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Abstract: We propose a schematic setup of quantum key distribution (QKD) with an improved
secret key rate based on high-dimensional quantum states. Two degrees-of-freedom of a single
photon, orbital angular momentum modes, and multi-path modes, are used to encode secret key
information. Its practical implementation consists of optical elements that are within the reach of
current technologies such as a multiport interferometer. We show that the proposed feasible protocol
has improved the secret key rate with much sophistication compared to the previous 2-dimensional
protocol known as the detector-device-independent QKD.
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1. Introduction

Quantum key distribution (QKD) is a novel scheme to distribute a symmetric secret key between
two distant authorized parties, Alice, and Bob, by exploiting quantum mechanical phenomena.
The protocol provides an information-theoretic security under potential attacks of a malicious
eavesdropper, conventionally called Eve. Since its first seminal proposal called BB84 protocol [1], many
relevant or extended versions of QKD protocols have been proposed and studied based on quantum
principles [2–8].

In recent QKD studies, the security defects due to device imperfections have been emerging
as an important issue. It has been shown that Eve can hack into the QKD system by exploiting
the imperfection of devices. This is known as a side channel attack including photon number
splitting (PNS) attack [9], faked-state attack [10], detector efficiency mismatch attack [11], detector
blinding attack [12,13], time-shift attack [14], and laser damage attack [15]. In this background,
measurement-device-independent QKD (MDI-QKD) was proposed to overcome the problems coming
from imperfections of measurement devices [16]. In MDI-QKD, the Bell state measurement (BSM)
of two photons [17] is an essential task. However, the success probability of BSM with linear optics
on single photons is upper bounded by 50% [18,19]. Recent advanced schemes of BSM require
multi-photon encoding of 2-dimensional quantum states, called qubits, to beat the limit with linear
optics [20–24]. Then, detector-device-independent QKD (DDI-QKD) was proposed [25–27] to simplify
the scheme of MDI-QKD, exploiting two different degrees-of-freedoms (DoFs) in a single photon
and single-photon interference instead of two-photon interference. In its protocol, Alice encodes her
information into one DoF of a single photon and sends it to Bob, who encodes his information into
another DoF of the single photon. The measurement result of the single photon reveals correlation
of two DoFs in the single photon. The implementation of DDI-QKD requires only measurements on
single photons and is thus less challenging than BSM performed on two photons. As its scheme is

Entropy 2019, 21, 80; doi:10.3390/e21010080 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-2992-304X
http://www.mdpi.com/1099-4300/21/1/80?type=check_update&version=1
http://dx.doi.org/10.3390/e21010080
http://www.mdpi.com/journal/entropy


Entropy 2019, 21, 80 2 of 15

similar to the process of BSM used in MDI-QKD, it was conjectured that DDI-QKD guarantees the
same security level with MDI-QKD. However, it has been shown that not all the side channel attacks
are protected with DDI-QKD [28,29], and an assumption of the trusted measurement setup is necessary
for ensuring its security.

In another branch of QKD research, there has been significant effort to improve the secret key rate,
for example, using d-dimensional quantum states, called qudits. There are several advantages to
using qudits as a generalized information carrier. For example, qudits (d > 2) can naturally carry
more classical information than qubits. Compared to qubit operations, qudits has been shown to
be more robust against quantum cloning (i.e., a possible eavesdropping) [30–32]. It has been also
found that the efficiency of key distribution increases with qudits in an ideal situation [32–36].
Various high-dimensional QKD protocols have been proposed such as a generalized version of
BB84, a multipartite high-dimensional QKD [37], and MDI-QKDs using high-dimensional quantum
states [38–40]. Moreover, QKD protocols using qudits have been implemented experimentally in
various quantum system, for instance, energy-time eigenstates [41–45] and orbital angular momentum
(OAM) mode of a single photon [46–50].

In this article, we propose a schematic configuration of high-dimensional QKD based on hybrid
encoding over two different DoFs. We demonstrate that the secret key rate is improved with our
scheme over previous 2-dimensional QKD based on two different DoFs of a single photon. We also
present its implementation with current optical technologies, by exploiting the OAM mode of a single
photon as a high-dimensional information carrier. We evaluate the secret key rate of our scheme with
respect to the experimental parameters and identify the regime where our scheme is more secure
than the original DDI-QKD. In addition, we also compare the security of our scheme with that of
high-dimensional MDI-QKD (for the case of d = 3).

