, 31, 41,
42], with reorganization of the latter being dissociated from
the reorganization in corticospinal tracts [22, 30]. Structural
changes in sensorimotor pathways in CP are accompanied
by altered somatosensory processing of tactile stimulation,
with patients showing less extended cortical activation dur-
ing tactile stimulation and lower magnitude of activation
during tactile discrimination tasks [31]. Children with CP
furthermore show, in comparison to typically developing
peers, increased beta-activation [27] and altered activity in
secondary sensory cortex in response to tactile stimulation
[28]. The latter, together with the altered activation during
discrimination tasks, which test the ability to distinguish
between different stimuli, raises the possibility of abnormal
central processing of sensory information in this clinical
group and the possibility of impaired performance of motor
tasks requiring the use of sensory information being due
to altered sensory processing and sensorimotor interaction.
Consistent with this hypothesis are the observed associations
between behavioral measures of motor impairment and the
degree of reorganization of sensorimotor pathways [22, 24,
26, 41]. All in all, it is now widely accepted that clinical symp-
toms inCP are often not exclusively due to disturbances of the
motor pyramidal pathways but can often be due to deficits in
connectivitywithin (and outside) sensorimotor networks and
in integration and processing of sensorimotor information.

3. The Potential of Musical
Instrument Training in the Development of
Sensorimotor Interactions

Against this background, training methods that demand
the use of sensory information in the context of a motor
task may be beneficial in conditions where sensorimotor
interactions are known to be impaired. With this aim in
mind, musical instrument-supported training comes up as
a prime candidate for training sensorimotor interactions in
CP, since playing a musical instrument requires coordinating
hand/finger movements with sensory—auditory, visual, and
somatosensory—information (e.g., [10]); it involves contin-
uous forward and backward transmission of information
between different brain areas and between central and
peripheral motor structures.

Effects of musical instrument training on brain struc-
ture and function have been especially investigated through
imaging studies with trained musicians and nonmusicians.
Studies have shown effects of long-term instrument musical
training on brain plasticity both at the structural and at the
functional level over several brain areas (for an in-depth

review see [10, 48]). Long-term musical practice has been
associated with anatomical differences in motor and audi-
tory cortices (larger volume, greater thickness in musicians
(e.g., [49, 50]), increased integrity of white matter (motor)
pyramidal tracts [51], increased size of the corpus callosum
[52], greater volume of cerebellum [53], and changes in
multimodal integration areas (e.g., [54])). Interestingly, the
type of instrument used in the training can influence the
plastic mechanisms that can be measured (e.g., [54]). In
addition to this, structural effects of musical training have
been reported in children after 15 months of practice [55],
and modulation of cortical motor outputs to the muscles
involved in the performance of fine finger movements can be
shaped after weeks of piano training in healthy adults [56].
Hence, musical instrument practice, and in particular piano
training, has the potential to induce and promote structural
and functional changes at the level of the CNS, and changes
can take place at different ages (e.g., both children and adults
are responsive) and at different timescales.

Beyond structural brain changes, also multimodal inter-
actions seem to be promoted through musical instrument
training and at very short time scales. In particular auditory-
motor interactions have been observed in nontrained healthy
adults shortly after learning a new audio-motor sequence
[57] and after 20 minutes of piano training [58]. Multimodal
integration seems also to be strongly promoted through
musical instrument training [59], more than with auditory
training only:music-associatedmeasures of cortical plasticity
were observed to be larger after musical instrument training
in relation to training with auditory stimuli only [60, 61].
Given the bidirectional interaction between different sensory
modalities, in particular between auditory and somatosen-
sory systems [62], it is reasonable to assume that musical
training, and musical instrument training in particular, will
also have an impact on this interaction and on the neuronal
processing of other sensory modalities [63].

This interaction between auditory and motor systems
constitutes one of the possible means through which music-
supported therapy (MST) can promote neurorehabilitation
[64], especially in cases of motor disorders due to neuro-
logical damage [65] and in cases where both motor and
sensorimotor networks are affected, as in CP. Even though the
precise mechanisms through which damaged neuronal pro-
cesses can be restored or improved remain unclear, numerous
studies in the last years have shown that MST can posi-
tively influence the recovery, at least partially, of disturbed
skills [59]. In one of these studies, stroke patients received
regular training sessions playing MIDI piano and electronic
drums (exercises adapted to individual capabilities) for three
weeks [66]. After the training it was observed that both
precision and smoothness of hand movements as well as
the timing of movements had improved. It could also be
observed that changes in oscillatory brain activity associated
with motor planning (i.e., event-related desynchronization)
and neuronal coherence were larger after MST than after
conventional therapy [5]. MST was furthermore associated
with changes in excitability in the motor cortex, derived
with transcranial magnetic stimulation [6, 67], and with
changes in the pattern of neuronal activation, measured with
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functional imaging, in a chronic stroke patient [6]. Once
again, the fact that changes could be elicited in a patient
20 months after the injury [6] suggests that plasticity is not
limited to the period immediately after damage but can still
be triggered, albeit with less efficacy, months after injury.

As mentioned above the way in which MST triggers
changes in neuronal processes that are damaged remains
unclear, in particular which aspect of music—either the
rhythmic component or the pitch structure component—is
essential for triggering the recovery process. In fact, some
rehabilitation programs based on music therapy use the
rhythmicity or periodicity of music to influence, change, or
entrain movements (for a review see [64]). In a study with
hemiparetic stroke patients, rhythmic auditory stimulation
was employed to train new gait patterns during the first three
months after injury, by the training of walking following
a rhythmic pattern, using a metronome or music tapes.
Increases in gait velocity and in stride length and a reduc-
tion in leg-muscle EMG-amplitude were reported in these
patients, in comparison to controls [68]. Similar training
procedures have also been employed to train gait patterns
in Parkinson’s patients (e.g., [69]) and in children and adults
with CP [13, 14, 70].The fact that the training of walking using
rhythmic sound properties with metronomes can influence
walking kinematics in CP suggests that patients with CP can
be responsive to MST-based training of movement.

4. Music-Supported Therapy in Cerebral Palsy

Music-based therapies are not new in the clinical manage-
ment of CP.They have been typically employed to train more
symmetrical and balanced gait patterns (see above) and as a
vehicle for promoting motivation and emotional experience.
The positive influence of music on the rehabilitation of
patients with CP is reflected in the widespread use of music
in group activities in rehabilitation and occupational day cen-
ters, where individuals typically play percussion instruments
within group activities. Music is also often employed during
relaxation exercises or in conjunction with other therapies
with effects reported at the level of heart rate variability [71].

Less common in the rehabilitation of motor skills in CP
however are MST-based methods and in particular the musi-
cal instrument training of hand motor function. In one of
the few published studies, five adults with CP received a total
of twelve sessions of musical instrument-based therapy on
MIDI keyboard, twice a week for six to nine weeks [72]. The
playing speed on the keyboard increased with the training to
values closer to those obtained from a control group of able-
bodied individuals. In another study eighteen young people
(6–16 years) with CP received individual piano training with
a professional piano teacher twice a week for 18 months
[73]. In this case a reduction in the variability of keystroke
timing was interpreted as indicating an improvement in
the uniformity of keystrokes with the piano training. In an
associated study, potential neuronal correlates of the effects
of piano training were investigated by analyzing effective
connectivity between the cerebellum and primary motor
cortex in a group of ten young people with CP and comparing
these results with those from a similar group of six that

had received conventional therapy only [73]. An increase in
effective connectivity from the left primary motor area to
the right cerebellum in the group that received the training
relative to the control group was interpreted as indicating a
neuronal plastic effect resulting from piano training.

The effects of musical instrument training may however
likely extend beyond motor areas and function. By recruiting
the entire CNS it may likely, more than any other simple
motor training, influence more strongly sensorimotor inter-
actions leading to coordinated motor responses.

5. Final Remarks

To our knowledge the study of Alves-Pinto et al. [73]
is the only study that has attempted to investigate the
neuronal correlates of musical instrument training in CP
and in particular in association with the training of hand
motor function. Such studies are important to confirm
that functional rehabilitation is not due to chance but that
the therapy/training has introduced changes in the internal
mechanisms underlying motor function [74]. However the
validity of results can deliver false inferences if the correct
experimental controls are not observed [74, 75]. One of the
difficulties for studies investigating neuroplasticity in CP
(e.g., functional imaging) lies in the heterogeneity of this
clinical group, with patients differing greatly in the symptoms
presented, in the underlying brain damage, and in the onset
of injury. Ways to overcome these difficulties are becoming
available, especially for imaging and neurophysiological data
collected in patients with CP [74].

Besides the clinical heterogeneity in CP, additional chal-
lenges lie in the disabilities concomitant to motor impair-
ments that are often present, namely, the learning difficulties.
Besides influencing the range of experimental tests that can
detect functional change induced by training, they are likely
to have implications in the way musical instrument training
can effectively support patients’ rehabilitation. Individualized
training that takes into account the specific impairments and
development stage of each patient, as well as the individual
training period required for plastic changes to occur, may
in this case be advised in order to maximize benefit. Cap-
turing these changes will require appropriate experimental
methodology. As mentioned above, music already plays a
central role in the management of patients with CP, via music
therapy-based group activities that promote personal and
emotional enrichment, socializing, and relaxation. For the
reasons presented above, musical instrument training, par-
ticularly active piano training on an individual basis, has the
potential to trigger and promote the neuronal plastic changes
and sensorimotor interactions required for rehabilitation in
CP. However, experimental research is needed to validate,
support, and guide the optimal use of musical instrument
training in the learning of sensorimotor abilities in patients
with impairments due to early brain damage.
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mann, and I. Krägeloh-Mann, “Reorganization in congenital
hemiparesis acquired at different gestational ages,” Annals of
Neurology, vol. 56, no. 6, pp. 854–863, 2004.

[45] P. Nevalainen, E. Pihko, H. Mäenpää, L. Valanne, L. Nummen-
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Wohlschläger, and R. Lampe, “FMRI assessment of neuro-
plasticity in youths with neurodevelopmental-associated motor
disorders after piano training,” European Journal of Paediatric
Neurology, vol. 19, no. 1, pp. 15–28, 2015.

[74] L. B. Reid, S. E. Rose, and R. N. Boyd, “Rehabilitation and neu-
roplasticity in children with unilateral cerebral palsy,” Nature
Reviews Neurology, vol. 11, no. 7, pp. 390–400, 2015.

[75] A. Eklund, T. E. Nichols, andH. Knutsson, “Cluster failure: why
fMRI inferences for spatial extent have inflated false-positive
rates,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 113, no. 28, pp. 7900–7905, 2016.