We note that our protocol is more secure than the original BB84 protocol against a side channel
attack (but less secure than MDI-QKD). For example, it can detect the basic detector blinding attack [12]
from double clicks of detectors [28,29]. On the other hand, the attained key rate with our protocol is
comparable with BB84 protocol, while MDI-QKD has a half of signal sifting rate of BB84 protocol due to
the 50% limit of the success probability of the BSM. Although DDI-QKD is not as secure as MDI-QKD
and requires trusted elements in BSM setup, the main idea of employing two different DoFs motivated
by DDI-QKD still merits consideration for practical usage in some secure communications e.g. quantum
secret sharing [51]. As we demonstrate in this article, it is possible to improve the security as well as
the efficiency over the original DDI-QKD in high-dimensional approach. In addition, we here propose
a feasible high-dimensional QKD scheme with OAM of a single photon, while a high-dimensional
MDI-QKD may be hard to realize due to the difficulty in implementing high-dimensional BSM on two
photons with linear optical elements [19].

This article is organized as follows. A schematic description of the d-dimensional QKD (d-QKD)
with hybrid encoding is presented in Section 2, and its practical implementation is in Section 3.
In Section 4, we analyze the secure key rate of our protocol. Finally, conclusion on the efficiencies is
drawn in Section 5.

2. Schematic Description

In this section, we describe a schematic setup of d-QKD with hybrid encoding. As an example,
the schematic setup of 3-dimensional QKD (3d-QKD) with hybrid encoding is shown in Figure 1.
In d-QKD with hybrid encoding, we exploit OAM mode and multipath mode of a single photon as
a information carrier, since the OAM mode is known to be suitable for quantum communication as it
is resilient against perturbation effects [52].

As a first step of the protocol, Alice generates d-dimensional information randomly. Subsequently,
Alice randomly chooses a encoding basis between two mutually unbiased bases (MUBs) which are
written as {|lx〉} and {|l̄x〉} where x ∈ {0, 1, 2, ..., d − 1}. The relation between the two MUBs is
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described as the d-dimensional discrete Fourier transformation on the d OAM modes which is shown
in Equation (1):

|l̄x〉 =
1
d

d−1

∑
k=0

ωxk |lk〉 (1)

where ω = exp (2πi/d). Alice encodes her d-dimensional information in OAM modes of a single
photon [53]. For example, when d = 3, Alice’s classical information x3 would be one of the dimensional
integers, x3 ∈ {0, 1, 2}, and she generates a quantum state denoted as |lx3〉 whose OAM value
is (x3 − 1).

Figure 1. A schematic setup of 3-dimensional quantum key distribution (QKD) with hybrid encoding.
Alice uses orbital angular momentum (OAM) modes of a single photon, and Bob controls the phase of
each path to encode their information in the single photon. The encoded photon enters into a 3-port
interferometer. After single photon interference, a OAM value and existing path of the single photon
is measured. SLM: spatial light modulator; BS1: 50:50 beam splitter; BS2: beam splitter of which
transmissivity is 1/3; BS3: beam splitter of which transmissivity is 2/3; OAM CT: cyclic transformation
of OAM modes.

Subsequently, Alice sends the encoded photon to Bob, who encodes his d-dimensional information
in multipath modes of the single photon. Bob also uses two MUBs that are described as {|py〉} and
{| p̄y〉}. |py〉 denotes a single photon state in the optical path py where y ∈ {0, 1, 2, ..., d− 1}. Similarly
with Alice’s bases, the relation between Bob’s two bases is given as the d-dimensional discrete Fourier
transformation of the d path modes. Figure 2 shows a schematic setup of Bob’s encoding systems.
Bob randomly chooses one basis between path modes and bar path modes, which are MUBs of the
path modes. If Bob uses a path mode, he selects one optical path among {p0, p1, p2} corresponding to
his information. If he chooses a bar path mode, he encodes his information by selecting a phases set
{B1, B2} in Figure 2b among {1, 1}, {ω, ω2}, and {ω2, ω}.

After Bob’s encoding, the two qudits encoded in the single photon, which can be written as
|lx, py〉, go into a cyclic transformation of OAM modes. A transformed OAM value of the single
photon in path py is obtained with the following rule: x → x + d − y (mod d). Subsequently,
a single photon interference is performed by recombining d-path via beam splitters that have different
transmissivity. The unitary transformation on path modes operated by multi-port interferometer,
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called tritter [54], is defined as the d-dimensional discrete Fourier transformation on the d path modes
as shown in Equation (2):

Ûd =
1√
d



1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωd−1

1 ω2 ω4 ω6 · · · ω2(d−1)

1 ω3 ω6 ω9 · · · ω3(d−1)

...
...

...
...

. . .
...

1 ωd−1 ω2(d−1) ω3(d−1) · · · ω(d−1)(d−1)


. (2)

Subsequently, a OAM value of the single photon is measured in each output port of the tritter.
The result of the measurement is obtained from click of a single photon detector. A click in one of
the d2 detectors corresponds to a projection into one of the following two qudits encoded in a single
photon written in Equation (3):

|Φdi+j〉 =
1√
d

d−1

∑
x=0

ω jx |lx, px+i〉 , (3)

where i, j ∈ {0, 1, 2, ..., d− 1}, and (mod d) is omitted in the subscript of p. Since the states have the
similar form to the d-dimensional Bell states, it is expected that the states can be used to distribute
a secret key between Alice and Bob. The relation between two qudits encoded in a single photon that
enters into the tritter and its corresponding detector click event is shown in Equation (4):

|Φdi+j〉 → D(ld−i, pd−j) (4)

where i, j ∈ {0, 1, 2, ..., d − 1}, and we label a click event of a single photon detector as D(lx, py)

corresponding to the single photon whose OAM value is lx and path mode is py after the tritter
operation. Since there are d2 orthonormal states in Equation (3), the measurement setup should include
d2 single photon detectors for one-to-one correspondence of the states and the detectors.

(a) Path mode encoding (b) Bar path mode encoding

Figure 2. Schematic setups of Bob’s two encoding systems. (a) Bob chooses one path to encode
his information by using optical switch; (b) Bob encodes his information by control phase shifters,
B1 and B2. Details are described in the maintext. BS1 : 50:50 beam splitter; BS2 : beam splitter of which
transmissivity is 1/3; PS : phase shifter

In order to share a secret key, it is necessary to retrieve Bob’s information based on the basis
choice of Alice and Bob, and the result of the measurement. For restoration, Alice sends her basis
choice to Bob. The method of the restoration is shown in Table 1 as an example when 3d-QKD with
hybrid encoding is performed. Bob announces only the basis matching information through classical
communication, not the result of the measurement. Alice does not need to know the measurement
outcome, since Bob already retrieved his encoded information by using the result.
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Table 1. An example of Bob’s operation on his encoded information when d = 3 and the result of the
measurement is |Φ3i+j〉. According to their bases choice and the measurement result, it is necessary to
retrieve his information for sharing the same information.

Bases Bob’s Operation (|Φ3i+j〉)

bases 1 (lx, py) y→ y− i (mod 3)

1↔ 2 for j = 0
bases 2 (l̄x, p̄y) 0↔ 2 for j = 1

0↔ 1 for j = 2

3. Experimental Implementation

We investigate a practical implementation of experimental elements that can construct d-QKD
with hybrid encoding. Alice can generate a single photon OAM state by means of a spatial light
modulator (SLM) [55]. SLMs usually have a limited frame rate of around 60 Hz, for fast generation of
various OAM values, a digital micromirror device(DMD) is more desirable [56]. An OAM sorter based
on liquid crystal devices can also generate photonic OAM states [57,58].

Bob’s path encoding system is realizable with an optical switch over d-port, and a schematic
setup is shown in Figure 2a. Bob’s bar path encoding system can be changed from Figure 2b by using
an optical d-port switch and a d-port tritter, whose operation on path modes is the d-dimensional
discrete Fourier transformation as shown in Equation (2). With the tritter, Bob can choose bar path
mode by selecting an input port of the tritter rather than controlling the phase shifters in Figure 2b.

After Bob’s encoding, cyclic transformations of OAM modes are performed in the each port.
Figure 3 shows a schematic setup of three-fold OAM cyclic transformation (+1) of OAM values
{−1, 0, 1}. The setup consists of OAM holograms, mirrors, beam splitters and OAM beam splitters
(OAM BSs). An OAM BS, composed of a Mach-Zehnder interferometer with a Dove prism in each
arm, sorts individual photons based on their OAM value [59]. α is defined from relative angle α/2
between the two Dove prisms and relative phase between photons in the two arms is given by
exp(ilα). The three-fold OAM cyclic transformation (+1) consists of three OAM BSs whose α are
π, π/2, and −π. The first OAM BS (α = π) and the final OAM BS (α = −π) change the direction
of propagation of a photon whose OAM value is odd and even, respectively. The second OAM BS
(α = π/2) spatially separates photons whose OAM value is 0 and 2. Photons are separated and
combined spatially by using the OAM BSs according to their OAM value. With OAM holograms
on each arm, the three-fold cyclic transformation of OAM modes {−1, 0, 1} is accomplished as it is
shown in Figure 3. The experimental setup of the four-fold and five-fold cyclic transformation of OAM
modes were proposed and demonstrated as well [60–63]. While theoretical efficiency of the four-fold
cyclic transformation is 100%, fidelity of 4-dimensional Bell state transformation using the four-fold
cyclic transformation setup was reported as roughly 91.5% due to reflectivity of optical elements
and misalignment [61].

Subsequently, d-port single photon interference is performed by using the tritter shown in
Equation (2). The tritter can be implemented with only linear optical elements which are beam
splitters, mirrors, and phase shifters. After the interference, an OAM value of the single photon is
measured. Direct measurements of an OAM value of a single photon have been studied recently,
for instance, by using refractive optical elements that convert OAM modes into transverse momentum
modes [64,65], refractive optical elements that give spatial separation of OAM modes [66], sequential
weak and strong measurements [67,68], spectrum analysis based on the rotational Doppler effect [69],
and interferogram analysis with a multipixel camera [70].
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Figure 3. A schematic diagram of experimental setup of three-fold cyclic transformation of OAM
modes. There are OAM beam splitters (OAM BSs) which consist of a Mach-Zehnder interferometer
with Dove prisms. α/2 means relative angle between the two Dove prisms. The first OAM BS (α = π)
and the final OAM BS (α = −π) change a direction of propagation of a photon whose OAM value is
odd and even, respectively. The second OAM BS (α = π/2) separates a photon whose OAM value
is 0 and 2. With OAM holograms, the three-fold cyclic transformation of OAM modes {−1, 0, 1}
is accomplished.

There has been an experimental demonstration of the prepare-and-measure qudit QKD using
seven OAM values of a single photon, which includes DMD for fast generation of single photon OAM
states and spatial separation of OAM modes proposed in for OAM mode detection [56,66]. In the
experiment, it was reported that the efficiency of OAM mode separation was 93%. It is expected that
an experimental demonstration of d-QKD with hybrid encoding is possible by using above technologies
as well as the prepare-and-measure qudit QKD.

4. Security Analysis

Before we analyze security of d-QKD with hybrid encoding, we need to assume constraints to
construct secure d-QKD with hybrid encoding as it is studied in [28]: (i) Alice’s and Bob’s random
number generators and their classical post-processing should be trusted. (ii) Alice’s and Bob’s encoding
systems should be fully characterized and not be influenced by Eve. (iii) Eve cannot physically access
to the output ports of the interferometer, in our protocol, the tritter. (iv) The detectors may have some
imperfections, but the defects is not from Eve. The first assumption is essential for all QKD schemes to
ensure security. The first and second assumptions are necessary for MDI-QKD as well. The third and
final assumptions are different from the scenario of MDI-QKD. They are necessary to prevent particular
classes of side channel attacks [28,29]. The third assumption can be considered not impractical,
since d-QKD with hybrid encoding has the similar experimental situation to prepare-and-measure
QKD protocols like original BB84. In the situation, Bob can have full measurement setup in his room
and he can block access from the outside.

Let us consider several side channel attacks against d-QKD with hybrid encoding. Since its
similarity of principles to the original DDI-QKD, the security of d-QKD with hybrid encoding against
side channel attacks is comparable to that of the original DDI-QKD studied in [28,29]. Faked-state
attack [10], detector efficiency mismatch attack [11], and time-shift attack [14] are not compatible
with assumption (iv) since the attacks require a prior knowledge of imperfections of the single
photon detectors. Trojan-horse attack based on back reflection [71–73] is considerable. In Trojan-horse
attack based on back reflection, Eve sends multi-photon states into Alice’s(Bob’s) encoding system.
The photons are reflected at the elements in the encoding system. Then Eve can obtain information
about a generated single photon state by analyzing the reflected beam. The attack can be prevented by
using frequency filters and isolators like in MDI-QKD case. Trojan-horse attack proposed in [74] is
forbidden by assumption (iv), since the detectors in the measurement setup should be manufactured
by Eve to accomplish this attack.

Detector blinding attack can threaten QKD systems as well. An essential procedure of the detector
blinding attack is that Eve shines strong classical light onto detectors, avalanche photodiodes, to change
their mode from Geiger mode to linear mode [12]. In the linear mode, a detection signal can be
generated by the strong light pulse that exceeds a threshold. This means that Eve can control a detector
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click by regulating amplitude of the light pulse. If a threshold of the all detectors is identical, the basic
detector blinding attack can be detected by Bob. Let us define the threshold µ. Then the amplitude of
Eve’s light pulse should be larger than µ when it arrives at detectors. Eve intercepts Alice’s signal and
resends a strong light corresponding to the measured quantum state. When Eve’s and Bob’s bases
are matched, for example OAM modes and path modes, the amplitude of Eve’s light pulse should
be larger than dµ to make a detector click since the tritter splits the light pulse into four output ports
identically. In the situation, Bob can notice the detector blinding attack since d detectors are clicked
simultaneously. Bob can make an error rate be affected by the attack by assigning random number
when more than two detectors are clicked. If there are differences among the threshold of detectors,
it is possible that Eve generates one detector click. The clicked detector must have the lowest threshold
among the detectors. This means that Eve cannot generate a click of the other detectors independently.
So the attack can be found by analyzing statistics of detector clicks.

Detector blinding attack with various blinding power [13] can threaten d-QKD with hybrid
encoding as well as the original DDI-QKD [29]. However, since the attack requires a prior knowledge
about the detectors, it is not compatible with assumption (iv). So we can conclude that without the
assumptions which are not necessary in MDI-QKD, the security of d-QKD with hybrid encoding
cannot be guaranteed against all detector side channel attacks.

To detect Eve’s side channel attacks, we introduce a random tritter operation of Bob. The tritter
operation written in Equation (2) is performed on path modes after Bob’s encoding. It is possible
that Bob chooses one of tritter operation among d different operations ratter than a fixed operation.
For example, Bob can chooses one operation among the operations shown in Equation (5):

Û3,0 =
1√
3

1 1 1
1 ω ω2

1 ω2 ω

 , Û3,1 =
1√
3

ω2 1 ω

1 1 1
ω 1 ω2

 , Û3,2 =
1√
3

ω2 ω 1
ω ω2 1
1 1 1

 (5)

for 3d-QKD with hybrid encoding. The operations can be implemented by using 3d-tritter and
phase shifters.

Let us consider the case that Bob chooses path mode | p̄0〉 and Eve tries detector blinding attack
with strong pulse whose OAM mode is |l̄0〉. If Bob chooses t, where t ∈ {0, 1, 2}, and performs the
tritter operation Û3,t, the pulse goes to output port pt of the tritter. For a successful attack, Eve must
find the pulse intensity and that one detector in the output port is clicked and the other detectors
are not, regardless of Bob’s choice of tritter operation. Also, Eve should perform detector blinding
attacks with various blinding power and find at least three different blinding powers, since Bob
monitors statistics of outcomes. For instance, Bob can check whether |l̄0, p̄0〉 is projected onto |Φ0〉,
|Φ3〉, and |Φ6〉 equally or not. Therefore, Eve should prepare at least three different pulse intensities,
which occur click events of different detectors on the same output port, to pass Bob’s statistics check.

For a large dimension, we expect that such attack is improbable with the assumption (iv), i.e., with
trusted devices. Since click thresholds of different detectors are very similar but randomly fluctuated,
it is difficult to find blinding powers and pulse intensities that satisfy the successful attack conditions.
For a successful attack, Eve should find the powers and intensities that only one detector is clicked
while the other d− 1 detectors in the port are not clicked, and the attack does not influence Bob’s
outcome statistics regardless of Bob’s choice of tritter operation Ûd,t, where t ∈ {0, 1, 2, ..., d − 1}.
Therefore, we expect that side channel attacks are probably detected for a high-dimensional QKD
using hybrid encoding, if Bob applies the random choice of tritter operation and a countermeasure
of a side channel attack, such as the random-detector-efficiency protocol [75,76]. Compared to this,
prepare-and-measure QKD protocols using high-dimensional systems are threatened by the first
proposal of detector blinding attack [12], and the original DDI-QKD was breached by the combined
attack of the detector blinding attack with various blinding power and detector efficiency mismatched
attacks even with the random-detector-efficiency protocol [13]. Therefore, we can conclude that the
complexity of a successful side channel attack becomes higher by exploiting the proposed protocol
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compared to prepare-and-measure d-QKDs and the original DDI-QKD, although the proposed protocol
does not provide the detector-device-independent security.

It is necessary to analyze security of d-QKD with hybrid encoding to evaluate the usefulness of
the protocol. The analysis of the security is able to be made through the inspection of the equivalent
protocol using the entanglement distillation process (EDP) [4–6]. The idea of the method is that, if Alice
and Bob share the maximally entangled state, Eve cannot generate correlation between her state and
the shared maximally entangled state of Alice and Bob [77]. In the method, we can analyze the security
of the proposed protocol with the amount of distributed maximally entangled states. In order to use
the method, an equivalent protocol of which Alice and Bob share an entangled state at the end should
be introduced. Note that the equivalent protocol is employed only for the security analysis, so its
experimental efficiency is not significant. However, it is important that the equivalent protocol is
physically realizable, since any security analysis of QKD should be valid under quantum mechanics.
Therefore, we will briefly introduce possible implementations of the equivalent protocol to show that
it is physically reasonable.

At first, Alice and Bob generate the three-photon entangled state shown in Equation (6):

|Ψ〉ABD =
1
d

d−1

∑
m,n=0

|lm〉A |l = 0, pn〉B |lm, pn〉D , (6)

where the subscript A(B) means Alice’s (Bob’s) single photon state and the subscript D means
a single photon that goes to tritter and OAM measurement setup. Generation of this state is
possible, in principle, by using two cascade spontaneous parametric down-conversion (SPDC) crystals,
spatial discrimination elements of the OAM mode, and relabelling of the OAM and path values.
For a 4-dimensional system, the generation of 4-dimensional OAM mode entangled states [78] and
4-dimensional path mode entangled states [79,80] using SPDC crystals was demonstrated . Alice and
Bob keep their photons, and Bob measures the photon D using the measurement setup. Based on
the result, Bob performs the corresponding unitary operation to share the maximally entangled state
shown in Equation (7) :

1√
d

d−1

∑
k=0
|lk〉A ⊗ |pk〉B . (7)

Alice (Bob) chooses her (his) measurement basis randomly between OAM (path) modes and
bar OAM (path) modes. After the measurement, Alice and Bob share their measurement bases and
discard if the two bases are not matched. If the two bases are matched, their measurement outcomes
are always identical if there is no error and no Eve.

Since the maximally entangled state is distributed to Alice and Bob, security of the protocol
becomes the same with that of a d-dimensional entanglement based QKD. Security of a QKD using
d-dimensional maximally entangled states was studied against individual attacks [33] (Eve monitors
state separately), and against collective attacks [34,35] (Eve monitors several states jointly). According
to the results, secret key rate of QKD using d-dimensional quantum states against collective attack is
evaluated as shown in Equation (8):

r = log2 d + 2Q log2

(
Q

d− 1

)
+ (1−Q) log2 (1−Q) . (8)

The unit of the secret key rate is (bits/sifted signal). Q is state error rate obtained from Equation (9):

Q = ∑
i 6=j
〈li, pj| ρ |li, pj〉 , (9)
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where ρ is the density matrix of the state shared by Alice and Bob, and i, j ∈ {0, 1, 2, ..., d− 1}. In the
ideal case, no error and no Eve, since the distributed state is the state described in Equation (7),
the error rate becomes trivial, Q = 0.

Now, we investigate an improvement of a secret key rate of d-QKD with hybrid encoding
compared with the original DDI-QKD. Secret key rates per sifted signal, r, of d-QKD with hybrid
encoding are plotted in Figure 4. Figure 4a shows the secret key rate of the original DDI-QKD (black
dotted line), 3d- (red dashed line), 4d- (blue dot-dashed line), and 5d-QKD with hybrid encoding
(orange solid line) in the ideal situation. QKD with hybrid encoding using higher dimensional quantum
states has a higher secret key rate than the original DDI-QKD at same error rate, since a quantum
system in high-dimension can carry more information per single quanta and qudit has enhanced
robustness against an optimal cloning and eavesdropping.
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Figure 4. The secret key rate of the original detector-device-independent QKD (DDI-QKD) (black
dotted line), 3d- (red dashed line), 4d- (blue dot-dashed line), and 5d-QKD with hybrid encoding
(orange solid line). (a) Plot of the secret key rate r (bits/sifted pulse) vs. state error rate Q; (b) Plot of
the secret key rate r (bits/sifted pulse) vs. transmission loss η (dB). Dark count rate of single photon
detectors is assumed as 10−5 per pulse.

In Figure 4b, we simulate secret key rates of d-QKD with hybrid encoding and the original
DDI-QKD with a change of the realistic experimental factors, transmission loss η and dark count rate
of single photon detectors. When a photon propagates through an optical fiber or atmosphere, there is
transmission loss. So transmission efficiency is approximately proportional to the distance between
Alice and Bob that QKD is able to be achieved. For a single photon detector, since it is very sensitive in
order to detect a very weak pulse, a single photon, it is possible to be clicked by background noise
even if there is no received photon. The event is called dark count. If there is no Eve, the probability of
the detector click corresponding to the state |Φ0〉 when Alice encodes x and Bob encodes y in a single
photon is able to be described as follows:

p(x, x) =
1
d
(1− η)(1− ν)(d

2−1) + ην(1− ν)(d
2−1) (10)

p(x, y) = ην(1− ν)(d
2−1) (11)

where x, y ∈ {0, 1, 2, ..., d− 1}, x 6= y, d is the dimension of quantum states used in d-QKD with hybrid
encoding, and ν is the dark count rate per pulse. The first term in Equation (10) denotes the case when
the single photon arrives at a detector and it triggers off the detector, while there is no dark count in
the other detectors. The second term in Equation (10) denotes that the single photon detector is clicked
due to the dark count when the single photon is lost in channel and the other detectors are not clicked.
In the ideal case, no Eve and no state error, p(x, y) should be zero since the state cannot be projected
on |Φ0〉. The only case that the detector is clicked is that the single photon is lost and the detector is
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clicked due to the dark count. The error rate in this situation is evaluated from the equation described
as follows:

Q =
∑i 6=j p(i, j)

∑d−1
x,y=0 p(x, y)

, (12)

where i, j ∈ {0, 1, 2, ..., d − 1}. The dark count rate, ν, is assumed as 10−5 per pulse in Figure 4b.
In the plot, it is shown that a secret key rate becomes higher, as the dimension of quantum states used
in d-QKD with hybrid encoding increases in low transmission loss regime. When the transmission
loss is high, the secret key rate decreases more rapidly as d increases. QKD with hybrid encoding
using higher dimensional quantum states is more influenced by the dark count of detectors, since the
number of the single photon detector used in d-QKD with hybrid encoding is lager than the original
DDI-QKD. Therefore, when a single photon is lost, the error rate of QKD with hybrid encoding using
higher dimensional quantum states increases rapidly compared with that of the original DDI-QKD.

Now, we compare 3d-QKD with hybrid encoding with MDI-QKD using 3-dimensional
quantum states (3d-MDI-QKD). 3d-MDI-QKD was proposed to increase a secret key rate of original
MDI-QKD [38]. In its key rate analysis, it is assumed that 3-dimensional BSM used in 3d-MDI-QKD
includes six single photon detectors and the 3-dimensional BSM setup can discriminate only three
3-dimensional Bell states among nine ones. Figure 5 shows the secret key rate of 3d-MDI-QKD (red
dashed line) and 3d-QKD with hybrid encoding (black solid line). Secret key rate per total pulse can be
obtained from (signal sifting rate) × (secret key rate per sifted key r). The signal sifting rate is obtained
from (the probability that Alice and Bob used the same bases) in d-QKD with hybrid encoding, and
(the probability that Alice and Bob used the same bases) × (the success probability of a BSM) in
MDI-QKD. Since a success probability of BSM with linear optics cannot be 100% [18,19], MDI-QKD
always has a lower secret key rate per total signal than prepare-and-measure QKD protocols and QKD
with hybrid encoding.
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Figure 5. The secret key rate of 3d-measurement-device-independent QKD (MDI-QKD) (red dashed
line) and 3d-QKD with hybrid encoding (black solid line). Plot of the secret key rate R (bits/total pulse)
vs. transmission loss η (dB). The secret key rate per total signal is obtained from (the secret key rate per
sifted key)×(the signal sifting rate). Details are described in maintext. Dark count rate of single photon
detectors is assumed as 10−5 per pulse.

Furthermore, it was proven that a generalized BSM in a high-dimensional two-photon state cannot
be implemented by means of linear optical elements [19]. The scheme using multi-photon interference
with linear optics can be adopted to implement MDI-QKD using qudits [81], however, the secret key
rate R of the protocol is always lower than original MDI-QKD, since the signal sifting rate of the
protocol is given as 1/(2d2). There is another scheme in which the ideal signal sifting rate can reach
1/(2d) by exploiting nonlinear effects, however, because of the nonlinearity, experimental efficiency of
the scheme is much lower than that of the setup with linear optical elements [82]. Also, it was shown
that a secret key rate of MDI-QKD using qudits (d > 4) cannot exceed that of qubit MDI-QKD at low
error rate even if a signal sifting rate of a d-dimensional BSM setup reaches 1/(2d) [82]. Therefore,
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it can be claimed that QKD with hybrid encoding is more suitable to exploit qudits than MDI-QKD
in its implementation, although it needs additional assumptions to guarantee the security level
of MDI-QKD.

Here, we compare key generation efficiency of d-QKD with hybrid encoding with that of existing
d-QKDs. First, compared with entanglement-based d-QKDs [43–45], our protocol has an advantage in
that generation of an entangled state is not necessary. A high-dimensional time-energy entangled state
is generated from spontaneous parametric down-conversion (SPDC), and entangled state generation
efficiency of SPDC is not comparable with a single photon OAM mode encoder.

Key generation efficiency of prepare-and-measure d-QKDs [47–50,83] are comparable with that of
our protocol. Our protocol is vulnerable to photon loss noise compared with prepare-and-measure
d-QKDs, as it is shown in Figure 6. Our protocol employs d2 detectors in the measurement setup, while
prepare-and-measure d-QKDs have 2d detectors. Because of this reason, an effect of a dark count of
detectors in our protocol is larger than that in prepare-and-measure d-QKDs. This means that growth
in an error rate of our protocol is higher than that of prepare-and-measure d-QKDs when a single
photon is lost. However, as it is shown in the security analysis, our protocol can prevent certain kinds
of side channel attacks against detectors, while security of prepare-and-measure d-QKDs is threatened
even by the first proposal of a detector blinding attack. In consideration of this, the gap between the
two secret key rates shown in Figure 6 is not significant.
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Figure 6. The secret key rate of 3d-QKD hybrid encoding (black solid line) and a prepare-and-measure
3d-QKD (red dashed line). Dark count rate of single photon detectors is assumed as 10−5 per pulse.

Finally, we note that it is possible to employ state-of-the-art techniques in our protocol, since our
protocol is constructed with general experimental elements. For example, in d-QKD using partial
MUBs of OAM [49], they proposed using special single photon OAM modes in their protocol for noise
robustness. It is expected that the setups used in the protocol are exploited in our protocol for the same
purpose as well.

5. Conclusions

In this paper, we proposed a schematic configuration of d-dimensional QKD based on hybrid
encoding over two different DoFs. Qudits are exploited in the setup to improve a secret key
rate, since a qudit can carry more classical information and it has enhanced robustness against
eavesdropping compared with a qubit. We investigated possible practical implementations of the
proposed QKD protocol with current optical technologies. OAM modes of a single photon is exploited
as a high-dimensional information carrier. OAM modes are suitable for quantum communication
because of their resilience against perturbation effects. We showed that a cyclic transformation of OAM
modes can be implemented within the reach of current technologies as well. We analyzed security
of the proposed protocol and showed there is improvement compared with original qubit protocol
in an ideal situation. We found the condition that d-QKD with hybrid encoding has a higher secret
key rate than the original DDI-QKD in the consideration of realistic experimental parameters as well.
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Finally we compared our protocol with existing d-QKDs and showed our protocol has advantages
regarding the prevention of side channel attacks against detectors and experimental feasibility.
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